organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Phenyl-7-(4-pyridyl­methyl­amino)-1,2,4-triazolo[1,5-a][1,3,5]triazin-5(4H)-one1

aSchool of Pharmacy, Faculty of Health Sciences, Curtin University of Technology, GPO Box U1987, Perth 6845, Western Australia, Australia, bDepartment of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore, cPerm State Pharmaceutical Academy, 2 Polevaya Street, Perm 614990, Russian Federation, and dDepartment of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore
*Correspondence e-mail: Anton.Dolzhenko@curtin.edu.au

(Received 26 November 2010; accepted 6 December 2010; online 11 December 2010)

In the title compound, C16H13N7O, the 1,2,4-triazolo[1,5-a][1,3,5]triazine heterocyclic system is essentially planar (r.m.s. deviation = 0.0375 Å). The attached benzene ring lies almost in the mean plane of 1,2,4-triazolo[1,5-a][1,3,5]triazine [dihedral angle = 1.36 (23)°], while the pyridine ring is turned out of this plane by the amino­methyl bridge [dihedral angle = 69.22 (9)°]. The amino group H atom is involved in intra­molecular hydrogen bonding with a triazole N atom. In the crystal, mol­ecules are connected via C(=O)NH⋯N hydrogen bonds into C(11) chains parallel to [100]. The amino group H atom acts as a hydrogen-bond donor, forming an NH⋯O=C hydrogen bond with the carbonyl O atom, which links the mol­ecules into C(6) chains running along [011] and [01[\overline{1}]].

Related literature

For review on the synthesis and biological activity of 1,2,4-triazolo[1,5-a][1,3,5]triazines, see: Dolzhenko et al. (2006[Dolzhenko, A. V., Dolzhenko, A. V. & Chui, W. K. (2006). Heterocycles, 68, 1723-1759.]). For our work on the synthesis, crystal structure studies and biological activity of 1,2,4-triazolo[1,5-a][1,3,5]triazine, see: Dolzhenko et al. (2007a[Dolzhenko, A. V., Dolzhenko, A. V. & Chui, W. K. (2007a). Heterocycles, 71, 429-436.],b[Dolzhenko, A. V., Dolzhenko, A. V. & Chui, W. K. (2007b). Tetrahedron, 63, 12888-12895.], 2008[Dolzhenko, A. V., Pastorin, G., Dolzhenko, A. V. & Chui, W. K. (2008). Tetrahedron Lett. 49, 7180-7183.]). For graph-set analysis of hydrogen bonding, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For a related structure, see: Dolzhenko et al. (2011[Dolzhenko, A. V., Tan, G. K., Dolzhenko, A. V., Koh, L. L. & Chui, W. K. (2011). Acta Cryst. E67, o83-o84.]).

[Scheme 1]

Experimental

Crystal data
  • C16H13N7O

  • Mr = 319.33

  • Orthorhombic, P n a 21

  • a = 22.142 (8) Å

  • b = 11.016 (4) Å

  • c = 5.992 (2) Å

  • V = 1461.5 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 100 K

  • 0.58 × 0.36 × 0.04 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2001[Sheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.]) Tmin = 0.945, Tmax = 0.996

  • 9607 measured reflections

  • 1830 independent reflections

  • 1530 reflections with I > 2σ(I)

  • Rint = 0.088

Refinement
  • R[F2 > 2σ(F2)] = 0.067

  • wR(F2) = 0.145

  • S = 1.19

  • 1830 reflections

  • 225 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N5—H5N⋯N7i 0.90 (4) 1.89 (4) 2.782 (5) 173 (4)
N6—H6N⋯O1ii 0.95 (6) 1.96 (5) 2.735 (5) 137 (4)
N6—H6N⋯N1 0.95 (6) 2.31 (5) 2.813 (5) 112 (4)
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z]; (ii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS GmbH, Karlsruhe, Germany.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS GmbH, Karlsruhe, Germany.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The 1,2,4-triazolo[1,5-a]triazines are 5-azaisosters of the purine heterocyclic system that carries a bridge nitrogen atom. They have been shown to possess a variety of promising biological effects (Dolzhenko et al., 2006). In continuation of our works on the synthesis and structural investigations of 1,2,4-triazolo[1,5-a][1,3,5]triazines (Dolzhenko et al., 2007a,b; Dolzhenko et al., 2008), we report herein molecular and crystal structure of 2-phenyl-7-(4-pyridylmethylamino)-1,2,4-triazolo[1,5-a][1,3,5]triazin-5-one, C16H13N7O. (Fig. 1 & 2).

The 1,2,4-triazolo[1,5-a][1,3,5]triazine heterocyclic system is essentially planar with a r.m.s. deviation of 0.0375 Å. The phenyl ring lies practically in the plane of the 1,2,4-triazolo[1,5-a][1,3,5]triazine core (with a small dihedral angle of 1.36 (23)° between the mean planes). The amino group nitrogen atom N6 is located 0.2246 (50) Å above the 1,2,4-triazolo[1,5-a][1,3,5]triazine mean plane. The pyridine ring is turned out of this plane by twisting of the aminomethyl bridge [C3—N6—C11—C14 torsion angle is 118.50 (40)°]. This results in a dihedral angle of 69.22 (9)° between the 1,2,4-triazolo[1,5-a][1,3,5]triazine and pyridine mean planes. The amino group N6H hydrogen atom acts as a hydrogen donor in the NH···N intramolecular hydrogen bonding with the triazole N1 atom.

In the crystal, molecules form a three dimensional network of chains. The C(11) chains (Bernstein et al., 1995) parallel to a [100] axis consist of the molecules linked via the CONH···N hydrogen bonds between the triazine N6H atom and the N7 atom of pyridine ring. The C(6) chains running along [011] and [011] directions are made of the molecules connected via the NH···OC contacts between the N6—H amino group acting as a hydrogen donor and the carbonyl group O1 atom in the role of a hydrogen acceptor.

Related literature top

For review on the synthesis and biological activity of 1,2,4-triazolo[1,5-a][1,3,5]triazines, see: Dolzhenko et al. (2006). For our work on the synthesis, crystal structure studies and biological activity of 1,2,4-triazolo[1,5-a][1,3,5]triazine, see: Dolzhenko et al. (2007a,b, 2008). For the graph-set analysis of hydrogen bonding, see: Bernstein et al. (1995). For a related structure, see: Dolzhenko et al. (2011).

Experimental top

7-Methylthio-2-phenyl-1,2,4-triazole[1,5-a][1,3,5]triazin-5-one (0.52 g, 2 mmol) was added to a solution of 4-pyridylmethylamine (0.32 g, 3 mmol) in DMF (5 ml) and the mixture was heated at 70–80°C with stirring for 6 h. After cooling, ice cold water (40 ml) was added and the product was filtered and recrystalized from methanol. Yield: 0.56 g (87%), m.p. 567 K.

Refinement top

All C-bound H atoms were positioned geometrically and included in the refinement in riding-motion approximation [0.95 Å for aromatic CH and 0.99 Å for methylenic protons; Uiso(H) = 1.2Ueq(CAr) and Uiso(H)= 1.2Ueq(Cmethylenic)] while the N-bound H atoms were located in a difference map and refined freely. 1221 Friedel pairs were merged.

Structure description top

The 1,2,4-triazolo[1,5-a]triazines are 5-azaisosters of the purine heterocyclic system that carries a bridge nitrogen atom. They have been shown to possess a variety of promising biological effects (Dolzhenko et al., 2006). In continuation of our works on the synthesis and structural investigations of 1,2,4-triazolo[1,5-a][1,3,5]triazines (Dolzhenko et al., 2007a,b; Dolzhenko et al., 2008), we report herein molecular and crystal structure of 2-phenyl-7-(4-pyridylmethylamino)-1,2,4-triazolo[1,5-a][1,3,5]triazin-5-one, C16H13N7O. (Fig. 1 & 2).

The 1,2,4-triazolo[1,5-a][1,3,5]triazine heterocyclic system is essentially planar with a r.m.s. deviation of 0.0375 Å. The phenyl ring lies practically in the plane of the 1,2,4-triazolo[1,5-a][1,3,5]triazine core (with a small dihedral angle of 1.36 (23)° between the mean planes). The amino group nitrogen atom N6 is located 0.2246 (50) Å above the 1,2,4-triazolo[1,5-a][1,3,5]triazine mean plane. The pyridine ring is turned out of this plane by twisting of the aminomethyl bridge [C3—N6—C11—C14 torsion angle is 118.50 (40)°]. This results in a dihedral angle of 69.22 (9)° between the 1,2,4-triazolo[1,5-a][1,3,5]triazine and pyridine mean planes. The amino group N6H hydrogen atom acts as a hydrogen donor in the NH···N intramolecular hydrogen bonding with the triazole N1 atom.

In the crystal, molecules form a three dimensional network of chains. The C(11) chains (Bernstein et al., 1995) parallel to a [100] axis consist of the molecules linked via the CONH···N hydrogen bonds between the triazine N6H atom and the N7 atom of pyridine ring. The C(6) chains running along [011] and [011] directions are made of the molecules connected via the NH···OC contacts between the N6—H amino group acting as a hydrogen donor and the carbonyl group O1 atom in the role of a hydrogen acceptor.

For review on the synthesis and biological activity of 1,2,4-triazolo[1,5-a][1,3,5]triazines, see: Dolzhenko et al. (2006). For our work on the synthesis, crystal structure studies and biological activity of 1,2,4-triazolo[1,5-a][1,3,5]triazine, see: Dolzhenko et al. (2007a,b, 2008). For the graph-set analysis of hydrogen bonding, see: Bernstein et al. (1995). For a related structure, see: Dolzhenko et al. (2011).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of 2-phenyl-7-(4-pyridylmethylamino)-1,2,4-triazolo[1,5-a][1,3,5]triazin-5-one showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Crystal packing in the cell (view along axis c).
2-Phenyl-7-(4-pyridylmethylamino)-1,2,4- triazolo[1,5-a][1,3,5]triazin-5(4H)-one top
Crystal data top
C16H13N7ODx = 1.451 Mg m3
Mr = 319.33Melting point: 567 K
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 569 reflections
a = 22.142 (8) Åθ = 2.6–21.1°
b = 11.016 (4) ŵ = 0.10 mm1
c = 5.992 (2) ÅT = 100 K
V = 1461.5 (9) Å3Thin plate, colourless
Z = 40.58 × 0.36 × 0.04 mm
F(000) = 664
Data collection top
Bruker SMART APEX CCD
diffractometer
1830 independent reflections
Radiation source: fine-focus sealed tube1530 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.088
φ and ω scansθmax = 27.5°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
h = 2528
Tmin = 0.945, Tmax = 0.996k = 1414
9607 measured reflectionsl = 77
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.067Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.145H atoms treated by a mixture of independent and constrained refinement
S = 1.19 w = 1/[σ2(Fo2) + (0.0695P)2 + 0.135P]
where P = (Fo2 + 2Fc2)/3
1830 reflections(Δ/σ)max < 0.001
225 parametersΔρmax = 0.35 e Å3
1 restraintΔρmin = 0.27 e Å3
Crystal data top
C16H13N7OV = 1461.5 (9) Å3
Mr = 319.33Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 22.142 (8) ŵ = 0.10 mm1
b = 11.016 (4) ÅT = 100 K
c = 5.992 (2) Å0.58 × 0.36 × 0.04 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
1830 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
1530 reflections with I > 2σ(I)
Tmin = 0.945, Tmax = 0.996Rint = 0.088
9607 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0671 restraint
wR(F2) = 0.145H atoms treated by a mixture of independent and constrained refinement
S = 1.19Δρmax = 0.35 e Å3
1830 reflectionsΔρmin = 0.27 e Å3
225 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.83275 (13)0.3791 (3)0.1382 (6)0.0251 (8)
N10.78903 (15)0.0671 (3)0.7906 (7)0.0191 (8)
N20.88088 (15)0.1634 (3)0.7854 (7)0.0186 (8)
N30.79295 (15)0.1475 (3)0.6125 (6)0.0174 (8)
N40.76558 (15)0.2401 (3)0.2791 (7)0.0187 (8)
N50.86084 (16)0.2819 (3)0.4502 (6)0.0186 (8)
H5N0.900 (2)0.301 (4)0.429 (8)0.018 (12)*
N60.70697 (15)0.0862 (3)0.4338 (6)0.0201 (8)
H6N0.712 (2)0.025 (5)0.544 (10)0.039 (15)*
N70.48227 (17)0.1748 (3)0.3615 (7)0.0236 (8)
C10.84184 (19)0.0814 (4)0.8851 (8)0.0177 (9)
C20.84876 (18)0.2014 (3)0.6159 (7)0.0166 (9)
C30.75455 (18)0.1596 (3)0.4347 (7)0.0175 (9)
C40.81929 (18)0.3037 (4)0.2826 (8)0.0183 (9)
C50.85949 (19)0.0149 (4)1.0875 (7)0.0199 (9)
C60.9147 (2)0.0359 (4)1.1868 (8)0.0264 (10)
H60.94220.09101.11970.032*
C70.9305 (2)0.0226 (4)1.3837 (9)0.0329 (12)
H70.96870.00801.45040.040*
C80.8899 (3)0.1029 (4)1.4827 (9)0.0358 (13)
H80.90010.14201.61900.043*
C90.8347 (2)0.1258 (4)1.3827 (9)0.0317 (11)
H90.80750.18201.44920.038*
C100.8187 (2)0.0678 (4)1.1872 (7)0.0241 (10)
H100.78060.08321.12010.029*
C110.66773 (18)0.0743 (4)0.2433 (7)0.0206 (10)
H11A0.66820.01120.19280.025*
H11B0.68380.12480.12020.025*
C120.49957 (19)0.1204 (4)0.1724 (8)0.0242 (10)
H120.46980.10320.06270.029*
C130.55916 (19)0.0879 (4)0.1287 (8)0.0218 (10)
H130.56980.05000.00820.026*
C140.60260 (19)0.1119 (4)0.2896 (8)0.0187 (9)
C150.58514 (19)0.1699 (4)0.4811 (8)0.0211 (9)
H150.61410.18940.59230.025*
C160.5247 (2)0.2002 (4)0.5120 (8)0.0245 (10)
H160.51330.24060.64560.029*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0245 (16)0.0180 (14)0.0328 (19)0.0027 (12)0.0069 (15)0.0101 (15)
N10.0230 (18)0.0146 (17)0.0196 (17)0.0022 (14)0.0025 (17)0.0034 (15)
N20.0180 (18)0.0137 (16)0.0240 (18)0.0024 (13)0.0013 (16)0.0026 (16)
N30.0192 (17)0.0115 (16)0.022 (2)0.0018 (13)0.0019 (15)0.0038 (15)
N40.0214 (18)0.0105 (16)0.0241 (19)0.0029 (13)0.0030 (16)0.0038 (16)
N50.0176 (18)0.0123 (17)0.026 (2)0.0018 (13)0.0039 (16)0.0019 (16)
N60.0173 (18)0.0153 (17)0.028 (2)0.0014 (13)0.0002 (17)0.0088 (17)
N70.0244 (19)0.0164 (17)0.030 (2)0.0040 (15)0.0003 (17)0.0025 (17)
C10.020 (2)0.0154 (19)0.018 (2)0.0020 (16)0.0032 (18)0.0025 (18)
C20.018 (2)0.0092 (17)0.023 (2)0.0000 (15)0.0027 (18)0.0024 (18)
C30.0169 (19)0.0130 (19)0.023 (2)0.0054 (15)0.0042 (18)0.0031 (18)
C40.020 (2)0.0132 (19)0.021 (2)0.0056 (15)0.0000 (19)0.0011 (19)
C50.025 (2)0.0156 (19)0.019 (2)0.0070 (17)0.0032 (19)0.0046 (18)
C60.035 (3)0.022 (2)0.023 (2)0.0087 (19)0.003 (2)0.005 (2)
C70.044 (3)0.024 (2)0.031 (3)0.014 (2)0.013 (2)0.004 (2)
C80.062 (4)0.027 (2)0.018 (2)0.022 (2)0.006 (2)0.002 (2)
C90.049 (3)0.020 (2)0.026 (2)0.012 (2)0.006 (2)0.004 (2)
C100.031 (2)0.017 (2)0.024 (2)0.0049 (17)0.005 (2)0.002 (2)
C110.023 (2)0.0137 (18)0.025 (3)0.0005 (17)0.0012 (19)0.0021 (19)
C120.022 (2)0.022 (2)0.028 (3)0.0003 (18)0.003 (2)0.000 (2)
C130.024 (2)0.016 (2)0.025 (2)0.0008 (17)0.001 (2)0.0008 (19)
C140.023 (2)0.0082 (17)0.025 (2)0.0013 (15)0.003 (2)0.0068 (18)
C150.024 (2)0.015 (2)0.025 (2)0.0018 (17)0.004 (2)0.0004 (19)
C160.034 (3)0.0121 (19)0.028 (2)0.0022 (18)0.003 (2)0.0026 (19)
Geometric parameters (Å, º) top
O1—C41.236 (5)C6—C71.389 (7)
N1—C11.309 (5)C6—H60.9500
N1—N31.389 (5)C7—C81.394 (8)
N2—C21.308 (6)C7—H70.9500
N2—C11.386 (5)C8—C91.384 (8)
N3—C31.370 (5)C8—H80.9500
N3—C21.371 (5)C9—C101.381 (7)
N4—C31.310 (5)C9—H90.9500
N4—C41.380 (5)C10—H100.9500
N5—C21.358 (5)C11—C141.526 (6)
N5—C41.383 (6)C11—H11A0.9900
N5—H5N0.90 (4)C11—H11B0.9900
N6—C31.328 (5)C12—C131.392 (6)
N6—C111.441 (5)C12—H120.9500
N6—H6N0.95 (6)C13—C141.387 (6)
N7—C161.332 (6)C13—H130.9500
N7—C121.338 (6)C14—C151.369 (7)
C1—C51.470 (6)C15—C161.392 (6)
C5—C61.379 (6)C15—H150.9500
C5—C101.415 (6)C16—H160.9500
C1—N1—N3101.5 (3)C6—C7—H7120.2
C2—N2—C1101.8 (3)C8—C7—H7120.2
C3—N3—C2121.9 (4)C9—C8—C7120.0 (5)
C3—N3—N1128.4 (3)C9—C8—H8120.0
C2—N3—N1108.7 (3)C7—C8—H8120.0
C3—N4—C4119.6 (4)C10—C9—C8120.6 (5)
C2—N5—C4120.9 (4)C10—C9—H9119.7
C2—N5—H5N116 (3)C8—C9—H9119.7
C4—N5—H5N120 (3)C9—C10—C5119.5 (4)
C3—N6—C11122.5 (4)C9—C10—H10120.2
C3—N6—H6N110 (3)C5—C10—H10120.2
C11—N6—H6N123 (3)N6—C11—C14113.7 (4)
C16—N7—C12117.7 (4)N6—C11—H11A108.8
N1—C1—N2116.7 (4)C14—C11—H11A108.8
N1—C1—C5122.3 (4)N6—C11—H11B108.8
N2—C1—C5121.0 (4)C14—C11—H11B108.8
N2—C2—N5132.0 (4)H11A—C11—H11B107.7
N2—C2—N3111.3 (4)N7—C12—C13123.1 (4)
N5—C2—N3116.7 (4)N7—C12—H12118.5
N4—C3—N6123.9 (4)C13—C12—H12118.5
N4—C3—N3120.3 (4)C14—C13—C12118.5 (4)
N6—C3—N3115.9 (4)C14—C13—H13120.7
O1—C4—N4122.6 (4)C12—C13—H13120.7
O1—C4—N5117.7 (4)C15—C14—C13118.4 (4)
N4—C4—N5119.7 (4)C15—C14—C11123.1 (4)
C6—C5—C10119.5 (4)C13—C14—C11118.5 (4)
C6—C5—C1120.5 (4)C14—C15—C16119.7 (4)
C10—C5—C1120.0 (4)C14—C15—H15120.2
C5—C6—C7120.8 (5)C16—C15—H15120.2
C5—C6—H6119.6N7—C16—C15122.6 (4)
C7—C6—H6119.6N7—C16—H16118.7
C6—C7—C8119.6 (5)C15—C16—H16118.7
C1—N1—N3—C3169.6 (4)C2—N5—C4—N42.1 (6)
C1—N1—N3—C20.9 (4)N1—C1—C5—C6177.5 (4)
N3—N1—C1—N20.4 (5)N2—C1—C5—C62.2 (6)
N3—N1—C1—C5179.3 (4)N1—C1—C5—C100.2 (6)
C2—N2—C1—N10.2 (5)N2—C1—C5—C10179.5 (4)
C2—N2—C1—C5180.0 (4)C10—C5—C6—C70.3 (6)
C1—N2—C2—N5179.3 (4)C1—C5—C6—C7177.1 (4)
C1—N2—C2—N30.8 (4)C5—C6—C7—C80.4 (6)
C4—N5—C2—N2177.7 (4)C6—C7—C8—C91.3 (7)
C4—N5—C2—N32.5 (6)C7—C8—C9—C101.4 (7)
C3—N3—C2—N2170.7 (3)C8—C9—C10—C50.6 (7)
N1—N3—C2—N21.1 (4)C6—C5—C10—C90.2 (6)
C3—N3—C2—N59.4 (5)C1—C5—C10—C9177.2 (4)
N1—N3—C2—N5179.0 (3)C3—N6—C11—C14118.5 (4)
C4—N4—C3—N6173.5 (4)C16—N7—C12—C131.1 (6)
C4—N4—C3—N36.8 (5)N7—C12—C13—C140.6 (7)
C11—N6—C3—N410.2 (6)C12—C13—C14—C152.0 (6)
C11—N6—C3—N3170.1 (3)C12—C13—C14—C11179.0 (4)
C2—N3—C3—N411.9 (5)N6—C11—C14—C1510.2 (5)
N1—N3—C3—N4179.2 (4)N6—C11—C14—C13170.8 (4)
C2—N3—C3—N6168.4 (4)C13—C14—C15—C161.6 (6)
N1—N3—C3—N61.0 (6)C11—C14—C15—C16179.4 (4)
C3—N4—C4—O1178.6 (4)C12—N7—C16—C151.5 (6)
C3—N4—C4—N50.0 (6)C14—C15—C16—N70.1 (6)
C2—N5—C4—O1179.1 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5N···N7i0.90 (4)1.89 (4)2.782 (5)173 (4)
N6—H6N···O1ii0.95 (6)1.96 (5)2.735 (5)137 (4)
N6—H6N···N10.95 (6)2.31 (5)2.813 (5)112 (4)
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x+3/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC16H13N7O
Mr319.33
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)100
a, b, c (Å)22.142 (8), 11.016 (4), 5.992 (2)
V3)1461.5 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.58 × 0.36 × 0.04
Data collection
DiffractometerBruker SMART APEX CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2001)
Tmin, Tmax0.945, 0.996
No. of measured, independent and
observed [I > 2σ(I)] reflections
9607, 1830, 1530
Rint0.088
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.067, 0.145, 1.19
No. of reflections1830
No. of parameters225
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.35, 0.27

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5N···N7i0.90 (4)1.89 (4)2.782 (5)173 (4)
N6—H6N···O1ii0.95 (6)1.96 (5)2.735 (5)137 (4)
N6—H6N···N10.95 (6)2.31 (5)2.813 (5)112 (4)
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x+3/2, y1/2, z+1/2.
 

Footnotes

1Fused heterocyclic systems with s-triazine ring. Part 17. For part 16, see Dolzhenko et al. (2011).

Thomson Reuters ResearcherID: B-1130-2008.

Acknowledgements

This work was supported by the School of Pharmacy, Curtin University of Technology and the National Medical Research Council, Singapore (NMRC/NIG/0019/2008).

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2001). SMART and SAINT. Bruker AXS GmbH, Karlsruhe, Germany.  Google Scholar
First citationDolzhenko, A. V., Dolzhenko, A. V. & Chui, W. K. (2006). Heterocycles, 68, 1723–1759.  CAS Google Scholar
First citationDolzhenko, A. V., Dolzhenko, A. V. & Chui, W. K. (2007a). Heterocycles, 71, 429–436.  CAS Google Scholar
First citationDolzhenko, A. V., Dolzhenko, A. V. & Chui, W. K. (2007b). Tetrahedron, 63, 12888–12895.  Web of Science CrossRef CAS Google Scholar
First citationDolzhenko, A. V., Pastorin, G., Dolzhenko, A. V. & Chui, W. K. (2008). Tetrahedron Lett. 49, 7180–7183.  Web of Science CrossRef CAS Google Scholar
First citationDolzhenko, A. V., Tan, G. K., Dolzhenko, A. V., Koh, L. L. & Chui, W. K. (2011). Acta Cryst. E67, o83–o84.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds