metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­chlorido(N,N′-diiso­propyl­piperidine-1-carboximidamidato-κ2N,N′)titanium(IV)

aJiangpu Senior Middle School, Nanjing 211800, Jiangsu Province, People's Republic of China, bKey Laboratory of Organic Synthesis of Jiangsu Province, Department of Chemistry and Chemical Engineering, Dushu Lake Campus, Suzhou University, Suzhou 215123, Jiangsu Province, People's Republic of China, and cSchool of Pharmacy, Nanjing Medical University, Nanjing 210029, Jiangsu Province, People's Republic of China
*Correspondence e-mail: zhangzhq798290@sohu.com

(Received 26 November 2010; accepted 18 December 2010; online 24 December 2010)

In the mononuclear title complex, [Ti(C12H24N3)2Cl2], the TiIV ion, located on a crystallographic inversion center, is six-coordinated by four N atoms from two N′,N′′-diisopropyl-N-carboxamidine anions and two chloride atoms in a distorted octahedral geometry. The dihedral angles between the piperidine groups and the NCN chelate rings are 51.5 (1) and 52.3 (1)°.

Related literature

For background to the coordination chemistry of guanidinates, see: Braunschweig et al. (2010[Braunschweig, H., Dewhurst, R. D., Schwab, K. & Wagner, K. (2010). Acta Cryst. E66, o610.]). For the synthesis of similar compounds, see: Bailey et al. (2000[Bailey, P. J., Grant, K. J., Mitchell, L. A., Pace, S., Parkin, A. & Parsons, S. (2000). J. Chem. Soc. Dalton Trans. pp. 1887-1891.]); Mullins et al. (2001[Mullins, S. M., Duncan, A. P., Bergman, R. G. & Arnold, J. (2001). Inorg. Chem. 40, 6952-6963.]).

[Scheme 1]

Experimental

Crystal data
  • [Ti(C12H24N3)2Cl2]

  • Mr = 539.48

  • Triclinic, [P \overline 1]

  • a = 8.2810 (3) Å

  • b = 13.3678 (9) Å

  • c = 13.6178 (7) Å

  • α = 86.266 (10)°

  • β = 75.841 (8)°

  • γ = 82.304 (8)°

  • V = 1447.69 (13) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.50 mm−1

  • T = 193 K

  • 0.70 × 0.25 × 0.15 mm

Data collection
  • Rigaku Mercury diffractometer

  • Absorption correction: multi-scan (REQAB; Jacobson, 1998[Jacobson, R. (1998). REQAB. Private communication to the Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.720, Tmax = 0.928

  • 14490 measured reflections

  • 6513 independent reflections

  • 5896 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.097

  • S = 1.08

  • 6513 reflections

  • 306 parameters

  • H-atom parameters constrained

  • Δρmax = 0.64 e Å−3

  • Δρmin = −0.32 e Å−3

Data collection: CrystalClear (Rigaku, 1999[Rigaku (1999). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: CrystalStructure.

Supporting information


Comment top

Guanidinate anions, [(RN)2C(NR'2)]-, are isoelectronic alternatives to cyclopentadienyl ligands and modifications to their electronic properties and steric bulk can be investigated through variation of the substiuents on the nitrogen atoms. As a result, guanidinate ligands have been attacted increasing attention as ancillary ligands in the coordination and organometallic chemistry of main group and transition metals (Braunschweig et al., 2010). As part of our ongoing investigations in this field we report here the crystal structure of the title compound. In the crystal structure of the title compound the Ti atom is coordinated by four nitrogen atoms of two guanidinate ligands and two chloride atoms within a triclinic coordination symmetry (Figure 1).

The Ti—N bond lengths vary from 2.0125 (14) to 2.1299 (14)Å, which are close to the values reported for [Et2NC(NPh)2]2TiCl2 (Bailey et al., 2000) and [Et2NC(NiPr)2]2TiCl2 and [Et2NC(NiPr)2]2TiS2 (Mullins et al., 2001). The bond lengths of Ti—Cl of 2.3254 (5) and 2.3308 (6)Å are comparable with those in [Et2NC(NPh)2]2TiCl2 and [Et2NC(NiPr)2]2TiCl2. The bond distance around N(1), C(1), N(2) and N(4), C(13), N(5) average 1.342Å indicating partial double-bonding character and a π-conjugated NCN chelate. The bond angles around N(3) and N(6) ranging from 113.9 (1) to 124.5 (1)° consistent with sp2-hybridized nitrogen atoms. The dihedral angles between the piperidine groups and the NCN chelate rings are 51.5 and 52.3°.

Related literature top

For background to the coordination chemistry of guanidinates, see: Braunschweig et al. (2010). For the synthesis of similar compounds, see: Bailey et al. (2000); Mullins et al. (2001).

Experimental top

A solution of n-butyllithium (8.40 ml, 10 mmol) in hexane was added via syringe to a THF solution of piperidine (10 mmol) at -78°C. The solution was warmed to room temperature slowly and stirred for 30 min. Then N-((isopropylimino)methylene)propan-2-amine (1.26 g, 10 mmol) was added via syringe at 0°C. The mixture was stirred at room temperature (r.t.) for 30 min, then was added to a suspension of TiCl4(THF)2 (1.65 g, 5 mmol) in toluene (20 ml) at r.t. The reaction mixture was stirred overnight at r.t. After removal of volatiles under vacuum, the dark red residue was extracted with toluene, and LiCl was removed by centrifugation. The dark red crystals were obtained from concentrated toluene solution at -10°C. Anal. Calcd. for C24H48Cl2N6Ti: C, 53.50; H, 8.91; N, 15.59. Found: C, 53.81; H, 9.58; N, 15.86%.

Refinement top

H atoms of the methyl groups were placed geometrically with C—H = 0.97 Å and allowed to ride during subsequent refinement with Uiso(H) = 1.5Ueq(C). Fifteen missing reflections appeared to be obscured by the beamstop.

Structure description top

Guanidinate anions, [(RN)2C(NR'2)]-, are isoelectronic alternatives to cyclopentadienyl ligands and modifications to their electronic properties and steric bulk can be investigated through variation of the substiuents on the nitrogen atoms. As a result, guanidinate ligands have been attacted increasing attention as ancillary ligands in the coordination and organometallic chemistry of main group and transition metals (Braunschweig et al., 2010). As part of our ongoing investigations in this field we report here the crystal structure of the title compound. In the crystal structure of the title compound the Ti atom is coordinated by four nitrogen atoms of two guanidinate ligands and two chloride atoms within a triclinic coordination symmetry (Figure 1).

The Ti—N bond lengths vary from 2.0125 (14) to 2.1299 (14)Å, which are close to the values reported for [Et2NC(NPh)2]2TiCl2 (Bailey et al., 2000) and [Et2NC(NiPr)2]2TiCl2 and [Et2NC(NiPr)2]2TiS2 (Mullins et al., 2001). The bond lengths of Ti—Cl of 2.3254 (5) and 2.3308 (6)Å are comparable with those in [Et2NC(NPh)2]2TiCl2 and [Et2NC(NiPr)2]2TiCl2. The bond distance around N(1), C(1), N(2) and N(4), C(13), N(5) average 1.342Å indicating partial double-bonding character and a π-conjugated NCN chelate. The bond angles around N(3) and N(6) ranging from 113.9 (1) to 124.5 (1)° consistent with sp2-hybridized nitrogen atoms. The dihedral angles between the piperidine groups and the NCN chelate rings are 51.5 and 52.3°.

For background to the coordination chemistry of guanidinates, see: Braunschweig et al. (2010). For the synthesis of similar compounds, see: Bailey et al. (2000); Mullins et al. (2001).

Computing details top

Data collection: CrystalClear (Rigaku, 1999); cell refinement: CrystalClear (Rigaku, 1999); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2002).

Figures top
[Figure 1] Fig. 1. Crystal structure and atom numbering of the title compound, shown with 30% probability displacement ellipsoids.
Dichlorido(N,N'-diisopropylpiperidine-1-carboximidamidato- κ2N,N')titanium(IV) top
Crystal data top
[Ti(C12H24N3)2Cl2]Z = 2
Mr = 539.48F(000) = 580
Triclinic, P1Dx = 1.238 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71070 Å
a = 8.2810 (3) ÅCell parameters from 3913 reflections
b = 13.3678 (9) Åθ = 3.1–27.5°
c = 13.6178 (7) ŵ = 0.50 mm1
α = 86.266 (10)°T = 193 K
β = 75.841 (8)°Block, dark-red
γ = 82.304 (8)°0.70 × 0.25 × 0.15 mm
V = 1447.69 (13) Å3
Data collection top
Rigaku Mercury
diffractometer
6513 independent reflections
Radiation source: fine-focus sealed tube5896 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
Detector resolution: 14.62 pixels mm-1θmax = 27.5°, θmin = 3.1°
ω scansh = 1010
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
k = 1717
Tmin = 0.720, Tmax = 0.928l = 1617
14490 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0406P)2 + 0.8209P]
where P = (Fo2 + 2Fc2)/3
6513 reflections(Δ/σ)max < 0.001
306 parametersΔρmax = 0.64 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
[Ti(C12H24N3)2Cl2]γ = 82.304 (8)°
Mr = 539.48V = 1447.69 (13) Å3
Triclinic, P1Z = 2
a = 8.2810 (3) ÅMo Kα radiation
b = 13.3678 (9) ŵ = 0.50 mm1
c = 13.6178 (7) ÅT = 193 K
α = 86.266 (10)°0.70 × 0.25 × 0.15 mm
β = 75.841 (8)°
Data collection top
Rigaku Mercury
diffractometer
6513 independent reflections
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
5896 reflections with I > 2σ(I)
Tmin = 0.720, Tmax = 0.928Rint = 0.024
14490 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.097H-atom parameters constrained
S = 1.08Δρmax = 0.64 e Å3
6513 reflectionsΔρmin = 0.32 e Å3
306 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ti10.02434 (4)0.22060 (2)0.23396 (2)0.02022 (8)
Cl10.06242 (6)0.23150 (3)0.08319 (4)0.03338 (12)
Cl20.22892 (6)0.17162 (4)0.32905 (4)0.03487 (12)
N10.04278 (17)0.36915 (10)0.27568 (11)0.0234 (3)
N20.20565 (17)0.31810 (10)0.17994 (11)0.0227 (3)
N30.12949 (17)0.49848 (10)0.20127 (12)0.0255 (3)
N40.16572 (17)0.08674 (10)0.20244 (10)0.0194 (3)
N50.15650 (17)0.15914 (10)0.34437 (10)0.0216 (3)
N60.34501 (17)0.00317 (11)0.30397 (10)0.0223 (3)
C10.0996 (2)0.39864 (12)0.21722 (13)0.0218 (3)
C20.1776 (2)0.43961 (13)0.33551 (14)0.0278 (4)
H20.13930.50810.32800.033*
C30.3349 (2)0.44610 (17)0.29507 (18)0.0405 (5)
H3A0.30800.46620.22300.061*
H3B0.42140.49620.33260.061*
H3C0.37640.38000.30360.061*
C40.2153 (3)0.40813 (17)0.44766 (15)0.0408 (5)
H4A0.24790.33970.45630.061*
H4B0.30730.45510.48530.061*
H4C0.11500.40940.47350.061*
C50.3538 (2)0.32465 (15)0.09379 (15)0.0329 (4)
H50.41660.37810.10950.039*
C60.3042 (3)0.3572 (2)0.00399 (17)0.0558 (7)
H6A0.24230.30640.02200.084*
H6B0.40520.36410.05800.084*
H6C0.23280.42220.00450.084*
C70.4687 (3)0.2273 (2)0.0867 (2)0.0675 (9)
H7A0.49640.21010.15220.101*
H7B0.57180.23470.03460.101*
H7C0.41290.17340.06870.101*
C80.0227 (2)0.57243 (13)0.15365 (14)0.0288 (4)
H8A0.08680.54750.16000.035*
H8B0.07620.58040.08060.035*
C90.0054 (2)0.67433 (14)0.20283 (17)0.0350 (4)
H9A0.07380.66870.27310.042*
H9B0.06780.72470.16480.042*
C100.1618 (3)0.70969 (14)0.20385 (16)0.0351 (4)
H10A0.22260.72550.13360.042*
H10B0.14110.77210.24270.042*
C110.2692 (3)0.62867 (14)0.25152 (16)0.0349 (4)
H11A0.21440.61850.32410.042*
H11B0.37990.65120.24710.042*
C120.2936 (2)0.52900 (14)0.19807 (16)0.0319 (4)
H12A0.35670.53720.12680.038*
H12B0.35890.47640.23210.038*
C130.22731 (19)0.08123 (12)0.28716 (12)0.0192 (3)
C140.1624 (2)0.00526 (12)0.14861 (13)0.0234 (3)
H140.23500.06170.17430.028*
C150.0156 (2)0.03373 (14)0.17258 (15)0.0310 (4)
H15A0.05390.04700.24570.046*
H15B0.01700.09450.13640.046*
H15C0.09040.02200.15110.046*
C160.2324 (3)0.00808 (16)0.03502 (14)0.0353 (4)
H16A0.16630.06510.00860.053*
H16B0.22670.05360.00150.053*
H16C0.34950.02130.02180.053*
C170.2158 (2)0.18903 (14)0.43013 (13)0.0281 (4)
H170.31580.14060.43700.034*
C180.0777 (3)0.18062 (18)0.52705 (14)0.0398 (5)
H18A0.02520.22240.51910.060*
H18B0.11350.20400.58420.060*
H18C0.05630.11000.54000.060*
C190.2684 (3)0.29504 (16)0.41280 (17)0.0398 (5)
H19A0.35700.29760.35030.060*
H19B0.31050.31190.47020.060*
H19C0.17140.34370.40670.060*
C200.4988 (2)0.01999 (13)0.22347 (13)0.0265 (4)
H20A0.59030.01330.23750.032*
H20B0.47860.00750.15770.032*
C210.5530 (2)0.13335 (14)0.21646 (14)0.0315 (4)
H21A0.46960.16560.19240.038*
H21B0.66250.14590.16690.038*
C220.5683 (2)0.17964 (16)0.31945 (16)0.0366 (4)
H22A0.66210.15410.33940.044*
H22B0.59320.25400.31520.044*
C230.4055 (3)0.15274 (15)0.39905 (15)0.0369 (4)
H23A0.41910.18050.46620.044*
H23B0.31410.18390.38230.044*
C240.3581 (3)0.03855 (15)0.40407 (13)0.0330 (4)
H24A0.24950.02300.45370.040*
H24B0.44450.00760.42660.040*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ti10.01973 (15)0.01908 (15)0.02277 (16)0.00208 (11)0.00691 (11)0.00083 (11)
Cl10.0400 (3)0.0334 (2)0.0332 (2)0.00592 (19)0.0216 (2)0.00408 (18)
Cl20.0250 (2)0.0379 (2)0.0392 (3)0.00926 (18)0.00079 (18)0.0037 (2)
N10.0179 (6)0.0208 (7)0.0295 (8)0.0010 (5)0.0023 (6)0.0025 (6)
N20.0198 (7)0.0215 (7)0.0248 (7)0.0015 (5)0.0023 (5)0.0006 (5)
N30.0210 (7)0.0194 (7)0.0380 (8)0.0030 (5)0.0114 (6)0.0032 (6)
N40.0210 (6)0.0203 (6)0.0184 (6)0.0015 (5)0.0082 (5)0.0010 (5)
N50.0222 (7)0.0257 (7)0.0186 (7)0.0027 (5)0.0075 (5)0.0033 (5)
N60.0213 (7)0.0280 (7)0.0172 (7)0.0015 (5)0.0065 (5)0.0011 (5)
C10.0211 (8)0.0212 (8)0.0248 (8)0.0020 (6)0.0090 (6)0.0007 (6)
C20.0222 (8)0.0250 (8)0.0327 (9)0.0023 (7)0.0017 (7)0.0043 (7)
C30.0208 (9)0.0439 (12)0.0536 (13)0.0020 (8)0.0062 (9)0.0008 (10)
C40.0407 (11)0.0410 (11)0.0324 (11)0.0045 (9)0.0030 (9)0.0046 (9)
C50.0255 (9)0.0319 (9)0.0355 (10)0.0036 (7)0.0033 (8)0.0003 (8)
C60.0425 (13)0.088 (2)0.0304 (11)0.0109 (13)0.0037 (10)0.0027 (12)
C70.0363 (13)0.0521 (15)0.087 (2)0.0078 (11)0.0249 (13)0.0141 (14)
C80.0292 (9)0.0262 (9)0.0326 (9)0.0020 (7)0.0129 (8)0.0056 (7)
C90.0336 (10)0.0228 (9)0.0473 (12)0.0004 (7)0.0105 (9)0.0038 (8)
C100.0402 (11)0.0210 (8)0.0439 (11)0.0056 (8)0.0091 (9)0.0010 (8)
C110.0359 (10)0.0274 (9)0.0461 (12)0.0084 (8)0.0164 (9)0.0005 (8)
C120.0243 (9)0.0257 (9)0.0475 (11)0.0062 (7)0.0112 (8)0.0015 (8)
C130.0177 (7)0.0228 (8)0.0180 (7)0.0052 (6)0.0051 (6)0.0018 (6)
C140.0262 (8)0.0208 (8)0.0260 (8)0.0000 (6)0.0123 (7)0.0036 (6)
C150.0331 (9)0.0257 (9)0.0399 (11)0.0074 (7)0.0176 (8)0.0008 (7)
C160.0387 (10)0.0429 (11)0.0251 (9)0.0011 (9)0.0094 (8)0.0110 (8)
C170.0279 (9)0.0350 (9)0.0250 (9)0.0000 (7)0.0132 (7)0.0086 (7)
C180.0432 (11)0.0547 (13)0.0212 (9)0.0020 (10)0.0097 (8)0.0078 (9)
C190.0419 (11)0.0403 (11)0.0456 (12)0.0074 (9)0.0219 (10)0.0131 (9)
C200.0200 (8)0.0308 (9)0.0278 (9)0.0030 (7)0.0054 (7)0.0034 (7)
C210.0239 (9)0.0341 (10)0.0328 (10)0.0037 (7)0.0036 (7)0.0002 (8)
C220.0316 (10)0.0347 (10)0.0418 (11)0.0062 (8)0.0127 (9)0.0052 (8)
C230.0423 (11)0.0366 (10)0.0279 (10)0.0036 (9)0.0079 (8)0.0089 (8)
C240.0405 (10)0.0382 (10)0.0203 (9)0.0033 (8)0.0127 (8)0.0028 (7)
Geometric parameters (Å, º) top
Ti1—N42.0125 (14)C9—C101.525 (3)
Ti1—N12.0669 (14)C9—H9A0.9900
Ti1—N22.0864 (14)C9—H9B0.9900
Ti1—N52.1299 (14)C10—C111.522 (3)
Ti1—Cl12.3254 (5)C10—H10A0.9900
Ti1—Cl22.3308 (6)C10—H10B0.9900
Ti1—C12.5224 (17)C11—C121.526 (3)
Ti1—C132.5303 (16)C11—H11A0.9900
N1—C11.343 (2)C11—H11B0.9900
N1—C21.473 (2)C12—H12A0.9900
N2—C11.337 (2)C12—H12B0.9900
N2—C51.483 (2)C14—C161.521 (2)
N3—C11.383 (2)C14—C151.524 (2)
N3—C121.461 (2)C14—H141.0000
N3—C81.464 (2)C15—H15A0.9800
N4—C131.365 (2)C15—H15B0.9800
N4—C141.479 (2)C15—H15C0.9800
N5—C131.324 (2)C16—H16A0.9800
N5—C171.469 (2)C16—H16B0.9800
N6—C131.377 (2)C16—H16C0.9800
N6—C241.462 (2)C17—C191.525 (3)
N6—C201.475 (2)C17—C181.529 (3)
C2—C31.523 (3)C17—H171.0000
C2—C41.525 (3)C18—H18A0.9800
C2—H21.0000C18—H18B0.9800
C3—H3A0.9800C18—H18C0.9800
C3—H3B0.9800C19—H19A0.9800
C3—H3C0.9800C19—H19B0.9800
C4—H4A0.9800C19—H19C0.9800
C4—H4B0.9800C20—C211.524 (3)
C4—H4C0.9800C20—H20A0.9900
C5—C71.500 (3)C20—H20B0.9900
C5—C61.508 (3)C21—C221.523 (3)
C5—H51.0000C21—H21A0.9900
C6—H6A0.9800C21—H21B0.9900
C6—H6B0.9800C22—C231.526 (3)
C6—H6C0.9800C22—H22A0.9900
C7—H7A0.9800C22—H22B0.9900
C7—H7B0.9800C23—C241.526 (3)
C7—H7C0.9800C23—H23A0.9900
C8—C91.522 (3)C23—H23B0.9900
C8—H8A0.9900C24—H24A0.9900
C8—H8B0.9900C24—H24B0.9900
N4—Ti1—N1159.82 (6)C8—C9—H9A109.5
N4—Ti1—N2100.06 (6)C10—C9—H9A109.5
N1—Ti1—N263.86 (5)C8—C9—H9B109.5
N4—Ti1—N564.01 (5)C10—C9—H9B109.5
N1—Ti1—N5102.08 (6)H9A—C9—H9B108.1
N2—Ti1—N589.81 (5)C11—C10—C9110.83 (15)
N4—Ti1—Cl193.71 (4)C11—C10—H10A109.5
N1—Ti1—Cl199.11 (4)C9—C10—H10A109.5
N2—Ti1—Cl193.32 (4)C11—C10—H10B109.5
N5—Ti1—Cl1157.69 (4)C9—C10—H10B109.5
N4—Ti1—Cl2102.08 (4)H10A—C10—H10B108.1
N1—Ti1—Cl292.76 (4)C10—C11—C12110.97 (16)
N2—Ti1—Cl2156.46 (4)C10—C11—H11A109.4
N5—Ti1—Cl292.70 (4)C12—C11—H11A109.4
Cl1—Ti1—Cl293.17 (2)C10—C11—H11B109.4
N4—Ti1—C1131.72 (5)C12—C11—H11B109.4
N1—Ti1—C132.13 (5)H11A—C11—H11B108.0
N2—Ti1—C131.98 (5)N3—C12—C11109.07 (15)
N5—Ti1—C199.88 (5)N3—C12—H12A109.9
Cl1—Ti1—C194.34 (4)C11—C12—H12A109.9
Cl2—Ti1—C1124.85 (4)N3—C12—H12B109.9
N4—Ti1—C1332.50 (5)C11—C12—H12B109.9
N1—Ti1—C13131.67 (6)H12A—C12—H12B108.3
N2—Ti1—C1394.39 (5)N5—C13—N4109.59 (14)
N5—Ti1—C1331.56 (5)N5—C13—N6128.95 (14)
Cl1—Ti1—C13126.14 (4)N4—C13—N6121.46 (14)
Cl2—Ti1—C1399.95 (4)N5—C13—Ti157.31 (8)
C1—Ti1—C13118.19 (5)N4—C13—Ti152.39 (8)
C1—N1—C2123.07 (14)N6—C13—Ti1173.14 (12)
C1—N1—Ti192.95 (10)N4—C14—C16111.48 (14)
C2—N1—Ti1143.91 (11)N4—C14—C15109.93 (14)
C1—N2—C5123.23 (14)C16—C14—C15111.42 (15)
C1—N2—Ti192.28 (10)N4—C14—H14108.0
C5—N2—Ti1137.87 (12)C16—C14—H14108.0
C1—N3—C12121.71 (14)C15—C14—H14108.0
C1—N3—C8121.35 (14)C14—C15—H15A109.5
C12—N3—C8113.86 (14)C14—C15—H15B109.5
C13—N4—C14121.05 (13)H15A—C15—H15B109.5
C13—N4—Ti195.10 (10)C14—C15—H15C109.5
C14—N4—Ti1137.93 (10)H15A—C15—H15C109.5
C13—N5—C17124.45 (14)H15B—C15—H15C109.5
C13—N5—Ti191.13 (10)C14—C16—H16A109.5
C17—N5—Ti1141.22 (11)C14—C16—H16B109.5
C13—N6—C24124.54 (14)H16A—C16—H16B109.5
C13—N6—C20118.69 (13)C14—C16—H16C109.5
C24—N6—C20113.94 (14)H16A—C16—H16C109.5
N2—C1—N1110.09 (14)H16B—C16—H16C109.5
N2—C1—N3126.28 (15)N5—C17—C19111.43 (15)
N1—C1—N3123.62 (15)N5—C17—C18108.81 (15)
N2—C1—Ti155.74 (8)C19—C17—C18111.69 (17)
N1—C1—Ti154.92 (8)N5—C17—H17108.3
N3—C1—Ti1173.93 (12)C19—C17—H17108.3
N1—C2—C3110.11 (15)C18—C17—H17108.3
N1—C2—C4111.19 (15)C17—C18—H18A109.5
C3—C2—C4110.72 (17)C17—C18—H18B109.5
N1—C2—H2108.2H18A—C18—H18B109.5
C3—C2—H2108.2C17—C18—H18C109.5
C4—C2—H2108.2H18A—C18—H18C109.5
C2—C3—H3A109.5H18B—C18—H18C109.5
C2—C3—H3B109.5C17—C19—H19A109.5
H3A—C3—H3B109.5C17—C19—H19B109.5
C2—C3—H3C109.5H19A—C19—H19B109.5
H3A—C3—H3C109.5C17—C19—H19C109.5
H3B—C3—H3C109.5H19A—C19—H19C109.5
C2—C4—H4A109.5H19B—C19—H19C109.5
C2—C4—H4B109.5N6—C20—C21111.62 (14)
H4A—C4—H4B109.5N6—C20—H20A109.3
C2—C4—H4C109.5C21—C20—H20A109.3
H4A—C4—H4C109.5N6—C20—H20B109.3
H4B—C4—H4C109.5C21—C20—H20B109.3
N2—C5—C7110.00 (16)H20A—C20—H20B108.0
N2—C5—C6112.07 (16)C22—C21—C20110.55 (16)
C7—C5—C6113.2 (2)C22—C21—H21A109.5
N2—C5—H5107.1C20—C21—H21A109.5
C7—C5—H5107.1C22—C21—H21B109.5
C6—C5—H5107.1C20—C21—H21B109.5
C5—C6—H6A109.5H21A—C21—H21B108.1
C5—C6—H6B109.5C21—C22—C23110.28 (15)
H6A—C6—H6B109.5C21—C22—H22A109.6
C5—C6—H6C109.5C23—C22—H22A109.6
H6A—C6—H6C109.5C21—C22—H22B109.6
H6B—C6—H6C109.5C23—C22—H22B109.6
C5—C7—H7A109.5H22A—C22—H22B108.1
C5—C7—H7B109.5C22—C23—C24111.17 (17)
H7A—C7—H7B109.5C22—C23—H23A109.4
C5—C7—H7C109.5C24—C23—H23A109.4
H7A—C7—H7C109.5C22—C23—H23B109.4
H7B—C7—H7C109.5C24—C23—H23B109.4
N3—C8—C9111.14 (15)H23A—C23—H23B108.0
N3—C8—H8A109.4N6—C24—C23109.52 (15)
C9—C8—H8A109.4N6—C24—H24A109.8
N3—C8—H8B109.4C23—C24—H24A109.8
C9—C8—H8B109.4N6—C24—H24B109.8
H8A—C8—H8B108.0C23—C24—H24B109.8
C8—C9—C10110.60 (16)H24A—C24—H24B108.2
N4—Ti1—N1—C145.1 (2)Ti1—N1—C1—N28.40 (14)
N2—Ti1—N1—C15.62 (9)C2—N1—C1—N34.8 (3)
N5—Ti1—N1—C189.37 (10)Ti1—N1—C1—N3172.86 (14)
Cl1—Ti1—N1—C183.61 (10)C8—N3—C1—N2120.40 (19)
Cl2—Ti1—N1—C1177.27 (9)C12—N3—C1—N1139.97 (18)
N4—Ti1—N1—C2138.13 (19)C8—N3—C1—N161.1 (2)
N2—Ti1—N1—C2177.7 (2)C1—N1—C2—C3114.12 (18)
N5—Ti1—N1—C293.9 (2)Ti1—N1—C2—C362.0 (3)
Cl1—Ti1—N1—C293.1 (2)C1—N1—C2—C4122.78 (19)
Cl2—Ti1—N1—C20.5 (2)Ti1—N1—C2—C461.1 (3)
C1—Ti1—N1—C2176.7 (3)C1—N2—C5—C7166.3 (2)
N4—Ti1—N2—C1172.76 (10)Ti1—N2—C5—C751.1 (3)
N1—Ti1—N2—C15.64 (9)C1—N2—C5—C666.9 (2)
N5—Ti1—N2—C1109.22 (10)Ti1—N2—C5—C675.8 (2)
Cl1—Ti1—N2—C192.88 (9)C1—N3—C8—C9141.66 (17)
Cl2—Ti1—N2—C112.88 (17)C12—N3—C8—C957.8 (2)
N4—Ti1—N2—C537.75 (18)N3—C8—C9—C1053.3 (2)
N1—Ti1—N2—C5155.13 (19)C8—C9—C10—C1152.9 (2)
N5—Ti1—N2—C5101.29 (17)C9—C10—C11—C1255.2 (2)
Cl1—Ti1—N2—C556.61 (17)C1—N3—C12—C11140.78 (17)
Cl2—Ti1—N2—C5162.37 (13)C8—N3—C12—C1158.8 (2)
C1—Ti1—N2—C5149.5 (2)C10—C11—C12—N356.7 (2)
N1—Ti1—N4—C1346.9 (2)C17—N5—C13—N4167.17 (15)
N2—Ti1—N4—C1382.33 (10)Ti1—N5—C13—N43.61 (12)
N5—Ti1—N4—C132.50 (9)C17—N5—C13—N613.0 (3)
Cl1—Ti1—N4—C13176.36 (9)Ti1—N5—C13—N6176.54 (15)
Cl2—Ti1—N4—C1389.59 (9)C14—N4—C13—N5153.63 (14)
C1—Ti1—N4—C1377.19 (11)Ti1—N4—C13—N53.84 (13)
N1—Ti1—N4—C14162.48 (16)C14—N4—C13—N626.2 (2)
N2—Ti1—N4—C14127.01 (16)Ti1—N4—C13—N6176.30 (13)
N5—Ti1—N4—C14148.17 (18)C14—N4—C13—Ti1157.47 (16)
Cl1—Ti1—N4—C1432.97 (16)C24—N6—C13—N531.7 (3)
Cl2—Ti1—N4—C1461.07 (16)C20—N6—C13—N5128.08 (18)
C1—Ti1—N4—C14132.14 (15)C24—N6—C13—N4148.16 (16)
N4—Ti1—N5—C132.57 (9)C20—N6—C13—N452.1 (2)
N1—Ti1—N5—C13161.90 (9)C13—N4—C14—C16132.18 (16)
N2—Ti1—N5—C1398.73 (10)Ti1—N4—C14—C1682.54 (19)
Cl1—Ti1—N5—C130.42 (17)C13—N4—C14—C15103.75 (17)
Cl2—Ti1—N5—C13104.69 (9)Ti1—N4—C14—C1541.5 (2)
C1—Ti1—N5—C13129.24 (10)C13—N5—C17—C19118.58 (18)
N4—Ti1—N5—C17160.7 (2)Ti1—N5—C17—C1934.6 (3)
N1—Ti1—N5—C173.78 (19)C13—N5—C17—C18117.83 (18)
N2—Ti1—N5—C1759.40 (18)Ti1—N5—C17—C1889.0 (2)
Cl1—Ti1—N5—C17157.70 (14)C13—N6—C20—C21142.13 (15)
Cl2—Ti1—N5—C1797.19 (18)C24—N6—C20—C2156.0 (2)
C13—Ti1—N5—C17158.1 (2)N6—C20—C21—C2253.4 (2)
C5—N2—C1—N1164.29 (15)C20—C21—C22—C2354.0 (2)
Ti1—N2—C1—N18.32 (14)C21—C22—C23—C2456.3 (2)
C5—N2—C1—N317.0 (3)C13—N6—C24—C23142.54 (17)
Ti1—N2—C1—N3172.98 (15)C20—N6—C24—C2356.9 (2)
C2—N1—C1—N2173.91 (15)C22—C23—C24—N656.7 (2)

Experimental details

Crystal data
Chemical formula[Ti(C12H24N3)2Cl2]
Mr539.48
Crystal system, space groupTriclinic, P1
Temperature (K)193
a, b, c (Å)8.2810 (3), 13.3678 (9), 13.6178 (7)
α, β, γ (°)86.266 (10), 75.841 (8), 82.304 (8)
V3)1447.69 (13)
Z2
Radiation typeMo Kα
µ (mm1)0.50
Crystal size (mm)0.70 × 0.25 × 0.15
Data collection
DiffractometerRigaku Mercury
Absorption correctionMulti-scan
(REQAB; Jacobson, 1998)
Tmin, Tmax0.720, 0.928
No. of measured, independent and
observed [I > 2σ(I)] reflections
14490, 6513, 5896
Rint0.024
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.097, 1.08
No. of reflections6513
No. of parameters306
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.64, 0.32

Computer programs: CrystalClear (Rigaku, 1999), CrystalStructure (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996).

 

Acknowledgements

Financial support from the Science Foundation of Jiangpu Senior Middle School is gratefully acknowledged.

References

First citationBailey, P. J., Grant, K. J., Mitchell, L. A., Pace, S., Parkin, A. & Parsons, S. (2000). J. Chem. Soc. Dalton Trans. pp. 1887–1891.  Web of Science CSD CrossRef Google Scholar
First citationBraunschweig, H., Dewhurst, R. D., Schwab, K. & Wagner, K. (2010). Acta Cryst. E66, o610.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBurnett, M. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationJacobson, R. (1998). REQAB. Private communication to the Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationMullins, S. M., Duncan, A. P., Bergman, R. G. & Arnold, J. (2001). Inorg. Chem. 40, 6952–6963.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRigaku (1999). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds