organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-(4-Pyrid­yl)-1,3,4-thia­diazole-2(3H)-thione

aDepartment of Chemical Engineering, Ningbo University of Technology, Ningbo 315016, People's Republic of China, and bCollege of Chemical Engineering and Materials Science, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
*Correspondence e-mail: xhliu@zjut.edu.cn

(Received 11 December 2010; accepted 12 December 2010; online 18 December 2010)

The title compound C7H5N3S2, occurs as the thione tautomer in the solid state; the dihedral angle between the pyridine and thia­diazole ring planes is 2.08 (6)°. In the crystal, mol­ecules are linked by N—H⋯N hydrogen bonds, generating C(8) chains propagating in [010].

Related literature

For details of the synthesis, see: Song et al. (2005[Song, B. A., Chen, C. J., Yang, S., Jin, L. H., Xue, W., Zhang, S. M., Zou, Z. H., Hu, D. Y. & Liu, G. (2005). Acta Chem. Sin. 18, 1720-1726.]). For the biological activity of related compounds, see: Liu et al. (2007[Liu, X. H., Chen, P. Q., Wang, B. L., Li, Y. H., Wang, S. H. & Li, Z. M. (2007). Bioorg. Med. Chem. Lett. 17, 3784-3788.], 2009a[Liu, X. H., Shi, Y. X., Ma, Y., He, G. R., Dong, W. L., Zhang, C. Y., Wang, B. L., Wang, S. H., Li, B. J. & Li, Z. M. (2009a). Chem. Biol. Drug Des. 73, 320-327.],b[Liu, X. H., Shi, Y. X., Ma, Y., Zhang, C. Y., Dong, W. L., Li, P., Wang, B. L., Li, B. J. & Li, Z. M. (2009b). Eur. J. Med. Chem. 44, 2782-2786.],c[Liu, X. H., Zhang, C. Y., Guo, W. C., Li, Y. H., Chen, P. Q., Wang, T., Dong, W. L., Sun, H. W. & Li, Z. M. (2009c). J. Enzym. Inhib. Med. Chem. 24, 545-552.]).

[Scheme 1]

Experimental

Crystal data
  • C7H5N3S2

  • Mr = 195.26

  • Monoclinic, P 21 /c

  • a = 7.837 (3) Å

  • b = 15.971 (5) Å

  • c = 6.694 (2) Å

  • β = 103.680 (4)°

  • V = 814.1 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.59 mm−1

  • T = 113 K

  • 0.20 × 0.20 × 0.08 mm

Data collection
  • Rigaku Saturn CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]) Tmin = 0.891, Tmax = 0.954

  • 8141 measured reflections

  • 1928 independent reflections

  • 1642 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.076

  • S = 1.06

  • 1928 reflections

  • 113 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯N3i 0.90 (1) 1.85 (1) 2.7395 (19) 169 (2)
Symmetry code: (i) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Thidiazoles had excellent biological activities, such as fungicide, KARI (Liu et al., 2007, 2009a,b,c). Meanwhile, some nicotine structure are also exhibited good biological activity. In continuated our work, a thidiazoles derivatives had been synthesized. The strucuture was confirmed by X-ray crstallography.

Single-crystal X-ray diffraction analysis reveals that the title compound crystallizes in the monoclinic space group P2(1)/c. As shown in Fig. 1, the pyridine ring and the thiadiazole ring are nearly in the same plane [dihedral angle = 2.1 °]. As shown in Fig. 2, the crystal structure is stabilized by weak N—H···N intermolecular interactions.

Related literature top

For details of the synthesis, see: Song et al. (2005). For the biological activity of related compounds, see: Liu et al. (2007, 2009a,b,c).

Experimental top

Potassium hydroxide (0.11 mol) was dissolved in minimum amount of ethanol, and 4-nicotinehydrazide (0.1 mol) was added to it. The reaction mixture was cooled to 0–5 °C followed by dropwise addition of carbon disulfide (0.11 mol). After addition, the reaction mixture was stirred for 30 min to afford solid potassium dithiocarbazate salt. It was filtered, washed with EtOH, dried, and used as such for further reaction. Potassium dithiocarbazate salt (0.1 mol) was added slowly in small lots to conc sulfuric acid (2.5 times of salt) at 5 °C with constant stirring. The reaction mixture was stirred for 30 min, and the resulting viscous liquid was poured over crushed ice slowly. The solid obtained was filtered and washed and dried to get the title compound. The compound was recrystallized in DMF to yield colorless prisms.

Refinement top

All the H atoms were positioned geometrically (C—H = 0.93–0.97 Å) and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C).

Structure description top

Thidiazoles had excellent biological activities, such as fungicide, KARI (Liu et al., 2007, 2009a,b,c). Meanwhile, some nicotine structure are also exhibited good biological activity. In continuated our work, a thidiazoles derivatives had been synthesized. The strucuture was confirmed by X-ray crstallography.

Single-crystal X-ray diffraction analysis reveals that the title compound crystallizes in the monoclinic space group P2(1)/c. As shown in Fig. 1, the pyridine ring and the thiadiazole ring are nearly in the same plane [dihedral angle = 2.1 °]. As shown in Fig. 2, the crystal structure is stabilized by weak N—H···N intermolecular interactions.

For details of the synthesis, see: Song et al. (2005). For the biological activity of related compounds, see: Liu et al. (2007, 2009a,b,c).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I). Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. The crystal packing for (I).
5-(4-Pyridyl)-1,3,4-thiadiazole-2(3H)-thione top
Crystal data top
C7H5N3S2F(000) = 400
Mr = 195.26Dx = 1.593 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2887 reflections
a = 7.837 (3) Åθ = 2.6–27.9°
b = 15.971 (5) ŵ = 0.59 mm1
c = 6.694 (2) ÅT = 113 K
β = 103.680 (4)°Prism, colorless
V = 814.1 (5) Å30.20 × 0.20 × 0.08 mm
Z = 4
Data collection top
Rigaku Saturn CCD
diffractometer
1928 independent reflections
Radiation source: fine-focus sealed tube1642 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
Detector resolution: 14.63 pixels mm-1θmax = 27.8°, θmin = 2.6°
ω and φ scansh = 1010
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
k = 2021
Tmin = 0.891, Tmax = 0.954l = 88
8141 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.076H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0461P)2]
where P = (Fo2 + 2Fc2)/3
1928 reflections(Δ/σ)max < 0.001
113 parametersΔρmax = 0.44 e Å3
1 restraintΔρmin = 0.21 e Å3
Crystal data top
C7H5N3S2V = 814.1 (5) Å3
Mr = 195.26Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.837 (3) ŵ = 0.59 mm1
b = 15.971 (5) ÅT = 113 K
c = 6.694 (2) Å0.20 × 0.20 × 0.08 mm
β = 103.680 (4)°
Data collection top
Rigaku Saturn CCD
diffractometer
1928 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
1642 reflections with I > 2σ(I)
Tmin = 0.891, Tmax = 0.954Rint = 0.033
8141 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0281 restraint
wR(F2) = 0.076H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.44 e Å3
1928 reflectionsΔρmin = 0.21 e Å3
113 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.40446 (4)0.02171 (2)0.20702 (6)0.01704 (11)
S20.60139 (5)0.14291 (2)0.26909 (6)0.02389 (13)
N10.27180 (16)0.11033 (7)0.30185 (19)0.0159 (3)
N20.13949 (15)0.05360 (7)0.28751 (18)0.0151 (2)
N30.14570 (15)0.23252 (7)0.15350 (18)0.0154 (3)
C10.42543 (17)0.08492 (8)0.2646 (2)0.0159 (3)
C20.19024 (17)0.01952 (8)0.2396 (2)0.0138 (3)
C30.07477 (17)0.09310 (8)0.2109 (2)0.0138 (3)
C40.13479 (18)0.17060 (8)0.1615 (2)0.0160 (3)
H40.25150.17720.14630.019*
C50.02020 (18)0.23800 (8)0.1349 (2)0.0159 (3)
H50.06170.29090.10180.019*
C60.20252 (18)0.15758 (8)0.2012 (2)0.0156 (3)
H60.32020.15290.21450.019*
C70.09795 (17)0.08668 (9)0.2320 (2)0.0156 (3)
H70.14260.03480.26670.019*
H10.244 (3)0.1638 (6)0.325 (3)0.047 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01417 (18)0.01237 (18)0.0254 (2)0.00003 (12)0.00638 (15)0.00162 (13)
S20.0190 (2)0.0213 (2)0.0318 (3)0.00798 (14)0.00682 (17)0.00402 (15)
N10.0171 (6)0.0109 (5)0.0204 (7)0.0014 (4)0.0058 (5)0.0016 (5)
N20.0171 (6)0.0117 (5)0.0170 (6)0.0013 (5)0.0048 (5)0.0001 (4)
N30.0164 (6)0.0132 (6)0.0158 (6)0.0001 (5)0.0021 (5)0.0016 (4)
C10.0169 (7)0.0139 (6)0.0162 (7)0.0003 (5)0.0025 (5)0.0005 (5)
C20.0142 (6)0.0137 (6)0.0137 (7)0.0005 (5)0.0039 (5)0.0014 (5)
C30.0160 (7)0.0136 (6)0.0115 (7)0.0002 (5)0.0026 (5)0.0014 (5)
C40.0146 (7)0.0158 (7)0.0179 (7)0.0014 (5)0.0046 (6)0.0002 (5)
C50.0183 (7)0.0123 (6)0.0167 (7)0.0022 (5)0.0037 (6)0.0000 (5)
C60.0142 (6)0.0170 (7)0.0158 (7)0.0015 (5)0.0040 (6)0.0017 (5)
C70.0177 (7)0.0126 (7)0.0164 (7)0.0025 (5)0.0042 (6)0.0006 (5)
Geometric parameters (Å, º) top
S1—C21.7437 (15)C2—C31.4679 (18)
S1—C11.7452 (15)C3—C41.3916 (19)
S2—C11.6555 (14)C3—C71.3974 (18)
N1—C11.3485 (18)C4—C51.3862 (19)
N1—N21.3631 (16)C4—H40.9500
N1—H10.902 (9)C5—H50.9500
N2—C21.2980 (17)C6—C71.3844 (19)
N3—C51.3378 (18)C6—H60.9500
N3—C61.3417 (17)C7—H70.9500
C2—S1—C189.77 (6)C7—C3—C2120.65 (12)
C1—N1—N2118.98 (11)C5—C4—C3118.43 (13)
C1—N1—H1125.1 (12)C5—C4—H4120.8
N2—N1—H1115.7 (13)C3—C4—H4120.8
C2—N2—N1110.06 (11)N3—C5—C4123.48 (12)
C5—N3—C6117.71 (11)N3—C5—H5118.3
N1—C1—S2127.20 (11)C4—C5—H5118.3
N1—C1—S1107.03 (10)N3—C6—C7123.17 (13)
S2—C1—S1125.77 (8)N3—C6—H6118.4
N2—C2—C3122.50 (12)C7—C6—H6118.4
N2—C2—S1114.16 (10)C6—C7—C3118.57 (12)
C3—C2—S1123.33 (10)C6—C7—H7120.7
C4—C3—C7118.64 (12)C3—C7—H7120.7
C4—C3—C2120.71 (12)
C1—N1—N2—C20.77 (17)N2—C2—C3—C70.8 (2)
N2—N1—C1—S2178.87 (10)S1—C2—C3—C7177.65 (11)
N2—N1—C1—S10.50 (15)C7—C3—C4—C50.1 (2)
C2—S1—C1—N10.08 (10)C2—C3—C4—C5179.66 (12)
C2—S1—C1—S2179.29 (11)C6—N3—C5—C40.3 (2)
N1—N2—C2—C3179.24 (12)C3—C4—C5—N30.3 (2)
N1—N2—C2—S10.65 (15)C5—N3—C6—C70.1 (2)
C1—S1—C2—N20.34 (11)N3—C6—C7—C30.5 (2)
C1—S1—C2—C3178.92 (12)C4—C3—C7—C60.5 (2)
N2—C2—C3—C4179.40 (13)C2—C3—C7—C6179.28 (12)
S1—C2—C3—C42.14 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N3i0.90 (1)1.85 (1)2.7395 (19)169 (2)
Symmetry code: (i) x, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC7H5N3S2
Mr195.26
Crystal system, space groupMonoclinic, P21/c
Temperature (K)113
a, b, c (Å)7.837 (3), 15.971 (5), 6.694 (2)
β (°) 103.680 (4)
V3)814.1 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.59
Crystal size (mm)0.20 × 0.20 × 0.08
Data collection
DiffractometerRigaku Saturn CCD
Absorption correctionMulti-scan
(CrystalClear; Rigaku/MSC, 2005)
Tmin, Tmax0.891, 0.954
No. of measured, independent and
observed [I > 2σ(I)] reflections
8141, 1928, 1642
Rint0.033
(sin θ/λ)max1)0.657
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.076, 1.06
No. of reflections1928
No. of parameters113
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.44, 0.21

Computer programs: CrystalClear (Rigaku/MSC, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N3i0.904 (12)1.846 (14)2.7395 (19)169 (2)
Symmetry code: (i) x, y1/2, z+1/2.
 

Acknowledgements

This work was supported financially by the National Natural Science Foundation of China (No. 21002090) and the Key Laboratory of Pesticide Chemistry and Applications, Ministry of Agriculture (MOA), Beijing, People's Republic of China (No. MOAPCA201005) and the Scientific Research Fund of Zhejiang Education Department (Y201018479).

References

First citationLiu, X. H., Chen, P. Q., Wang, B. L., Li, Y. H., Wang, S. H. & Li, Z. M. (2007). Bioorg. Med. Chem. Lett. 17, 3784–3788.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLiu, X. H., Shi, Y. X., Ma, Y., He, G. R., Dong, W. L., Zhang, C. Y., Wang, B. L., Wang, S. H., Li, B. J. & Li, Z. M. (2009a). Chem. Biol. Drug Des. 73, 320–327.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLiu, X. H., Shi, Y. X., Ma, Y., Zhang, C. Y., Dong, W. L., Li, P., Wang, B. L., Li, B. J. & Li, Z. M. (2009b). Eur. J. Med. Chem. 44, 2782–2786.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLiu, X. H., Zhang, C. Y., Guo, W. C., Li, Y. H., Chen, P. Q., Wang, T., Dong, W. L., Sun, H. W. & Li, Z. M. (2009c). J. Enzym. Inhib. Med. Chem. 24, 545–552.  Web of Science CrossRef CAS Google Scholar
First citationRigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSong, B. A., Chen, C. J., Yang, S., Jin, L. H., Xue, W., Zhang, S. M., Zou, Z. H., Hu, D. Y. & Liu, G. (2005). Acta Chem. Sin. 18, 1720–1726.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds