organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4,4-Di­methyl-3,4-di­hydro­pyrido[2′,3′:3,4]pyrazolo­[1,5-a][1,3,5]triazin-2-amine ethanol monosolvate1

aSchool of Pharmacy, Faculty of Health Sciences, Curtin University of Technology, GPO Box U1987, Perth 6845, Western Australia, Australia, bDepartment of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore, cPerm State Pharmaceutical Academy, 2 Polevaya Street, Perm 614990, Russian Federation, and dDepartment of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore
*Correspondence e-mail: anton.dolzhenko@curtin.edu.au

(Received 26 November 2010; accepted 5 December 2010; online 11 December 2010)

In the title compound, C10H12N6·C2H5OH, the planarity of the heterocyclic system is slightly distorted at the triazine ring (r.m.s. deviation = 0.1191 Å), which adopts a conformation best described as inter­mediate between a flattened twisted boat and a half-boat with the tertiary Csp3 atom at the bow. In the crystal, mol­ecules form centrosymmetric dimers connected by N⋯H—O and O⋯H—N hydrogen bonds between the amino group H atom, the ethanol solvent mol­ecule and the triazine N atom, making an R44(12) graph-set motif. The other H atom of the amino group and the H atom on the endocyclic N atom form N⋯H—N hydrogen bonds with the N atoms of the pyrazole and pyridine rings, respectively, linking the mol­ecules into C(7)C(7) chains with the R22(8) binary graph-set motif running along [010].

Related literature

For a review on the synthesis and biological activity of pyrazolo­[1,5-a]triazines, see: Dolzhenko et al. (2008[Dolzhenko, A. V., Dolzhenko, A. V. & Chui, W. K. (2008). Heterocycles, 75, 1575-1622.]). For the synthesis, crystal structure studies and biological activity of related fused gem-dimethyl-substituted amino-1,3,5-triazines, see: Dolzhenko et al. (2007a[Dolzhenko, A. V., Dolzhenko, A. V. & Chui, W. K. (2007a). Tetrahedron, 63, 12888-12895.],b[Dolzhenko, A. V., Tan, G. K., Koh, L. L., Dolzhenko, A. V. & Chui, W. K. (2007b). Acta Cryst. E63, o2796.], 2009[Dolzhenko, A. V., Foo, M. C., Tan, B. J., Dolzhenko, A. V., Chiu, G. N. C. & Chui, W. K. (2009). Heterocycles, 78, 1761-1775.]), Toyoda et al. (1997[Toyoda, T., Brobey, R. K. B., Sano, G.-I., Horii, T., Tomioka, N. & Itai, A. (1997). Biochem. Biophys. Res. Commun. 235, 515-519.]). For graph-set analysis of hydrogen bonding, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For a related structure, see: Sachdeva et al. (2010[Sachdeva, N., Dolzhenko, A. V., Tan, G. K., Koh, L. L. & Chui, W. K. (2010). Acta Cryst. E66, o2050.]).

[Scheme 1]

Experimental

Crystal data
  • C10H12N6·C2H6O

  • Mr = 262.32

  • Monoclinic, C 2/c

  • a = 12.1250 (19) Å

  • b = 13.913 (2) Å

  • c = 16.598 (3) Å

  • β = 101.683 (4)°

  • V = 2742.0 (7) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 K

  • 0.60 × 0.38 × 0.10 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2001[Sheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.]) Tmin = 0.950, Tmax = 0.991

  • 9471 measured reflections

  • 3129 independent reflections

  • 2657 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.133

  • S = 1.06

  • 3129 reflections

  • 209 parameters

  • 38 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N5—H5⋯N1i 0.86 (2) 2.16 (2) 3.0077 (18) 169.5 (18)
N6—H6B⋯N2i 0.90 (2) 2.08 (2) 2.9754 (18) 171.5 (18)
N6—H6A⋯O1Sii 0.85 (2) 2.03 (2) 2.8540 (18) 163.2 (18)
O1S—H1S⋯N4 0.87 (2) 1.93 (2) 2.7943 (17) 170 (2)
Symmetry codes: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) -x+1, -y, -z+1.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS GmbH, Karlsruhe, Germany.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS GmbH, Karlsruhe, Germany.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The pyrazolo[1,5-a]triazine heterocyclic system has been recognized as a template for the construction of new potential therapeutic agents (Dolzhenko et al., 2008). However data on pyrido[2',3':3,4]pyrazolo[1,5-a][1,3,5]triazines are limited and no details on their structure are available. Herein, we report molecular and crystal structure of 4,4-dimethyl-3,4-dihydropyrido[2',3':3,4]pyrazolo[1,5-a][1,3,5]triazin-2-amine, which crystallizes with a ethanol molecule to give the title compound, C10H12N6.C2H5OH (Fig. 1 & 2). This molecule has a close structural resemblance with some known dihydrofolate reductase inhibitors such as antimalarial drug cycloguanil and its fused analogue (Toyoda et al., 1997) (Fig. 3). Due to annular tautomerism, four tautomeric forms are theoretically possible for the compound (Fig. 4). Similarly to the previously reported (Dolzhenko et al., 2007b) related fused gem-dimethyl substituted amino-1,3,5-triazine, the compound exists in the crystal as a tautomer with the labile hydrogen atom located at the triazine nitrogen atom adjacent to the sp3 hybridized carbon atom.

The heterocyclic system is nearly planar (with r.m.s. deviation of 0.1191 Å) with a distortion at the triazine ring. The triazine ring adopts the conformation best described as an intermediate between a flatten twist boat and a half-boat with atoms C-8 and N-4 at the bow and the stern. The angle between the geminal flagpole and bowsprit methyl groups is 112.40 (14)°. The N4—C7, N5—C7 and N6—C7 bond distances are similar suggesting guanidine-like electron delocalization in the N4—N6/C7 fragment of the molecule.

In the crystal, the molecules form centrosymmetric dimers connected by the N···HO and O···HN hydrogen bonds between the amino group N6—H6A, ethanol molecule and the triazine N4 atom making a R44(12) graph-set motif (Bernstein et al., 1995). Another hydrogen atom of the amino group N6—H6B and the hydrogen atom at the endocyclic N5 atom act as hydrogen donors forming N···HN contacts with the pyrazole and pyridine N2 and N1 atoms, respectively. They arrange molecules into the running along a [010] axis C(7)C(7) chains with the R22(8) binary graph-set motif.

Related literature top

For a review on the synthesis and biological activity of pyrazolo[1,5-a]triazines, see: Dolzhenko et al. (2008). For the synthesis, crystal structure studies and biological activity of related fused gem-dimethyl-substituted amino-1,3,5-triazines, see: Dolzhenko et al. (2007a,b, 2009), Toyoda et al. (1997). For graph-set analysis of hydrogen bonding, see: Bernstein et al. (1995). For a related structure, see: Sachdeva et al. (2010).

Experimental top

4,4-Dimethyl-3,4-dihydropyrido[2',3':3,4]pyrazolo[1,5-a][1,3,5]triazin-2-amine was prepared by the cyclocondensation of pyrazolo[3,4-b]pyridin-3-guanidine with acetone similarly to the previously described methods (Dolzhenko et al., 2007a; Dolzhenko et al., 2009). 1H-Pyrazolo[3,4-b]pyridin-3-guanidine (0.88 g, 5.0 mmol) and piperidine (0.30 ml, 3.0 mmol) were heated in acetone (30 ml) under reflux for 10 h. After cooling, the product was filtered and washed with acetone. Yield: 0.89 g (82%). The crystals suitable for crystallographic analysis were grown by recrystallization from ethanol. m.p. 559 K.

Refinement top

All C-bound H atoms were positioned geometrically and included in the refinement in riding-motion approximation [0.95 Å for CH of pyridine ring, 0.98 Å for methyl groups, and 0.99 Å for methylenic protons; Uiso(H) = 1.2Ueq(Cpy), Uiso(H) = 1.5Ueq(CMe) and Uiso(H)= 1.2Ueq(Cmethylenic)] while the N-bound H atoms were located in a difference map and refined freely. The ethyl group of ethanol molecule was disordered into two positions with occupancy ratio of 78:22.

Structure description top

The pyrazolo[1,5-a]triazine heterocyclic system has been recognized as a template for the construction of new potential therapeutic agents (Dolzhenko et al., 2008). However data on pyrido[2',3':3,4]pyrazolo[1,5-a][1,3,5]triazines are limited and no details on their structure are available. Herein, we report molecular and crystal structure of 4,4-dimethyl-3,4-dihydropyrido[2',3':3,4]pyrazolo[1,5-a][1,3,5]triazin-2-amine, which crystallizes with a ethanol molecule to give the title compound, C10H12N6.C2H5OH (Fig. 1 & 2). This molecule has a close structural resemblance with some known dihydrofolate reductase inhibitors such as antimalarial drug cycloguanil and its fused analogue (Toyoda et al., 1997) (Fig. 3). Due to annular tautomerism, four tautomeric forms are theoretically possible for the compound (Fig. 4). Similarly to the previously reported (Dolzhenko et al., 2007b) related fused gem-dimethyl substituted amino-1,3,5-triazine, the compound exists in the crystal as a tautomer with the labile hydrogen atom located at the triazine nitrogen atom adjacent to the sp3 hybridized carbon atom.

The heterocyclic system is nearly planar (with r.m.s. deviation of 0.1191 Å) with a distortion at the triazine ring. The triazine ring adopts the conformation best described as an intermediate between a flatten twist boat and a half-boat with atoms C-8 and N-4 at the bow and the stern. The angle between the geminal flagpole and bowsprit methyl groups is 112.40 (14)°. The N4—C7, N5—C7 and N6—C7 bond distances are similar suggesting guanidine-like electron delocalization in the N4—N6/C7 fragment of the molecule.

In the crystal, the molecules form centrosymmetric dimers connected by the N···HO and O···HN hydrogen bonds between the amino group N6—H6A, ethanol molecule and the triazine N4 atom making a R44(12) graph-set motif (Bernstein et al., 1995). Another hydrogen atom of the amino group N6—H6B and the hydrogen atom at the endocyclic N5 atom act as hydrogen donors forming N···HN contacts with the pyrazole and pyridine N2 and N1 atoms, respectively. They arrange molecules into the running along a [010] axis C(7)C(7) chains with the R22(8) binary graph-set motif.

For a review on the synthesis and biological activity of pyrazolo[1,5-a]triazines, see: Dolzhenko et al. (2008). For the synthesis, crystal structure studies and biological activity of related fused gem-dimethyl-substituted amino-1,3,5-triazines, see: Dolzhenko et al. (2007a,b, 2009), Toyoda et al. (1997). For graph-set analysis of hydrogen bonding, see: Bernstein et al. (1995). For a related structure, see: Sachdeva et al. (2010).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of 4,4-dimethyl-3,4-dihydropyrido[2',3':3,4]pyrazolo[1,5-a][1,3,5]triazin-2-amine ethanol solvate showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Crystal packing in the cell (view along axis c).
[Figure 3] Fig. 3. Dihydrofolate reductase inhibitors with dihydro-1,3,5-triazine ring.
[Figure 4] Fig. 4. Annular tautomerism in 4,4-dimethyl-3,4-dihydropyrido[2',3':3,4]pyrazolo[1,5-a][1,3,5]triazin-2-amine.
4,4-Dimethyl-3,4-dihydropyrido[2',3':3,4]pyrazolo[1,5-a][1,3,5]triazin- 2-amine ethanol monosolvate top
Crystal data top
C10H12N6·C2H6OF(000) = 1120
Mr = 262.32Dx = 1.271 Mg m3
Monoclinic, C2/cMelting point: 559 K
Hall symbol: -C 2ycMo Kα radiation, λ = 0.71073 Å
a = 12.1250 (19) ÅCell parameters from 782 reflections
b = 13.913 (2) Åθ = 2.7–27.3°
c = 16.598 (3) ŵ = 0.09 mm1
β = 101.683 (4)°T = 100 K
V = 2742.0 (7) Å3Plate, yellow
Z = 80.60 × 0.38 × 0.10 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
3129 independent reflections
Radiation source: fine-focus sealed tube2657 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
φ and ω scansθmax = 27.5°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
h = 1514
Tmin = 0.950, Tmax = 0.991k = 1817
9471 measured reflectionsl = 1821
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.133H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0709P)2 + 1.8445P]
where P = (Fo2 + 2Fc2)/3
3129 reflections(Δ/σ)max = 0.001
209 parametersΔρmax = 0.37 e Å3
38 restraintsΔρmin = 0.21 e Å3
Crystal data top
C10H12N6·C2H6OV = 2742.0 (7) Å3
Mr = 262.32Z = 8
Monoclinic, C2/cMo Kα radiation
a = 12.1250 (19) ŵ = 0.09 mm1
b = 13.913 (2) ÅT = 100 K
c = 16.598 (3) Å0.60 × 0.38 × 0.10 mm
β = 101.683 (4)°
Data collection top
Bruker SMART APEX CCD
diffractometer
3129 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
2657 reflections with I > 2σ(I)
Tmin = 0.950, Tmax = 0.991Rint = 0.030
9471 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05038 restraints
wR(F2) = 0.133H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.37 e Å3
3129 reflectionsΔρmin = 0.21 e Å3
209 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O1S0.49619 (10)0.11324 (8)0.46397 (7)0.0285 (3)
H1S0.5246 (18)0.1117 (15)0.5165 (14)0.039 (6)*
C1S0.5838 (2)0.0860 (2)0.42339 (15)0.0384 (7)0.781 (6)
H1SA0.55260.07690.36400.046*0.781 (6)
H1SB0.61690.02430.44610.046*0.781 (6)
C2S0.6736 (3)0.1618 (3)0.4346 (2)0.0648 (11)0.781 (6)
H2SA0.73350.14200.40630.097*0.781 (6)
H2SB0.70510.17010.49340.097*0.781 (6)
H2SC0.64100.22260.41140.097*0.781 (6)
C1SA0.5898 (9)0.1503 (9)0.4290 (6)0.044 (2)0.219 (6)
H1SC0.56510.15720.36870.053*0.219 (6)
H1SD0.61200.21460.45230.053*0.219 (6)
C2SA0.6822 (14)0.0883 (12)0.4464 (9)0.077 (4)0.219 (6)
H2SD0.74370.11420.42270.116*0.219 (6)
H2SE0.66050.02500.42260.116*0.219 (6)
H2SF0.70720.08230.50620.116*0.219 (6)
N10.56023 (10)0.47488 (8)0.67409 (7)0.0203 (3)
N20.67666 (10)0.34962 (9)0.74160 (7)0.0205 (3)
N30.68205 (10)0.25362 (8)0.72312 (7)0.0187 (3)
N40.59745 (10)0.13025 (8)0.63025 (7)0.0208 (3)
N50.77009 (11)0.10579 (9)0.72296 (8)0.0220 (3)
H50.8212 (17)0.0662 (15)0.7465 (12)0.034 (5)*
N60.68817 (13)0.01616 (10)0.63779 (9)0.0302 (3)
H6A0.6334 (17)0.0354 (14)0.6007 (12)0.028 (5)*
H6B0.7326 (17)0.0588 (15)0.6701 (12)0.037 (5)*
C10.47528 (13)0.49206 (10)0.61227 (9)0.0226 (3)
H10.44790.55620.60590.027*
C20.42132 (13)0.42321 (11)0.55453 (9)0.0235 (3)
H20.36040.44200.51190.028*
C30.45708 (12)0.32946 (11)0.56021 (9)0.0211 (3)
H30.42420.28240.52120.025*
C40.54476 (12)0.30661 (10)0.62667 (8)0.0182 (3)
C50.59298 (12)0.38088 (10)0.68156 (8)0.0180 (3)
C60.60627 (12)0.22357 (10)0.65668 (8)0.0189 (3)
C70.68259 (13)0.07377 (11)0.66450 (9)0.0220 (3)
C80.75702 (12)0.18664 (10)0.77658 (8)0.0210 (3)
C90.70180 (17)0.15481 (14)0.84683 (10)0.0384 (4)
H9A0.69530.21000.88230.058*
H9B0.74800.10490.87910.058*
H9C0.62660.12910.82430.058*
C100.87144 (15)0.23234 (12)0.80702 (12)0.0363 (4)
H10A0.89830.26060.76040.055*
H10B0.92490.18320.83320.055*
H10C0.86510.28270.84710.055*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O1S0.0298 (6)0.0327 (6)0.0198 (6)0.0020 (5)0.0023 (5)0.0027 (4)
C1S0.0441 (15)0.0418 (17)0.0304 (12)0.0038 (12)0.0104 (10)0.0026 (11)
C2S0.050 (2)0.101 (3)0.0473 (17)0.0189 (19)0.0193 (14)0.0019 (18)
C1SA0.044 (5)0.049 (6)0.040 (4)0.019 (4)0.008 (4)0.007 (4)
C2SA0.089 (8)0.077 (8)0.069 (7)0.018 (6)0.021 (6)0.022 (6)
N10.0230 (6)0.0168 (6)0.0203 (6)0.0004 (5)0.0025 (5)0.0008 (5)
N20.0230 (6)0.0159 (6)0.0205 (6)0.0006 (5)0.0001 (5)0.0021 (5)
N30.0195 (6)0.0158 (6)0.0184 (6)0.0010 (4)0.0016 (5)0.0014 (4)
N40.0233 (6)0.0164 (6)0.0192 (6)0.0016 (5)0.0042 (5)0.0017 (4)
N50.0227 (6)0.0180 (6)0.0217 (6)0.0050 (5)0.0042 (5)0.0022 (5)
N60.0356 (8)0.0196 (7)0.0273 (7)0.0063 (6)0.0128 (6)0.0040 (5)
C10.0255 (8)0.0178 (7)0.0235 (7)0.0024 (6)0.0027 (6)0.0018 (6)
C20.0234 (7)0.0232 (7)0.0209 (7)0.0015 (6)0.0028 (6)0.0024 (6)
C30.0223 (7)0.0213 (7)0.0177 (7)0.0012 (5)0.0002 (5)0.0009 (5)
C40.0190 (7)0.0170 (7)0.0183 (7)0.0008 (5)0.0029 (5)0.0004 (5)
C50.0173 (6)0.0190 (7)0.0177 (6)0.0011 (5)0.0033 (5)0.0001 (5)
C60.0185 (7)0.0209 (7)0.0158 (6)0.0005 (5)0.0003 (5)0.0001 (5)
C70.0254 (7)0.0201 (7)0.0182 (7)0.0013 (6)0.0011 (6)0.0004 (5)
C80.0226 (7)0.0194 (7)0.0179 (7)0.0046 (5)0.0031 (6)0.0015 (5)
C90.0475 (11)0.0425 (10)0.0257 (8)0.0202 (8)0.0088 (8)0.0115 (7)
C100.0286 (9)0.0244 (8)0.0466 (10)0.0042 (7)0.0146 (8)0.0081 (7)
Geometric parameters (Å, º) top
O1S—C1S1.420 (3)N5—C71.3596 (18)
O1S—C1SA1.469 (9)N5—C81.4628 (19)
O1S—H1S0.87 (2)N5—H50.86 (2)
C1S—C2S1.500 (5)N6—C71.334 (2)
C1S—H1SA0.9900N6—H6A0.85 (2)
C1S—H1SB0.9900N6—H6B0.90 (2)
C2S—H2SA0.9800C1—C21.418 (2)
C2S—H2SB0.9800C1—H10.9500
C2S—H2SC0.9800C2—C31.372 (2)
C1SA—C2SA1.40 (2)C2—H20.9500
C1SA—H1SC0.9900C3—C41.4047 (19)
C1SA—H1SD0.9900C3—H30.9500
C2SA—H2SD0.9800C4—C61.410 (2)
C2SA—H2SE0.9800C4—C51.4227 (19)
C2SA—H2SF0.9800C8—C101.517 (2)
N1—C11.3202 (19)C8—C91.523 (2)
N1—C51.3651 (18)C9—H9A0.9800
N2—C51.3425 (18)C9—H9B0.9800
N2—N31.3749 (17)C9—H9C0.9800
N3—C61.3508 (17)C10—H10A0.9800
N3—C81.4682 (18)C10—H10B0.9800
N4—C71.3299 (19)C10—H10C0.9800
N4—C61.3678 (18)
C1S—O1S—C1SA36.3 (5)N1—C1—C2125.71 (14)
C1S—O1S—H1S106.7 (14)N1—C1—H1117.1
C1SA—O1S—H1S102.9 (14)C2—C1—H1117.1
O1S—C1S—C2S110.4 (3)C3—C2—C1119.98 (13)
O1S—C1S—H1SA109.6C3—C2—H2120.0
C2S—C1S—H1SA109.6C1—C2—H2120.0
O1S—C1S—H1SB109.6C2—C3—C4116.60 (13)
C2S—C1S—H1SB109.6C2—C3—H3121.7
H1SA—C1S—H1SB108.1C4—C3—H3121.7
C1S—C2S—H2SA109.5C3—C4—C6136.46 (13)
C1S—C2S—H2SB109.5C3—C4—C5119.08 (13)
H2SA—C2S—H2SB109.5C6—C4—C5104.45 (12)
C1S—C2S—H2SC109.5N2—C5—N1122.69 (12)
H2SA—C2S—H2SC109.5N2—C5—C4113.00 (12)
H2SB—C2S—H2SC109.5N1—C5—C4124.30 (13)
C2SA—C1SA—O1S110.6 (11)N3—C6—N4123.49 (12)
C2SA—C1SA—H1SC109.5N3—C6—C4104.98 (12)
O1S—C1SA—H1SC109.5N4—C6—C4131.53 (13)
C2SA—C1SA—H1SD109.5N4—C7—N6119.96 (13)
O1S—C1SA—H1SD109.5N4—C7—N5122.51 (14)
H1SC—C1SA—H1SD108.1N6—C7—N5117.38 (13)
C1SA—C2SA—H2SD109.5N5—C8—N3104.50 (11)
C1SA—C2SA—H2SE109.5N5—C8—C10108.70 (13)
H2SD—C2SA—H2SE109.5N3—C8—C10110.36 (13)
C1SA—C2SA—H2SF109.5N5—C8—C9111.15 (13)
H2SD—C2SA—H2SF109.5N3—C8—C9109.45 (12)
H2SE—C2SA—H2SF109.5C10—C8—C9112.40 (14)
C1—N1—C5114.26 (12)C8—C9—H9A109.5
C5—N2—N3102.25 (11)C8—C9—H9B109.5
C6—N3—N2115.31 (11)H9A—C9—H9B109.5
C6—N3—C8122.17 (12)C8—C9—H9C109.5
N2—N3—C8122.23 (11)H9A—C9—H9C109.5
C7—N4—C6114.85 (12)H9B—C9—H9C109.5
C7—N5—C8121.41 (12)C8—C10—H10A109.5
C7—N5—H5120.0 (13)C8—C10—H10B109.5
C8—N5—H5111.9 (13)H10A—C10—H10B109.5
C7—N6—H6A116.8 (13)C8—C10—H10C109.5
C7—N6—H6B118.9 (13)H10A—C10—H10C109.5
H6A—N6—H6B120.5 (18)H10B—C10—H10C109.5
C1SA—O1S—C1S—C2S21.3 (7)C8—N3—C6—C4174.81 (13)
C1S—O1S—C1SA—C2SA39.4 (9)C7—N4—C6—N312.5 (2)
C5—N2—N3—C61.02 (16)C7—N4—C6—C4168.49 (15)
C5—N2—N3—C8175.06 (13)C3—C4—C6—N3178.26 (17)
C5—N1—C1—C22.2 (2)C5—C4—C6—N30.17 (15)
N1—C1—C2—C30.2 (2)C3—C4—C6—N42.6 (3)
C1—C2—C3—C42.3 (2)C5—C4—C6—N4178.95 (15)
C2—C3—C4—C6179.72 (16)C6—N4—C7—N6173.68 (14)
C2—C3—C4—C52.0 (2)C6—N4—C7—N51.7 (2)
N3—N2—C5—N1177.97 (13)C8—N5—C7—N426.4 (2)
N3—N2—C5—C40.87 (16)C8—N5—C7—N6158.08 (14)
C1—N1—C5—N2178.85 (14)C7—N5—C8—N337.89 (18)
C1—N1—C5—C42.4 (2)C7—N5—C8—C10155.73 (14)
C3—C4—C5—N2179.23 (13)C7—N5—C8—C980.06 (17)
C6—C4—C5—N20.46 (17)C6—N3—C8—N527.26 (18)
C3—C4—C5—N10.4 (2)N2—N3—C8—N5159.11 (12)
C6—C4—C5—N1178.35 (13)C6—N3—C8—C10143.94 (14)
N2—N3—C6—N4178.45 (13)N2—N3—C8—C1042.42 (19)
C8—N3—C6—N44.4 (2)C6—N3—C8—C991.86 (17)
N2—N3—C6—C40.77 (17)N2—N3—C8—C981.78 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5···N1i0.86 (2)2.16 (2)3.0077 (18)169.5 (18)
N6—H6B···N2i0.90 (2)2.08 (2)2.9754 (18)171.5 (18)
N6—H6A···O1Sii0.85 (2)2.03 (2)2.8540 (18)163.2 (18)
O1S—H1S···N40.87 (2)1.93 (2)2.7943 (17)170 (2)
Symmetry codes: (i) x+3/2, y1/2, z+3/2; (ii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC10H12N6·C2H6O
Mr262.32
Crystal system, space groupMonoclinic, C2/c
Temperature (K)100
a, b, c (Å)12.1250 (19), 13.913 (2), 16.598 (3)
β (°) 101.683 (4)
V3)2742.0 (7)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.60 × 0.38 × 0.10
Data collection
DiffractometerBruker SMART APEX CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2001)
Tmin, Tmax0.950, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
9471, 3129, 2657
Rint0.030
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.133, 1.06
No. of reflections3129
No. of parameters209
No. of restraints38
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.37, 0.21

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5···N1i0.86 (2)2.16 (2)3.0077 (18)169.5 (18)
N6—H6B···N2i0.90 (2)2.08 (2)2.9754 (18)171.5 (18)
N6—H6A···O1Sii0.85 (2)2.03 (2)2.8540 (18)163.2 (18)
O1S—H1S···N40.87 (2)1.93 (2)2.7943 (17)170 (2)
Symmetry codes: (i) x+3/2, y1/2, z+3/2; (ii) x+1, y, z+1.
 

Footnotes

1Fused heterocyclic systems with s-triazine ring. Part 16. for part 15, see Sachdeva et al. (2010).

Thomson Reuters ResearcherID: B-1130-2008.

Acknowledgements

This work was supported by the School of Pharmacy, Curtin University of Technology, and the National Medical Research Council, Singapore (NMRC/NIG/0019/2008).

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2001). SMART and SAINT. Bruker AXS GmbH, Karlsruhe, Germany.  Google Scholar
First citationDolzhenko, A. V., Dolzhenko, A. V. & Chui, W. K. (2007a). Tetrahedron, 63, 12888–12895.  Web of Science CrossRef CAS Google Scholar
First citationDolzhenko, A. V., Dolzhenko, A. V. & Chui, W. K. (2008). Heterocycles, 75, 1575–1622.  CAS Google Scholar
First citationDolzhenko, A. V., Foo, M. C., Tan, B. J., Dolzhenko, A. V., Chiu, G. N. C. & Chui, W. K. (2009). Heterocycles, 78, 1761–1775.  CAS Google Scholar
First citationDolzhenko, A. V., Tan, G. K., Koh, L. L., Dolzhenko, A. V. & Chui, W. K. (2007b). Acta Cryst. E63, o2796.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSachdeva, N., Dolzhenko, A. V., Tan, G. K., Koh, L. L. & Chui, W. K. (2010). Acta Cryst. E66, o2050.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationToyoda, T., Brobey, R. K. B., Sano, G.-I., Horii, T., Tomioka, N. & Itai, A. (1997). Biochem. Biophys. Res. Commun. 235, 515–519.  CrossRef CAS PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds