organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-[(E)-2-Fluoro­benzyl­­idene]-8-(2-fluoro­phen­yl)-2-hy­dr­oxy-10-methyl-3,10-di­aza­hexa­cyclo­[10.7.1.13,7.02,11.07,11.016,20]henicosa-1(20),12,14,16,18-pentaen-6-one

aSchool of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 15 December 2010; accepted 16 December 2010; online 24 December 2010)

In the title compound, C33H26F2N2O2, the piperidone ring adopts a half-chair conformation and the pyrrolidine rings adopt half-chair and envelope conformations. The two benzene rings make dihedral angles of 29.58 (5) and 76.33 (5)° with the mean plane of the 1,2-dihydro­acenaphthyl­ene unit. An intra­molecular O—H⋯N hydrogen bond helps to stabilize the mol­ecular structure. In the crystal, inter­molecular C—H⋯F hydrogen bonds link the mol­ecules into [010] chains. Weak C—H⋯π inter­actions are also observed.

Related literature

For general background to and the biological activity of heterocyclic compounds, see: Tsuge & Kanemasa (1989[Tsuge, O. & Kanemasa, S. (1989). Advances in Heterocyclic Chemistry, edited by A. R. Katritzky, Vol. 45, p. 231. San Diego: Academic Press.]); Grigg & Sridharan (1993[Grigg, R. & Sridharan, V. (1993). Advances in Cycloaddition, edited by D. P. Curran, Vol. 3, p. 161. London: Jai Press.]); Daly et al. (1986[Daly, J. W., Spande, T. W., Whittaker, N., Highet, R. J., Feigl, D., Noshimori, N., Tokuyama, T. & Meyers, C. W. (1986). J. Nat. Prod. 49, 265-280.]); Waldmann (1995[Waldmann, H. (1995). Synlett, pp. 133-141.]). For the synthesis, see: Kumar et al. (2010[Kumar, R. S., Osman, H., Ali, M. A., Rosli, M. M. & Fun, H.-K. (2010). Acta Cryst. E66, o2376-o2377.]). For ring conformations, see Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C33H26F2N2O2

  • Mr = 520.56

  • Monoclinic, P 21 /c

  • a = 16.664 (2) Å

  • b = 9.7226 (11) Å

  • c = 15.507 (2) Å

  • β = 96.447 (2)°

  • V = 2496.5 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 100 K

  • 0.49 × 0.32 × 0.13 mm

Data collection
  • Bruker APEXII DUO CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.955, Tmax = 0.988

  • 31956 measured reflections

  • 10068 independent reflections

  • 7622 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.181

  • S = 1.09

  • 10068 reflections

  • 357 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C14–C18/C23 and C1–C6 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H1O2⋯N2 0.88 (3) 2.06 (3) 2.6786 (13) 127 (2)
C10—H10A⋯F1i 0.97 2.37 3.3135 (14) 163
C30—H30A⋯F2ii 0.93 2.45 3.1525 (17) 132
C5—H5ACg1iii 0.93 2.94 3.6110 (14) 131
C33—H33CCg2iv 0.96 2.93 3.7253 (15) 141
Symmetry codes: (i) x, y+1, z; (ii) [-x+1, y+{\script{1\over 2}}, -z-{\script{1\over 2}}]; (iii) [x, -y-{\script{1\over 2}}, z-{\script{3\over 2}}]; (iv) [x, -y-{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Due to their varying biological activities, heterocyclic compounds with fused five- and six-membered rings occupy an important place among organic compounds. 1,3-Dipolar cycloadditions are efficient methods for the construction of heterocyclic rings (Tsuge & Kanemasa, 1989; Grigg & Sridharan, 1993). In particular, the chemistry of azomethine ylides gained significance as it serves as a facile route for the construction of nitrogen-containing five-membered heterocycles which constitute the central skeleton of numerous natural products (Daly et al., 1986; Waldmann, 1995). Taking into account the importance of aforesaid heterocycles, we have undertaken the X-ray diffraction study of the title compound and the results are presented here.

The molecular structure of the title compound is shown in Fig. 1. The 4-piperidone ring (C8—C9/N1/C10—C12) adopts a half-chair conformation, with puckering parameters Q = 0.6127 (11) Å, θ = 142.74 (10)° and φ = 119.46 (17)° (Cremer & Pople, 1975). The two fused pyrrolidine rings with atom sequences N1/C10/C11/C24/C13 and N2/C24/C11/C26/C25, adopt a half-chair (twist on N1–C10) and an envelope (flap on atom N2) conformations, respectively. The puckering parameters are Q = 0.4498 (11) Å, φ = 206.94 (14)° for the N1/C10/C11/C24/C13 pyrrolidine ring and Q = 0.4187 (11) Å, φ = 359.86 (16)° for the N2/C24/C11/C26/C25 pyrrolidine ring. The two benzene rings (C1–C6 and C27–C32) make dihedral angles of 29.58 (5) and 76.33 (5)°, respectively with the mean plane of 1,2-dihydroacenaphthylene (C13–C24). The geometric parameters are consistent to those observed in a closely related structure (Kumar et al., 2010). An intramolecular O2—H1O2···N2 hydrogen bond stabilize the molecular structure.

In the crystal structure, intermolecular C10—H10A···F1 and C20—H30A···F2 hydrogen bonds (Table 1) link the molecules into chains propagating along the [010] direction (Fig. 2). Weak intermolecular C—H···π interactions (Table 1) are also observed.

Related literature top

For general background to and the biological activity of heterocyclic compounds, see: Tsuge & Kanemasa (1989); Grigg & Sridharan (1993); Daly et al. (1986); Waldmann (1995). For the synthesis, see: Kumar et al. (2010). For ring conformations, see Cremer & Pople (1975). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

The title compound was synthesized according to the previous procedure described by us (Kumar et al., 2010) and was recrystallized from ethyl acetate to afford pale yellow plates.

Refinement top

The O bound hydrogen atom was located from the difference Fourier map and was refined freely. The rest of hydrogen atoms were positioned geometrically [C–H = 0.93–0.97 Å] and refined using a riding model, with Uiso(H) = 1.2 or 1.5Ueq(C). A rotating-group model was applied for methyl group.

Structure description top

Due to their varying biological activities, heterocyclic compounds with fused five- and six-membered rings occupy an important place among organic compounds. 1,3-Dipolar cycloadditions are efficient methods for the construction of heterocyclic rings (Tsuge & Kanemasa, 1989; Grigg & Sridharan, 1993). In particular, the chemistry of azomethine ylides gained significance as it serves as a facile route for the construction of nitrogen-containing five-membered heterocycles which constitute the central skeleton of numerous natural products (Daly et al., 1986; Waldmann, 1995). Taking into account the importance of aforesaid heterocycles, we have undertaken the X-ray diffraction study of the title compound and the results are presented here.

The molecular structure of the title compound is shown in Fig. 1. The 4-piperidone ring (C8—C9/N1/C10—C12) adopts a half-chair conformation, with puckering parameters Q = 0.6127 (11) Å, θ = 142.74 (10)° and φ = 119.46 (17)° (Cremer & Pople, 1975). The two fused pyrrolidine rings with atom sequences N1/C10/C11/C24/C13 and N2/C24/C11/C26/C25, adopt a half-chair (twist on N1–C10) and an envelope (flap on atom N2) conformations, respectively. The puckering parameters are Q = 0.4498 (11) Å, φ = 206.94 (14)° for the N1/C10/C11/C24/C13 pyrrolidine ring and Q = 0.4187 (11) Å, φ = 359.86 (16)° for the N2/C24/C11/C26/C25 pyrrolidine ring. The two benzene rings (C1–C6 and C27–C32) make dihedral angles of 29.58 (5) and 76.33 (5)°, respectively with the mean plane of 1,2-dihydroacenaphthylene (C13–C24). The geometric parameters are consistent to those observed in a closely related structure (Kumar et al., 2010). An intramolecular O2—H1O2···N2 hydrogen bond stabilize the molecular structure.

In the crystal structure, intermolecular C10—H10A···F1 and C20—H30A···F2 hydrogen bonds (Table 1) link the molecules into chains propagating along the [010] direction (Fig. 2). Weak intermolecular C—H···π interactions (Table 1) are also observed.

For general background to and the biological activity of heterocyclic compounds, see: Tsuge & Kanemasa (1989); Grigg & Sridharan (1993); Daly et al. (1986); Waldmann (1995). For the synthesis, see: Kumar et al. (2010). For ring conformations, see Cremer & Pople (1975). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with 50% probability ellipsoids for non-H atoms.
[Figure 2] Fig. 2. The crystal packing of title compound, viewed down the c axis, showing the molecules linked into chains along the b axis. Intermolecular hydrogen bonds are shown as dashed lines.
5-[(E)-2-Fluorobenzylidene]-8-(2-fluorophenyl)-2-hydroxy-10- methyl-3,10-diazahexacyclo[10.7.1.13,7.02,11.07,11.016,20]henicosa- 1(20),12,14,16,18-pentaen-6-one top
Crystal data top
C33H26F2N2O2F(000) = 1088
Mr = 520.56Dx = 1.385 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 7762 reflections
a = 16.664 (2) Åθ = 2.8–33.8°
b = 9.7226 (11) ŵ = 0.10 mm1
c = 15.507 (2) ÅT = 100 K
β = 96.447 (2)°Plate, yellow
V = 2496.5 (5) Å30.49 × 0.32 × 0.13 mm
Z = 4
Data collection top
Bruker APEXII DUO CCD
diffractometer
10068 independent reflections
Radiation source: fine-focus sealed tube7622 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
φ and ω scansθmax = 34.0°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 2526
Tmin = 0.955, Tmax = 0.988k = 1515
31956 measured reflectionsl = 2422
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.181H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.1093P)2 + 0.1256P]
where P = (Fo2 + 2Fc2)/3
10068 reflections(Δ/σ)max < 0.001
357 parametersΔρmax = 0.50 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
C33H26F2N2O2V = 2496.5 (5) Å3
Mr = 520.56Z = 4
Monoclinic, P21/cMo Kα radiation
a = 16.664 (2) ŵ = 0.10 mm1
b = 9.7226 (11) ÅT = 100 K
c = 15.507 (2) Å0.49 × 0.32 × 0.13 mm
β = 96.447 (2)°
Data collection top
Bruker APEXII DUO CCD
diffractometer
10068 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
7622 reflections with I > 2σ(I)
Tmin = 0.955, Tmax = 0.988Rint = 0.040
31956 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.181H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 0.50 e Å3
10068 reflectionsΔρmin = 0.34 e Å3
357 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.22287 (5)0.09340 (8)0.08747 (6)0.03048 (18)
F20.45096 (6)0.58239 (9)0.20151 (6)0.0358 (2)
O10.39107 (5)0.30091 (10)0.12913 (7)0.02658 (19)
O20.15163 (5)0.61493 (9)0.00816 (6)0.02169 (17)
N10.17809 (5)0.51233 (9)0.12231 (6)0.01635 (17)
N20.30632 (5)0.56856 (10)0.06815 (6)0.01923 (18)
C10.16676 (7)0.05834 (12)0.15376 (8)0.0215 (2)
C20.10676 (7)0.15156 (13)0.17951 (10)0.0271 (2)
H2A0.10530.23730.15320.033*
C30.04838 (8)0.11319 (14)0.24619 (10)0.0304 (3)
H3A0.00730.17440.26530.037*
C40.05071 (8)0.01535 (14)0.28457 (9)0.0268 (2)
H4A0.01020.04120.32770.032*
C50.11349 (7)0.10543 (12)0.25857 (8)0.0211 (2)
H5A0.11560.19030.28590.025*
C60.17377 (7)0.07036 (11)0.19167 (7)0.0185 (2)
C70.24461 (7)0.15535 (12)0.16437 (8)0.0194 (2)
H7A0.29300.10890.14990.023*
C80.24723 (6)0.29276 (11)0.15795 (7)0.01732 (19)
C90.17378 (6)0.38537 (11)0.17402 (7)0.01779 (19)
H9A0.16640.40990.23500.021*
H9B0.12650.33380.16170.021*
C100.25581 (6)0.57891 (11)0.13048 (7)0.01756 (19)
H10A0.25610.67280.10930.021*
H10B0.26730.57950.19040.021*
C110.31781 (6)0.48950 (11)0.07365 (7)0.01573 (18)
C120.32628 (6)0.35540 (11)0.12233 (7)0.01816 (19)
C130.17937 (6)0.49274 (11)0.02730 (7)0.01591 (18)
C140.13397 (6)0.36810 (11)0.00054 (7)0.01704 (19)
C150.05339 (6)0.33647 (12)0.00943 (8)0.0209 (2)
H15A0.01540.39810.03540.025*
C160.02922 (7)0.20736 (13)0.02195 (9)0.0252 (2)
H16A0.02550.18630.01740.030*
C170.08376 (8)0.11258 (13)0.05878 (9)0.0253 (2)
H17A0.06570.02890.07820.030*
C180.16772 (7)0.14199 (12)0.06725 (8)0.0209 (2)
C190.23165 (8)0.05522 (13)0.10249 (8)0.0255 (2)
H19A0.22010.03170.12280.031*
C200.30997 (8)0.09849 (13)0.10674 (9)0.0266 (2)
H20A0.35080.04000.13050.032*
C210.33118 (7)0.22989 (13)0.07610 (8)0.0237 (2)
H21A0.38500.25630.07880.028*
C220.27098 (6)0.31696 (12)0.04254 (7)0.01815 (19)
C230.19010 (6)0.27189 (11)0.03808 (7)0.01777 (19)
C240.27181 (6)0.46278 (11)0.00720 (7)0.01602 (18)
C250.39317 (6)0.56622 (13)0.06012 (7)0.0211 (2)
H25A0.41860.48660.08940.025*
H25B0.41920.64880.08470.025*
C260.39858 (6)0.55880 (11)0.03787 (7)0.01791 (19)
H26A0.44280.49650.04780.021*
C270.41441 (6)0.69660 (12)0.07821 (7)0.01820 (19)
C280.40392 (7)0.82279 (13)0.03838 (8)0.0238 (2)
H28A0.38330.82460.01490.029*
C290.42350 (8)0.94592 (14)0.07619 (10)0.0278 (3)
H29A0.41571.02860.04820.033*
C300.45462 (7)0.94638 (15)0.15531 (10)0.0296 (3)
H30A0.46841.02910.17990.036*
C310.46512 (8)0.82381 (15)0.19762 (9)0.0294 (3)
H31A0.48630.82220.25060.035*
C320.44319 (7)0.70319 (13)0.15875 (8)0.0231 (2)
C330.28877 (8)0.55308 (15)0.15801 (8)0.0275 (3)
H33A0.30970.63090.19140.041*
H33B0.31370.47050.18210.041*
H33C0.23140.54770.15940.041*
H1O20.1965 (16)0.658 (3)0.0285 (17)0.073 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0295 (4)0.0244 (4)0.0345 (4)0.0015 (3)0.0100 (3)0.0043 (3)
F20.0468 (5)0.0372 (5)0.0248 (4)0.0078 (4)0.0106 (4)0.0036 (3)
O10.0161 (3)0.0257 (4)0.0385 (5)0.0032 (3)0.0052 (3)0.0037 (4)
O20.0172 (3)0.0197 (4)0.0282 (4)0.0009 (3)0.0027 (3)0.0074 (3)
N10.0141 (4)0.0168 (4)0.0177 (4)0.0003 (3)0.0001 (3)0.0007 (3)
N20.0157 (4)0.0266 (5)0.0151 (4)0.0052 (3)0.0007 (3)0.0020 (3)
C10.0195 (5)0.0209 (5)0.0236 (5)0.0016 (4)0.0003 (4)0.0011 (4)
C20.0230 (5)0.0229 (5)0.0349 (6)0.0030 (4)0.0009 (5)0.0042 (5)
C30.0230 (5)0.0280 (6)0.0387 (7)0.0069 (4)0.0039 (5)0.0018 (5)
C40.0242 (5)0.0264 (6)0.0280 (6)0.0010 (4)0.0049 (5)0.0002 (5)
C50.0237 (5)0.0203 (5)0.0188 (5)0.0000 (4)0.0001 (4)0.0005 (4)
C60.0186 (4)0.0185 (4)0.0187 (5)0.0006 (3)0.0029 (4)0.0022 (4)
C70.0177 (4)0.0198 (5)0.0208 (5)0.0012 (4)0.0024 (4)0.0020 (4)
C80.0152 (4)0.0202 (5)0.0166 (4)0.0011 (3)0.0018 (3)0.0015 (4)
C90.0160 (4)0.0192 (4)0.0174 (4)0.0003 (3)0.0015 (3)0.0020 (4)
C100.0142 (4)0.0186 (4)0.0195 (5)0.0003 (3)0.0000 (3)0.0024 (4)
C110.0121 (4)0.0184 (4)0.0165 (4)0.0005 (3)0.0010 (3)0.0014 (4)
C120.0147 (4)0.0203 (5)0.0196 (5)0.0007 (3)0.0025 (3)0.0013 (4)
C130.0125 (4)0.0170 (4)0.0182 (4)0.0008 (3)0.0018 (3)0.0022 (4)
C140.0139 (4)0.0195 (4)0.0179 (4)0.0017 (3)0.0025 (3)0.0032 (4)
C150.0148 (4)0.0234 (5)0.0248 (5)0.0025 (4)0.0034 (4)0.0051 (4)
C160.0191 (5)0.0277 (6)0.0295 (6)0.0079 (4)0.0057 (4)0.0056 (5)
C170.0255 (5)0.0233 (5)0.0279 (6)0.0082 (4)0.0065 (4)0.0026 (5)
C180.0235 (5)0.0200 (5)0.0197 (5)0.0035 (4)0.0050 (4)0.0020 (4)
C190.0329 (6)0.0209 (5)0.0230 (5)0.0004 (4)0.0042 (5)0.0031 (4)
C200.0276 (6)0.0252 (5)0.0263 (6)0.0047 (4)0.0002 (5)0.0068 (5)
C210.0185 (5)0.0276 (6)0.0246 (5)0.0020 (4)0.0000 (4)0.0056 (5)
C220.0153 (4)0.0218 (5)0.0173 (4)0.0001 (3)0.0014 (3)0.0016 (4)
C230.0163 (4)0.0205 (5)0.0168 (4)0.0012 (3)0.0033 (3)0.0009 (4)
C240.0120 (4)0.0203 (4)0.0156 (4)0.0013 (3)0.0009 (3)0.0003 (4)
C250.0145 (4)0.0301 (5)0.0181 (5)0.0052 (4)0.0013 (4)0.0030 (4)
C260.0127 (4)0.0218 (5)0.0190 (5)0.0014 (3)0.0007 (3)0.0014 (4)
C270.0118 (4)0.0239 (5)0.0188 (5)0.0031 (3)0.0011 (3)0.0011 (4)
C280.0221 (5)0.0257 (5)0.0237 (5)0.0047 (4)0.0036 (4)0.0003 (4)
C290.0235 (5)0.0241 (5)0.0347 (7)0.0054 (4)0.0025 (5)0.0027 (5)
C300.0213 (5)0.0328 (6)0.0335 (7)0.0050 (4)0.0020 (5)0.0127 (5)
C310.0229 (5)0.0418 (7)0.0237 (5)0.0011 (5)0.0038 (4)0.0117 (5)
C320.0191 (5)0.0311 (6)0.0189 (5)0.0015 (4)0.0017 (4)0.0015 (4)
C330.0254 (5)0.0406 (7)0.0168 (5)0.0087 (5)0.0034 (4)0.0035 (5)
Geometric parameters (Å, º) top
F1—C11.3533 (14)C14—C151.3694 (14)
F2—C321.3620 (15)C14—C231.4081 (15)
O1—C121.2177 (13)C15—C161.4209 (17)
O2—C131.4088 (13)C15—H15A0.9300
O2—H1O20.89 (3)C16—C171.3730 (19)
N1—C101.4660 (13)C16—H16A0.9300
N1—C91.4694 (14)C17—C181.4196 (16)
N1—C131.4833 (14)C17—H17A0.9300
N2—C331.4633 (16)C18—C231.4059 (16)
N2—C251.4668 (14)C18—C191.4193 (17)
N2—C241.4696 (14)C19—C201.3658 (18)
C1—C21.3751 (17)C19—H19A0.9300
C1—C61.3930 (16)C20—C211.4214 (18)
C2—C31.3887 (19)C20—H20A0.9300
C2—H2A0.9300C21—C221.3699 (15)
C3—C41.3866 (19)C21—H21A0.9300
C3—H3A0.9300C22—C231.4117 (14)
C4—C51.3890 (17)C22—C241.5206 (15)
C4—H4A0.9300C25—C261.5338 (16)
C5—C61.4027 (16)C25—H25A0.9700
C5—H5A0.9300C25—H25B0.9700
C6—C71.4640 (15)C26—C271.5143 (15)
C7—C81.3400 (15)C26—H26A0.9800
C7—H7A0.9300C27—C321.3887 (16)
C8—C121.4994 (15)C27—C281.3933 (17)
C8—C91.5174 (15)C28—C291.3880 (17)
C9—H9A0.9700C28—H28A0.9300
C9—H9B0.9700C29—C301.385 (2)
C10—C111.5477 (14)C29—H29A0.9300
C10—H10A0.9700C30—C311.381 (2)
C10—H10B0.9700C30—H30A0.9300
C11—C121.5210 (15)C31—C321.3863 (18)
C11—C261.5510 (14)C31—H31A0.9300
C11—C241.5628 (15)C33—H33A0.9600
C13—C141.5110 (15)C33—H33B0.9600
C13—C241.5998 (14)C33—H33C0.9600
C13—O2—H1O2103.9 (17)C17—C16—H16A118.8
C10—N1—C9108.26 (8)C15—C16—H16A118.8
C10—N1—C13103.19 (8)C16—C17—C18120.19 (11)
C9—N1—C13115.37 (8)C16—C17—H17A119.9
C33—N2—C25112.58 (9)C18—C17—H17A119.9
C33—N2—C24115.78 (9)C23—C18—C19116.30 (10)
C25—N2—C24104.66 (9)C23—C18—C17116.45 (11)
F1—C1—C2118.19 (11)C19—C18—C17127.24 (11)
F1—C1—C6117.60 (10)C20—C19—C18120.49 (11)
C2—C1—C6124.20 (11)C20—C19—H19A119.8
C1—C2—C3117.70 (12)C18—C19—H19A119.8
C1—C2—H2A121.1C19—C20—C21122.19 (11)
C3—C2—H2A121.1C19—C20—H20A118.9
C4—C3—C2120.70 (12)C21—C20—H20A118.9
C4—C3—H3A119.6C22—C21—C20118.92 (11)
C2—C3—H3A119.6C22—C21—H21A120.5
C3—C4—C5120.01 (11)C20—C21—H21A120.5
C3—C4—H4A120.0C21—C22—C23118.76 (11)
C5—C4—H4A120.0C21—C22—C24132.63 (10)
C4—C5—C6120.99 (11)C23—C22—C24108.61 (9)
C4—C5—H5A119.5C18—C23—C14123.11 (10)
C6—C5—H5A119.5C18—C23—C22123.33 (10)
C1—C6—C5116.33 (10)C14—C23—C22113.55 (10)
C1—C6—C7119.21 (10)N2—C24—C22116.07 (9)
C5—C6—C7124.33 (10)N2—C24—C11102.00 (8)
C8—C7—C6127.06 (10)C22—C24—C11117.98 (9)
C8—C7—H7A116.5N2—C24—C13112.35 (9)
C6—C7—H7A116.5C22—C24—C13104.06 (8)
C7—C8—C12116.89 (9)C11—C24—C13104.01 (8)
C7—C8—C9124.09 (10)N2—C25—C26104.66 (8)
C12—C8—C9118.60 (9)N2—C25—H25A110.8
N1—C9—C8114.82 (8)C26—C25—H25A110.8
N1—C9—H9A108.6N2—C25—H25B110.8
C8—C9—H9A108.6C26—C25—H25B110.8
N1—C9—H9B108.6H25A—C25—H25B108.9
C8—C9—H9B108.6C27—C26—C25113.57 (9)
H9A—C9—H9B107.5C27—C26—C11114.90 (9)
N1—C10—C11104.03 (8)C25—C26—C11103.28 (8)
N1—C10—H10A110.9C27—C26—H26A108.3
C11—C10—H10A110.9C25—C26—H26A108.3
N1—C10—H10B110.9C11—C26—H26A108.3
C11—C10—H10B110.9C32—C27—C28115.55 (10)
H10A—C10—H10B109.0C32—C27—C26120.40 (10)
C12—C11—C10106.98 (8)C28—C27—C26124.03 (10)
C12—C11—C26115.13 (8)C29—C28—C27121.67 (12)
C10—C11—C26117.17 (9)C29—C28—H28A119.2
C12—C11—C24109.69 (8)C27—C28—H28A119.2
C10—C11—C24101.18 (8)C30—C29—C28120.42 (13)
C26—C11—C24105.62 (8)C30—C29—H29A119.8
O1—C12—C8122.83 (10)C28—C29—H29A119.8
O1—C12—C11123.26 (10)C31—C30—C29119.89 (12)
C8—C12—C11113.85 (8)C31—C30—H30A120.1
O2—C13—N1108.10 (8)C29—C30—H30A120.1
O2—C13—C14111.89 (9)C30—C31—C32118.01 (12)
N1—C13—C14115.09 (9)C30—C31—H31A121.0
O2—C13—C24111.65 (8)C32—C31—H31A121.0
N1—C13—C24105.15 (8)F2—C32—C31118.27 (11)
C14—C13—C24104.78 (8)F2—C32—C27117.35 (11)
C15—C14—C23119.38 (10)C31—C32—C27124.38 (12)
C15—C14—C13131.91 (10)N2—C33—H33A109.5
C23—C14—C13108.69 (9)N2—C33—H33B109.5
C14—C15—C16118.46 (11)H33A—C33—H33B109.5
C14—C15—H15A120.8N2—C33—H33C109.5
C16—C15—H15A120.8H33A—C33—H33C109.5
C17—C16—C15122.38 (11)H33B—C33—H33C109.5
F1—C1—C2—C3178.47 (12)C13—C14—C23—C18177.52 (10)
C6—C1—C2—C31.7 (2)C15—C14—C23—C22179.49 (10)
C1—C2—C3—C40.5 (2)C13—C14—C23—C220.90 (13)
C2—C3—C4—C52.3 (2)C21—C22—C23—C180.68 (17)
C3—C4—C5—C62.1 (2)C24—C22—C23—C18178.72 (10)
F1—C1—C6—C5178.26 (10)C21—C22—C23—C14177.73 (11)
C2—C1—C6—C51.88 (18)C24—C22—C23—C142.88 (13)
F1—C1—C6—C75.77 (16)C33—N2—C24—C2237.58 (13)
C2—C1—C6—C7174.09 (12)C25—N2—C24—C2286.96 (10)
C4—C5—C6—C10.05 (17)C33—N2—C24—C11167.22 (9)
C4—C5—C6—C7175.79 (11)C25—N2—C24—C1142.68 (10)
C1—C6—C7—C8145.45 (13)C33—N2—C24—C1381.99 (12)
C5—C6—C7—C838.93 (18)C25—N2—C24—C13153.47 (9)
C6—C7—C8—C12175.81 (11)C21—C22—C24—N260.40 (17)
C6—C7—C8—C93.43 (19)C23—C22—C24—N2118.87 (10)
C10—N1—C9—C849.53 (12)C21—C22—C24—C1161.06 (17)
C13—N1—C9—C865.47 (12)C23—C22—C24—C11119.66 (10)
C7—C8—C9—N1148.66 (11)C21—C22—C24—C13175.62 (13)
C12—C8—C9—N123.59 (14)C23—C22—C24—C135.10 (11)
C9—N1—C10—C1174.36 (10)C12—C11—C24—N2150.00 (8)
C13—N1—C10—C1148.39 (10)C10—C11—C24—N297.23 (9)
N1—C10—C11—C1272.81 (10)C26—C11—C24—N225.36 (10)
N1—C10—C11—C26156.20 (9)C12—C11—C24—C2221.57 (12)
N1—C10—C11—C2441.99 (10)C10—C11—C24—C22134.33 (9)
C7—C8—C12—O127.68 (17)C26—C11—C24—C22103.08 (10)
C9—C8—C12—O1159.51 (11)C12—C11—C24—C1393.02 (9)
C7—C8—C12—C11149.72 (10)C10—C11—C24—C1319.75 (10)
C9—C8—C12—C1123.09 (14)C26—C11—C24—C13142.34 (8)
C10—C11—C12—O1136.13 (11)O2—C13—C24—N20.39 (12)
C26—C11—C12—O14.01 (16)N1—C13—C24—N2117.38 (9)
C24—C11—C12—O1114.92 (12)C14—C13—C24—N2120.91 (9)
C10—C11—C12—C846.47 (11)O2—C13—C24—C22126.74 (9)
C26—C11—C12—C8178.59 (9)N1—C13—C24—C22116.27 (9)
C24—C11—C12—C862.47 (11)C14—C13—C24—C225.44 (10)
C10—N1—C13—O285.18 (9)O2—C13—C24—C11109.14 (9)
C9—N1—C13—O2156.95 (8)N1—C13—C24—C117.85 (10)
C10—N1—C13—C14148.94 (9)C14—C13—C24—C11129.56 (9)
C9—N1—C13—C1431.08 (12)C33—N2—C25—C26170.68 (10)
C10—N1—C13—C2434.20 (10)C24—N2—C25—C2644.13 (11)
C9—N1—C13—C2483.67 (10)N2—C25—C26—C2799.05 (10)
O2—C13—C14—C1556.48 (16)N2—C25—C26—C1126.05 (11)
N1—C13—C14—C1567.42 (15)C12—C11—C26—C27114.79 (10)
C24—C13—C14—C15177.62 (12)C10—C11—C26—C2712.32 (13)
O2—C13—C14—C23125.16 (10)C24—C11—C26—C27124.03 (10)
N1—C13—C14—C23110.94 (10)C12—C11—C26—C25120.97 (10)
C24—C13—C14—C234.02 (11)C10—C11—C26—C25111.91 (10)
C23—C14—C15—C160.81 (17)C24—C11—C26—C250.20 (11)
C13—C14—C15—C16179.03 (11)C25—C26—C27—C32161.80 (10)
C14—C15—C16—C171.58 (19)C11—C26—C27—C3279.59 (13)
C15—C16—C17—C180.4 (2)C25—C26—C27—C2816.44 (14)
C16—C17—C18—C231.38 (18)C11—C26—C27—C28102.17 (12)
C16—C17—C18—C19179.11 (12)C32—C27—C28—C291.88 (17)
C23—C18—C19—C200.13 (18)C26—C27—C28—C29176.44 (11)
C17—C18—C19—C20179.64 (13)C27—C28—C29—C300.24 (19)
C18—C19—C20—C210.4 (2)C28—C29—C30—C311.01 (19)
C19—C20—C21—C221.1 (2)C29—C30—C31—C320.43 (18)
C20—C21—C22—C231.20 (18)C30—C31—C32—F2177.91 (11)
C20—C21—C22—C24178.01 (12)C30—C31—C32—C272.81 (19)
C19—C18—C23—C14178.27 (11)C28—C27—C32—F2177.23 (10)
C17—C18—C23—C142.17 (17)C26—C27—C32—F24.38 (15)
C19—C18—C23—C220.01 (17)C28—C27—C32—C313.48 (17)
C17—C18—C23—C22179.57 (11)C26—C27—C32—C31174.91 (11)
C15—C14—C23—C181.08 (17)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C14–C18/C23 and C1–C6 rings, respectively.
D—H···AD—HH···AD···AD—H···A
O2—H1O2···N20.88 (3)2.06 (3)2.6786 (13)127 (2)
C10—H10A···F1i0.972.373.3135 (14)163
C30—H30A···F2ii0.932.453.1525 (17)132
C5—H5A···Cg1iii0.932.943.6110 (14)131
C33—H33C···Cg2iv0.962.933.7253 (15)141
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1/2, z1/2; (iii) x, y1/2, z3/2; (iv) x, y1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC33H26F2N2O2
Mr520.56
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)16.664 (2), 9.7226 (11), 15.507 (2)
β (°) 96.447 (2)
V3)2496.5 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.49 × 0.32 × 0.13
Data collection
DiffractometerBruker APEXII DUO CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.955, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
31956, 10068, 7622
Rint0.040
(sin θ/λ)max1)0.787
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.181, 1.09
No. of reflections10068
No. of parameters357
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.50, 0.34

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C14–C18/C23 and C1–C6 rings, respectively.
D—H···AD—HH···AD···AD—H···A
O2—H1O2···N20.88 (3)2.06 (3)2.6786 (13)127 (2)
C10—H10A···F1i0.972.373.3135 (14)163
C30—H30A···F2ii0.932.453.1525 (17)132
C5—H5A···Cg1iii0.932.943.6110 (14)131
C33—H33C···Cg2iv0.962.933.7253 (15)141
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1/2, z1/2; (iii) x, y1/2, z3/2; (iv) x, y1/2, z1/2.
 

Footnotes

Additional contact author, e-mail: ohasnah@usm.my.

§Thomson Reuters ResearcherID: A-5523-2009.

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

The synthetic chemistry work was funded by Universiti Sains Malaysia (USM) under the University Research grant No. 1001/PKIMIA/811133 and RSK thanks Universiti Sains Malaysia for the award of post doctoral fellowship. HKF and CSY thank USM for the Research University Grant No. 1001/PFIZIK/811160.

References

First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDaly, J. W., Spande, T. W., Whittaker, N., Highet, R. J., Feigl, D., Noshimori, N., Tokuyama, T. & Meyers, C. W. (1986). J. Nat. Prod. 49, 265–280.  CrossRef CAS PubMed Web of Science Google Scholar
First citationGrigg, R. & Sridharan, V. (1993). Advances in Cycloaddition, edited by D. P. Curran, Vol. 3, p. 161. London: Jai Press.  Google Scholar
First citationKumar, R. S., Osman, H., Ali, M. A., Rosli, M. M. & Fun, H.-K. (2010). Acta Cryst. E66, o2376–o2377.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTsuge, O. & Kanemasa, S. (1989). Advances in Heterocyclic Chemistry, edited by A. R. Katritzky, Vol. 45, p. 231. San Diego: Academic Press.  Google Scholar
First citationWaldmann, H. (1995). Synlett, pp. 133–141.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds