organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Bromo-2-[1-(4-eth­­oxy­phen­yl)-1-methyl­eth­yl]-1-methyl­benzene

aBiology Institute of Shandong Academy of Sciences, Jinan 250014, People's Republic of China
*Correspondence e-mail: wangjianning2010@yahoo.cn

(Received 25 November 2010; accepted 26 November 2010; online 4 December 2010)

In title compound, C18H21BrO, the dihedral angle between two rings is 85.72°. No classical hydrogen bonds are found and only van der Waals forces stabilize the crystal packing.

Related literature

For details of the biological activity of SGLT2 inhibitors, a class of promising anti-hyperglycemic agents, see: Meng et al. (2008[Meng, M., Ellsworth, B. A., Nirschl, A. A., McCann, P. J., Patel, M., Girotra, R. N., Wu, G., Sher, P. M., Morrison, E. P., Biller, S. A., Zahler, R., Deshpande, P. P., Pullockaran, A., Hagan, D. L., Morgan, N., Taylor, J. R., Obermeier, M. T., Humphreys, W. G., Khanna, A., Discenza, L., Robertson, J. M., Wang, A., Han, S., Wetterau, J. R., Janovitz, E. B., Flint, O. P., Whaley, J. M. & Washburn, W. N. (2008). J. Med. Chem. 51, 1145-1149.]); Gao et al. (2010a[Gao, Y. L., Zhao, G. L., Liu, W., Wang, Y. L., Xu, W. R. & Wang, J. W. (2010a). Chin. J. Chem. 28, 605-612.],b[Gao, Y. L., Zhao, G. L., Liu, W., Shao, H., Wang, Y. L., Xu, W. R., Tang, L. D. & Wang, J. W. (2010b). Indian J. Chem. Sect. B, 49, 1499-1508.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C18H21BrO

  • Mr = 333.26

  • Monoclinic, P 21 /n

  • a = 11.164 (2) Å

  • b = 9.5142 (19) Å

  • c = 16.135 (3) Å

  • β = 110.21 (3)°

  • V = 1608.2 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.55 mm−1

  • T = 293 K

  • 0.20 × 0.16 × 0.08 mm

Data collection
  • Rigaku Saturn diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.630, Tmax = 0.822

  • 13056 measured reflections

  • 2839 independent reflections

  • 2101 reflections with I > 2σ(I)

  • Rint = 0.054

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.130

  • S = 1.05

  • 2839 reflections

  • 186 parameters

  • H-atom parameters constrained

  • Δρmax = 0.52 e Å−3

  • Δρmin = −0.39 e Å−3

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

SGLT2 inhibitors are a class of promising anti-hyperglycemic agents, and a variety of SGLT2 inhibitors are now in clinical trials (Meng et al., 2008). The title compound was a crucial intermediate, the aglycon of the C-glucoside SGLT2 inhibitors, for the synthesis of novel C-glucoside SGLT2 inhibitors during the development of our own SGLT2 inhibitors (Gao et al., 2010a,b).

In title compound, C18H21BrO, bond lengths are normal (Allen et al., 1987). The dihedral angle between two phenyl ring (C2—C7 and C11—C16) is 85.72 °. No classic hydrogen bonds found, only Van der Waals forces stabilize the crystal packing.

Related literature top

For details of the biological activity of SGLT2 inhibitors, a class of promising anti-hyperglycemic agents, see: Meng et al. (2008); Gao et al. (2010a,b). For bond-b,length data, see: Allen et al. (1987).

Experimental top

A dried 100-ml round-bottomed flask was charged with 2.29 g (10 mmol) of 1-(5-bromo-2-methylphenyl)-1-methylethanol, 1.22 g (10 mmol) of phenetol and 15 ml of dried dichloromethane, and the clear solution thus obtained was stirred on an ice bath followed by addition of 1.33 g (10 mmol) of anhydrous aluminium chloride in a portionwise manner. After addition, the reaction mixture was stirred at room temperature for another one hour when TLC analysis indicated that all the starting materials were consumed completely. The reaction mixture was poured into 300 ml of ice-water and exacted with three 50-ml portions of dichloromethane, and the combined exacts were washed with saturated brine, dried over sodium sulfate and evaporated on a rotary evaporator to afford the crude product as a colorless oil, which was purified by column chromatography to yield the pure product as colorless crystals. Single crystals suitable for X-ray diffraction were obtained from slow evaporation of a solution of the pure title compound in dichloromethane/petroleum ether (1/4) at room temperature.

Refinement top

All H atoms were found on difference maps, with C—H = 0.93–0.97 and included in the final cycles of refinement using a riding model, with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(C) for the methyl H atoms.

Structure description top

SGLT2 inhibitors are a class of promising anti-hyperglycemic agents, and a variety of SGLT2 inhibitors are now in clinical trials (Meng et al., 2008). The title compound was a crucial intermediate, the aglycon of the C-glucoside SGLT2 inhibitors, for the synthesis of novel C-glucoside SGLT2 inhibitors during the development of our own SGLT2 inhibitors (Gao et al., 2010a,b).

In title compound, C18H21BrO, bond lengths are normal (Allen et al., 1987). The dihedral angle between two phenyl ring (C2—C7 and C11—C16) is 85.72 °. No classic hydrogen bonds found, only Van der Waals forces stabilize the crystal packing.

For details of the biological activity of SGLT2 inhibitors, a class of promising anti-hyperglycemic agents, see: Meng et al. (2008); Gao et al. (2010a,b). For bond-b,length data, see: Allen et al. (1987).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the title compound, with displacement ellipsoids drawn at the 40% probability level.
4-Bromo-2-[1-(4-ethoxyphenyl)-1-methylethyl]-1-methylbenzene top
Crystal data top
C18H21BrOF(000) = 688
Mr = 333.26Dx = 1.376 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3726 reflections
a = 11.164 (2) Åθ = 2.1–27.1°
b = 9.5142 (19) ŵ = 2.55 mm1
c = 16.135 (3) ÅT = 293 K
β = 110.21 (3)°Prism, colorless
V = 1608.2 (6) Å30.20 × 0.16 × 0.08 mm
Z = 4
Data collection top
Rigaku Saturn
diffractometer
2839 independent reflections
Radiation source: rotating anode2101 reflections with I > 2σ(I)
Confocal monochromatorRint = 0.054
ω scansθmax = 25.0°, θmin = 1.9°
Absorption correction: multi-scan
(CystalClear; Rigaku, 2005)
h = 1312
Tmin = 0.630, Tmax = 0.822k = 1111
13056 measured reflectionsl = 1719
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.051H-atom parameters constrained
wR(F2) = 0.130 w = 1/[σ2(Fo2) + (0.070P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
2839 reflectionsΔρmax = 0.52 e Å3
186 parametersΔρmin = 0.39 e Å3
0 restraintsExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.026 (2)
Crystal data top
C18H21BrOV = 1608.2 (6) Å3
Mr = 333.26Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.164 (2) ŵ = 2.55 mm1
b = 9.5142 (19) ÅT = 293 K
c = 16.135 (3) Å0.20 × 0.16 × 0.08 mm
β = 110.21 (3)°
Data collection top
Rigaku Saturn
diffractometer
2839 independent reflections
Absorption correction: multi-scan
(CystalClear; Rigaku, 2005)
2101 reflections with I > 2σ(I)
Tmin = 0.630, Tmax = 0.822Rint = 0.054
13056 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.130H-atom parameters constrained
S = 1.05Δρmax = 0.52 e Å3
2839 reflectionsΔρmin = 0.39 e Å3
186 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.02586 (4)0.72212 (4)0.15240 (3)0.0665 (3)
O10.1869 (3)0.2600 (3)0.39327 (19)0.0644 (8)
C10.1877 (4)0.1214 (4)0.1522 (3)0.0751 (13)
H1A0.22760.09630.09120.113*
H1B0.24960.11800.18120.113*
H1C0.11980.05660.18020.113*
C20.1338 (4)0.2691 (4)0.1586 (3)0.0545 (10)
C30.1463 (4)0.3354 (5)0.0805 (3)0.0647 (11)
H30.18720.28780.02790.078*
C40.1010 (4)0.4700 (4)0.0762 (3)0.0635 (11)
H40.11200.51290.02220.076*
C50.0388 (3)0.5377 (4)0.1551 (2)0.0497 (9)
C60.0249 (3)0.4749 (4)0.2352 (2)0.0491 (9)
H60.01660.52360.28720.059*
C70.0716 (3)0.3405 (4)0.2397 (2)0.0467 (8)
C80.0623 (4)0.2769 (4)0.3297 (3)0.0501 (9)
C90.1980 (4)0.2698 (4)0.3348 (3)0.0736 (13)
H9A0.24500.19530.29750.110*
H9B0.24100.35750.31530.110*
H9C0.19210.25220.39460.110*
C100.0203 (4)0.3690 (4)0.4079 (3)0.0723 (12)
H10A0.02960.32260.46260.108*
H10B0.02060.45830.40620.108*
H10C0.10290.38310.40340.108*
C110.0025 (3)0.1309 (4)0.3436 (2)0.0471 (9)
C120.0460 (4)0.0150 (4)0.3738 (2)0.0575 (10)
H120.12260.02350.38430.069*
C130.0171 (4)0.1130 (4)0.3887 (3)0.0628 (11)
H130.01870.18950.40750.075*
C140.1324 (4)0.1283 (4)0.3759 (2)0.0513 (9)
C150.1832 (3)0.0141 (4)0.3464 (2)0.0525 (9)
H150.26030.02250.33670.063*
C160.1182 (3)0.1130 (4)0.3314 (2)0.0543 (10)
H160.15390.18930.31230.065*
C170.3065 (4)0.2787 (4)0.3818 (3)0.0673 (12)
H17A0.36990.21680.42110.081*
H17B0.29900.25680.32150.081*
C180.3460 (4)0.4312 (5)0.4026 (3)0.0896 (15)
H18A0.34800.45330.46110.134*
H18B0.42920.44540.39910.134*
H18C0.28560.49130.36080.134*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0704 (4)0.0471 (3)0.0812 (4)0.00704 (19)0.0251 (3)0.01185 (19)
O10.068 (2)0.0553 (17)0.076 (2)0.0164 (13)0.0322 (16)0.0155 (13)
C10.086 (3)0.056 (3)0.068 (3)0.020 (2)0.009 (2)0.001 (2)
C20.054 (2)0.042 (2)0.055 (2)0.0056 (17)0.004 (2)0.0034 (17)
C30.068 (3)0.055 (2)0.056 (2)0.009 (2)0.003 (2)0.000 (2)
C40.063 (3)0.065 (3)0.054 (2)0.001 (2)0.008 (2)0.012 (2)
C50.044 (2)0.044 (2)0.061 (2)0.0016 (16)0.0181 (18)0.0061 (17)
C60.050 (2)0.046 (2)0.050 (2)0.0002 (17)0.0151 (17)0.0002 (16)
C70.0421 (19)0.039 (2)0.058 (2)0.0014 (16)0.0158 (17)0.0028 (17)
C80.057 (2)0.041 (2)0.058 (2)0.0041 (17)0.0268 (19)0.0062 (16)
C90.079 (3)0.053 (3)0.109 (4)0.014 (2)0.057 (3)0.015 (2)
C100.114 (4)0.054 (3)0.053 (2)0.003 (2)0.034 (2)0.0004 (19)
C110.053 (2)0.042 (2)0.047 (2)0.0014 (17)0.0175 (17)0.0036 (15)
C120.061 (2)0.048 (2)0.073 (3)0.0085 (19)0.037 (2)0.0136 (19)
C130.072 (3)0.046 (2)0.080 (3)0.006 (2)0.037 (2)0.018 (2)
C140.058 (2)0.049 (2)0.045 (2)0.0076 (18)0.0151 (18)0.0053 (16)
C150.043 (2)0.056 (2)0.059 (2)0.0039 (18)0.0194 (18)0.0040 (18)
C160.053 (2)0.051 (2)0.057 (2)0.0035 (18)0.0159 (19)0.0081 (17)
C170.066 (3)0.059 (3)0.073 (3)0.009 (2)0.020 (2)0.001 (2)
C180.082 (3)0.064 (3)0.120 (4)0.024 (2)0.032 (3)0.007 (3)
Geometric parameters (Å, º) top
Br1—C51.904 (4)C9—H9B0.9600
O1—C141.379 (4)C9—H9C0.9600
O1—C171.421 (6)C10—H10A0.9600
C1—C21.518 (5)C10—H10B0.9600
C1—H1A0.9600C10—H10C0.9600
C1—H1B0.9600C11—C161.384 (5)
C1—H1C0.9600C11—C121.389 (5)
C2—C31.373 (5)C12—C131.386 (5)
C2—C71.423 (5)C12—H120.9300
C3—C41.388 (6)C13—C141.380 (5)
C3—H30.9300C13—H130.9300
C4—C51.381 (5)C14—C151.385 (5)
C4—H40.9300C15—C161.388 (5)
C5—C61.382 (5)C15—H150.9300
C6—C71.393 (5)C16—H160.9300
C6—H60.9300C17—C181.520 (5)
C7—C81.543 (5)C17—H17A0.9700
C8—C111.545 (5)C17—H17B0.9700
C8—C91.546 (6)C18—H18A0.9600
C8—C101.552 (6)C18—H18B0.9600
C9—H9A0.9600C18—H18C0.9600
C14—O1—C17117.1 (3)C8—C10—H10A109.5
C2—C1—H1A109.5C8—C10—H10B109.5
C2—C1—H1B109.5H10A—C10—H10B109.5
H1A—C1—H1B109.5C8—C10—H10C109.5
C2—C1—H1C109.5H10A—C10—H10C109.5
H1A—C1—H1C109.5H10B—C10—H10C109.5
H1B—C1—H1C109.5C16—C11—C12116.7 (3)
C3—C2—C7119.2 (3)C16—C11—C8120.2 (3)
C3—C2—C1116.8 (3)C12—C11—C8123.0 (3)
C7—C2—C1124.1 (3)C13—C12—C11121.5 (3)
C2—C3—C4123.2 (4)C13—C12—H12119.3
C2—C3—H3118.4C11—C12—H12119.3
C4—C3—H3118.4C14—C13—C12120.8 (4)
C5—C4—C3117.4 (3)C14—C13—H13119.6
C5—C4—H4121.3C12—C13—H13119.6
C3—C4—H4121.3O1—C14—C13115.8 (3)
C4—C5—C6121.3 (3)O1—C14—C15125.4 (3)
C4—C5—Br1118.8 (3)C13—C14—C15118.9 (3)
C6—C5—Br1119.9 (3)C14—C15—C16119.5 (3)
C5—C6—C7121.5 (3)C14—C15—H15120.3
C5—C6—H6119.3C16—C15—H15120.3
C7—C6—H6119.3C11—C16—C15122.7 (3)
C6—C7—C2117.6 (3)C11—C16—H16118.6
C6—C7—C8120.3 (3)C15—C16—H16118.6
C2—C7—C8122.0 (3)O1—C17—C18107.7 (4)
C7—C8—C11111.5 (3)O1—C17—H17A110.2
C7—C8—C9108.5 (3)C18—C17—H17A110.2
C11—C8—C9111.8 (3)O1—C17—H17B110.2
C7—C8—C10111.8 (3)C18—C17—H17B110.2
C11—C8—C10105.8 (3)H17A—C17—H17B108.5
C9—C8—C10107.4 (3)C17—C18—H18A109.5
C8—C9—H9A109.5C17—C18—H18B109.5
C8—C9—H9B109.5H18A—C18—H18B109.5
H9A—C9—H9B109.5C17—C18—H18C109.5
C8—C9—H9C109.5H18A—C18—H18C109.5
H9A—C9—H9C109.5H18B—C18—H18C109.5
H9B—C9—H9C109.5
C7—C2—C3—C40.1 (6)C7—C8—C11—C1650.9 (5)
C1—C2—C3—C4179.6 (4)C9—C8—C11—C16172.5 (4)
C2—C3—C4—C51.0 (6)C10—C8—C11—C1670.9 (4)
C3—C4—C5—C61.4 (6)C7—C8—C11—C12133.2 (4)
C3—C4—C5—Br1179.7 (3)C9—C8—C11—C1211.6 (5)
C4—C5—C6—C70.7 (5)C10—C8—C11—C12105.0 (4)
Br1—C5—C6—C7179.6 (3)C16—C11—C12—C131.6 (6)
C5—C6—C7—C20.4 (5)C8—C11—C12—C13177.6 (4)
C5—C6—C7—C8176.1 (3)C11—C12—C13—C141.6 (6)
C3—C2—C7—C60.8 (6)C17—O1—C14—C13179.2 (4)
C1—C2—C7—C6178.8 (4)C17—O1—C14—C151.6 (5)
C3—C2—C7—C8175.7 (4)C12—C13—C14—O1179.6 (4)
C1—C2—C7—C84.7 (6)C12—C13—C14—C151.2 (6)
C6—C7—C8—C11127.0 (4)O1—C14—C15—C16179.9 (3)
C2—C7—C8—C1156.7 (5)C13—C14—C15—C160.8 (5)
C6—C7—C8—C9109.5 (4)C12—C11—C16—C151.2 (5)
C2—C7—C8—C966.8 (4)C8—C11—C16—C15177.3 (3)
C6—C7—C8—C108.8 (5)C14—C15—C16—C110.8 (6)
C2—C7—C8—C10174.9 (4)C14—O1—C17—C18178.8 (3)

Experimental details

Crystal data
Chemical formulaC18H21BrO
Mr333.26
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)11.164 (2), 9.5142 (19), 16.135 (3)
β (°) 110.21 (3)
V3)1608.2 (6)
Z4
Radiation typeMo Kα
µ (mm1)2.55
Crystal size (mm)0.20 × 0.16 × 0.08
Data collection
DiffractometerRigaku Saturn
Absorption correctionMulti-scan
(CystalClear; Rigaku, 2005)
Tmin, Tmax0.630, 0.822
No. of measured, independent and
observed [I > 2σ(I)] reflections
13056, 2839, 2101
Rint0.054
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.130, 1.05
No. of reflections2839
No. of parameters186
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.52, 0.39

Computer programs: CrystalClear (Rigaku, 2005), SHELXTL (Sheldrick, 2008).

 

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationGao, Y. L., Zhao, G. L., Liu, W., Shao, H., Wang, Y. L., Xu, W. R., Tang, L. D. & Wang, J. W. (2010b). Indian J. Chem. Sect. B, 49, 1499–1508.  Google Scholar
First citationGao, Y. L., Zhao, G. L., Liu, W., Wang, Y. L., Xu, W. R. & Wang, J. W. (2010a). Chin. J. Chem. 28, 605–612.  CrossRef CAS Google Scholar
First citationMeng, M., Ellsworth, B. A., Nirschl, A. A., McCann, P. J., Patel, M., Girotra, R. N., Wu, G., Sher, P. M., Morrison, E. P., Biller, S. A., Zahler, R., Deshpande, P. P., Pullockaran, A., Hagan, D. L., Morgan, N., Taylor, J. R., Obermeier, M. T., Humphreys, W. G., Khanna, A., Discenza, L., Robertson, J. M., Wang, A., Han, S., Wetterau, J. R., Janovitz, E. B., Flint, O. P., Whaley, J. M. & Washburn, W. N. (2008). J. Med. Chem. 51, 1145–1149.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds