organic compounds
1-(2-Bromo-2-deoxy-β-D-xylofuranosyl)uracil
aCollege of Chemistry and Life Science, Gannan Normal University, Ganzhou 341000, People's Republic of China, and bSchool of Chemical and Environmental Sciences, Henan Normal University, Xinxiang 453007, People's Republic of China
*Correspondence e-mail: zhgzhou@foxmail.com
In the title compound, C9H11BrN2O5, the ribofuranose ring has a C2-exo, C3-endo twist configuration and is attached to the uracil unit via a β-N1-glycosidic bond. The is stabilized by two intermolecular O—H⋯O interactions and one intermolecular N—H⋯O interaction.
Related literature
For the synthesis of the title compound and its analogues, see: Shakya et al. (2010). For a related structure, see: Suck et al. (1972). For the use of the title compound as a pharmaceutical intermediate, see: Haraguchi et al. (1993); Kittaka et al. (1992); Pozharskii et al. (1997); Sairam et al. (2003). For the biological activity of nucleoside derivatives, see: Johar et al. (2005).
Experimental
Crystal data
|
Data collection: SMART (Bruker, 2008); cell SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL.
Supporting information
https://doi.org/10.1107/S1600536810051081/hg2764sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810051081/hg2764Isup2.hkl
All reagents and solvents were used as obtained commercially without further purification. NMR spectra was recorded on Bruker AV 400 MHz NMR spectrometers at ambient temperature. The title compound was prepared according to the reported procedure (Shakya et al., 2010). Detritylation of 1-(3-Bromo-3-deoxy-5-O-trityl-β-D-arabinofuranosyl)uracil using 80% aqueous acetic acid (v/v) at 90 °C for 30 min, then cooled to room temperature, after the solvent were distilled off a white solid of the title compound was obtained in about 70% yield. 1H NMR (400 MHz, DMSO-d6): δ 3.65–3.77 (m, 2H, H-5'), 4.26–4.39 (m, 3H, H-2', H-3', H-4'), 4.89 (t, J = 4.88 Hz, 1H, 5'-OH), 5.64 (dd, J = 8.54 and 1.83 Hz, 1H, H-5), 6.04 (d, J = 3.05 Hz, 1H, H-1'), 6.09 (d, J = 1.83 Hz, 1H, 3'-OH), 7.72 (d, J = 7.93 Hz, 1H, H-6), 11.39 (s, 1H, NH). In a sample vial, colorless block-shaped single crystals were grown from DMSO and water (v/v = 1:1) at room temperature.
The N-bound and the C-bound H atoms were positioned geometrically and refined using a riding model: N—H = 0.86 Å and C—H = 0.93–0.98 Å, with Uiso(H) = 1.2Uiso(N,C); while the O-bound H atoms were placed in idealized positions and constrained to ride on their parent atoms: O—H = 0.82 Å, with Uiso(H) = 1.5 times Uiso(O).
In the last few decades, there has been dramatic progress in the synthesis of the nucleoside analogues for their biological evaluation of the anticancer activity (Johar et al., 2005; Shakya et al., 2010; Suck et al., 1972). The title compound (I) can be used as important pharmaceutical intermediates (Haraguchi et al., 1993; Kittaka et al., 1992; Pozharskii et al., 1997; Sairam et al., 2003). The synthetic procedure is described below. To know the relative stereochemistry of the anomeric position in the ribofuranose ring, it is necessary to gain the well defined structure of (I) by X-diffraction method. The molecular structure of the title compound is shown in Fig. 1. From the single-crystal structure we observed that the ribofuranose ring has a C2-exo, C3-endo twist configuration and the anomeric carbons are always β configuration in the crystal packing. The of (I) is stabilized by two intermolecular O—H···O interactions and one intermolecular N—H···O interaction (Table 1, Fig. 2).
For the synthesis of the title compound and its analogues, see: Shakya et al. (2010). For a related structure, see: Suck et al. (1972). For the use of the title compound as a pharmaceutical intermediate, see: Haraguchi et al. (1993); Kittaka et al. (1992); Pozharskii et al. (1997); Sairam et al. (2003). For the biological activity of nucleoside derivatives, see: Johar et al. (2005).
Data collection: SMART (Bruker, 2008); cell
SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL97 (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C9H11BrN2O5 | F(000) = 616 |
Mr = 307.11 | Dx = 1.898 Mg m−3 |
Orthorhombic, P212121 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2ac 2ab | Cell parameters from 3827 reflections |
a = 4.8444 (3) Å | θ = 2.3–26.6° |
b = 12.7237 (10) Å | µ = 3.84 mm−1 |
c = 17.4388 (13) Å | T = 296 K |
V = 1074.90 (13) Å3 | Block, colourless |
Z = 4 | 0.30 × 0.20 × 0.06 mm |
Bruker SMART CCD area-detector diffractometer | 2091 independent reflections |
Radiation source: fine-focus sealed tube | 1956 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.023 |
phi and ω scans | θmax = 26.0°, θmin = 2.0° |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | h = −5→5 |
Tmin = 0.583, Tmax = 0.746 | k = −12→15 |
6683 measured reflections | l = −17→21 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.021 | H-atom parameters constrained |
wR(F2) = 0.048 | w = 1/[σ2(Fo2) + (0.0196P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.02 | (Δ/σ)max = 0.001 |
2091 reflections | Δρmax = 0.20 e Å−3 |
155 parameters | Δρmin = −0.34 e Å−3 |
0 restraints | Absolute structure: Flack (1983), 834 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.016 (9) |
C9H11BrN2O5 | V = 1074.90 (13) Å3 |
Mr = 307.11 | Z = 4 |
Orthorhombic, P212121 | Mo Kα radiation |
a = 4.8444 (3) Å | µ = 3.84 mm−1 |
b = 12.7237 (10) Å | T = 296 K |
c = 17.4388 (13) Å | 0.30 × 0.20 × 0.06 mm |
Bruker SMART CCD area-detector diffractometer | 2091 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | 1956 reflections with I > 2σ(I) |
Tmin = 0.583, Tmax = 0.746 | Rint = 0.023 |
6683 measured reflections |
R[F2 > 2σ(F2)] = 0.021 | H-atom parameters constrained |
wR(F2) = 0.048 | Δρmax = 0.20 e Å−3 |
S = 1.02 | Δρmin = −0.34 e Å−3 |
2091 reflections | Absolute structure: Flack (1983), 834 Friedel pairs |
155 parameters | Absolute structure parameter: 0.016 (9) |
0 restraints |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Br1 | 0.27277 (5) | −0.100786 (17) | 0.715735 (13) | 0.03335 (9) | |
N1 | 0.5109 (4) | 0.10657 (15) | 0.81851 (10) | 0.0218 (4) | |
N2 | 0.4796 (4) | 0.08084 (15) | 0.94956 (10) | 0.0263 (5) | |
H2C | 0.5395 | 0.0505 | 0.9904 | 0.032* | |
C1 | 0.3861 (5) | 0.04049 (18) | 0.68858 (12) | 0.0225 (5) | |
H1A | 0.2276 | 0.0878 | 0.6937 | 0.027* | |
C2 | 0.6127 (5) | 0.07596 (18) | 0.74317 (13) | 0.0234 (5) | |
H2A | 0.7521 | 0.0206 | 0.7484 | 0.028* | |
C3 | 0.6883 (5) | 0.15620 (18) | 0.62383 (11) | 0.0262 (5) | |
H3A | 0.8688 | 0.1469 | 0.5994 | 0.031* | |
C4 | 0.5166 (5) | 0.0564 (2) | 0.61047 (12) | 0.0258 (6) | |
H4A | 0.3762 | 0.0675 | 0.5708 | 0.031* | |
C5 | 0.5620 (5) | 0.2564 (2) | 0.59440 (14) | 0.0354 (6) | |
H5A | 0.6704 | 0.3160 | 0.6115 | 0.042* | |
H5B | 0.5616 | 0.2560 | 0.5388 | 0.042* | |
C6 | 0.6060 (5) | 0.05312 (19) | 0.88240 (13) | 0.0241 (5) | |
C7 | 0.2656 (5) | 0.15228 (17) | 0.95953 (11) | 0.0257 (5) | |
C8 | 0.1829 (5) | 0.20597 (17) | 0.89049 (12) | 0.0244 (5) | |
H8A | 0.0460 | 0.2571 | 0.8921 | 0.029* | |
C9 | 0.3045 (5) | 0.18165 (17) | 0.82441 (12) | 0.0243 (5) | |
H9A | 0.2486 | 0.2166 | 0.7802 | 0.029* | |
O1 | 0.7292 (4) | 0.16509 (12) | 0.70608 (7) | 0.0290 (4) | |
O2 | 0.2882 (4) | 0.26569 (14) | 0.62192 (11) | 0.0494 (5) | |
H2B | 0.2448 | 0.3279 | 0.6236 | 0.074* | |
O3 | 0.7002 (4) | −0.02551 (13) | 0.58996 (8) | 0.0339 (4) | |
H3B | 0.6137 | −0.0730 | 0.5692 | 0.051* | |
O4 | 0.7873 (4) | −0.01293 (12) | 0.88008 (8) | 0.0332 (4) | |
O5 | 0.1654 (4) | 0.16566 (13) | 1.02337 (8) | 0.0351 (4) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.03955 (14) | 0.02863 (14) | 0.03187 (14) | −0.00614 (13) | 0.00305 (12) | −0.00212 (10) |
N1 | 0.0252 (9) | 0.0242 (11) | 0.0162 (9) | 0.0052 (10) | −0.0018 (8) | −0.0013 (9) |
N2 | 0.0350 (11) | 0.0281 (12) | 0.0157 (10) | 0.0027 (10) | −0.0039 (9) | 0.0051 (9) |
C1 | 0.0248 (12) | 0.0197 (12) | 0.0229 (12) | 0.0001 (10) | 0.0001 (9) | −0.0030 (10) |
C2 | 0.0210 (11) | 0.0240 (13) | 0.0252 (12) | −0.0011 (10) | 0.0022 (10) | −0.0032 (10) |
C3 | 0.0255 (13) | 0.0352 (14) | 0.0178 (11) | −0.0011 (12) | 0.0034 (10) | −0.0009 (10) |
C4 | 0.0246 (12) | 0.0309 (14) | 0.0218 (12) | 0.0025 (12) | −0.0003 (10) | −0.0023 (11) |
C5 | 0.0363 (15) | 0.0342 (15) | 0.0357 (15) | −0.0072 (13) | −0.0011 (12) | 0.0064 (13) |
C6 | 0.0268 (13) | 0.0207 (13) | 0.0247 (13) | −0.0053 (12) | −0.0044 (10) | 0.0017 (11) |
C7 | 0.0277 (13) | 0.0260 (12) | 0.0235 (11) | −0.0059 (12) | −0.0005 (12) | −0.0015 (9) |
C8 | 0.0265 (13) | 0.0241 (12) | 0.0225 (12) | 0.0026 (11) | −0.0018 (10) | −0.0030 (10) |
C9 | 0.0251 (13) | 0.0232 (12) | 0.0245 (12) | −0.0002 (11) | −0.0046 (10) | 0.0008 (10) |
O1 | 0.0332 (9) | 0.0331 (9) | 0.0208 (7) | −0.0096 (9) | 0.0003 (9) | 0.0002 (6) |
O2 | 0.0309 (11) | 0.0294 (9) | 0.0879 (14) | −0.0012 (10) | 0.0003 (11) | 0.0049 (9) |
O3 | 0.0382 (10) | 0.0327 (9) | 0.0309 (9) | 0.0040 (9) | 0.0079 (8) | −0.0120 (7) |
O4 | 0.0367 (10) | 0.0306 (9) | 0.0323 (9) | 0.0106 (10) | −0.0057 (9) | 0.0008 (7) |
O5 | 0.0433 (11) | 0.0416 (11) | 0.0203 (8) | 0.0005 (9) | 0.0073 (8) | 0.0001 (8) |
Br1—C1 | 1.938 (2) | C3—H3A | 0.9800 |
N1—C6 | 1.384 (3) | C4—O3 | 1.416 (3) |
N1—C9 | 1.387 (3) | C4—H4A | 0.9800 |
N1—C2 | 1.456 (3) | C5—O2 | 1.416 (3) |
N2—C6 | 1.368 (3) | C5—H5A | 0.9700 |
N2—C7 | 1.390 (3) | C5—H5B | 0.9700 |
N2—H2C | 0.8600 | C6—O4 | 1.216 (3) |
C1—C4 | 1.515 (3) | C7—O5 | 1.226 (2) |
C1—C2 | 1.522 (3) | C7—C8 | 1.441 (3) |
C1—H1A | 0.9800 | C8—C9 | 1.331 (3) |
C2—O1 | 1.422 (3) | C8—H8A | 0.9300 |
C2—H2A | 0.9800 | C9—H9A | 0.9300 |
C3—O1 | 1.452 (2) | O2—H2B | 0.8200 |
C3—C5 | 1.504 (4) | O3—H3B | 0.8200 |
C3—C4 | 1.536 (3) | ||
C6—N1—C9 | 121.24 (18) | C1—C4—C3 | 101.55 (17) |
C6—N1—C2 | 118.83 (18) | O3—C4—H4A | 111.3 |
C9—N1—C2 | 119.68 (17) | C1—C4—H4A | 111.3 |
C6—N2—C7 | 127.57 (18) | C3—C4—H4A | 111.3 |
C6—N2—H2C | 116.2 | O2—C5—C3 | 109.7 (2) |
C7—N2—H2C | 116.2 | O2—C5—H5A | 109.7 |
C4—C1—C2 | 102.81 (19) | C3—C5—H5A | 109.7 |
C4—C1—Br1 | 117.50 (16) | O2—C5—H5B | 109.7 |
C2—C1—Br1 | 109.06 (15) | C3—C5—H5B | 109.7 |
C4—C1—H1A | 109.0 | H5A—C5—H5B | 108.2 |
C2—C1—H1A | 109.0 | O4—C6—N2 | 122.0 (2) |
Br1—C1—H1A | 109.0 | O4—C6—N1 | 123.6 (2) |
O1—C2—N1 | 109.36 (18) | N2—C6—N1 | 114.4 (2) |
O1—C2—C1 | 103.78 (18) | O5—C7—N2 | 119.96 (19) |
N1—C2—C1 | 113.54 (18) | O5—C7—C8 | 125.7 (2) |
O1—C2—H2A | 110.0 | N2—C7—C8 | 114.38 (18) |
N1—C2—H2A | 110.0 | C9—C8—C7 | 119.4 (2) |
C1—C2—H2A | 110.0 | C9—C8—H8A | 120.3 |
O1—C3—C5 | 109.06 (19) | C7—C8—H8A | 120.3 |
O1—C3—C4 | 106.75 (17) | C8—C9—N1 | 122.9 (2) |
C5—C3—C4 | 115.4 (2) | C8—C9—H9A | 118.5 |
O1—C3—H3A | 108.5 | N1—C9—H9A | 118.5 |
C5—C3—H3A | 108.5 | C2—O1—C3 | 109.45 (16) |
C4—C3—H3A | 108.5 | C5—O2—H2B | 109.5 |
O3—C4—C1 | 112.99 (19) | C4—O3—H3B | 109.5 |
O3—C4—C3 | 107.85 (18) |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2B···O4i | 0.82 | 2.03 | 2.841 (2) | 169 |
N2—H2C···O3ii | 0.86 | 2.17 | 2.983 (2) | 158 |
O3—H3B···O5iii | 0.82 | 1.96 | 2.769 (2) | 167 |
Symmetry codes: (i) −x+1, y+1/2, −z+3/2; (ii) −x+3/2, −y, z+1/2; (iii) −x+1/2, −y, z−1/2. |
Experimental details
Crystal data | |
Chemical formula | C9H11BrN2O5 |
Mr | 307.11 |
Crystal system, space group | Orthorhombic, P212121 |
Temperature (K) | 296 |
a, b, c (Å) | 4.8444 (3), 12.7237 (10), 17.4388 (13) |
V (Å3) | 1074.90 (13) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 3.84 |
Crystal size (mm) | 0.30 × 0.20 × 0.06 |
Data collection | |
Diffractometer | Bruker SMART CCD area-detector |
Absorption correction | Multi-scan (SADABS; Bruker, 2008) |
Tmin, Tmax | 0.583, 0.746 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 6683, 2091, 1956 |
Rint | 0.023 |
(sin θ/λ)max (Å−1) | 0.617 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.021, 0.048, 1.02 |
No. of reflections | 2091 |
No. of parameters | 155 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.20, −0.34 |
Absolute structure | Flack (1983), 834 Friedel pairs |
Absolute structure parameter | 0.016 (9) |
Computer programs: SMART (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL97 (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2B···O4i | 0.82 | 2.03 | 2.841 (2) | 169 |
N2—H2C···O3ii | 0.86 | 2.17 | 2.983 (2) | 158 |
O3—H3B···O5iii | 0.82 | 1.96 | 2.769 (2) | 167 |
Symmetry codes: (i) −x+1, y+1/2, −z+3/2; (ii) −x+3/2, −y, z+1/2; (iii) −x+1/2, −y, z−1/2. |
Acknowledgements
This work was supported by the NNSF of China (grant 20861001) and the Key Laboratory of Jiangxi University for Functional Materials Chemistry.
References
Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2008). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Haraguchi, K., Itoh, Y., Tanaka, H., Yamaguchi, K. & Miyasaka, T. (1993). Tetrahedron Lett. 33, 6913–6916. CSD CrossRef Web of Science Google Scholar
Johar, M., Manning, T., Kunimoto, D. Y. & Kumar, R. (2005). Bioorg. Med. Chem. 13, 6663–6671. Web of Science CrossRef PubMed CAS Google Scholar
Kittaka, A., Tanaka, H., Miyasaka, T. & Yamaguchi, K. (1992). Nucleosides Nucleotides, 11, 37–47. CrossRef CAS Web of Science Google Scholar
Pozharskii, A. F., Soldatenkov, A. T. & Katritzky, A. R. (1997). Heterocycles in Life and Society. New York: John Wiley and Sons. Google Scholar
Sairam, P., Puranik, R., Rao, B. S., Swamy, P. V. & Chandra, S. (2003). Carbohydr. Res. 338, 303–306. Web of Science CrossRef PubMed CAS Google Scholar
Shakya, N., Srivastav, N. C., Desroches, N., Agrawal, B., Kunimoto, D. Y. & Kumar, R. (2010). J. Med. Chem. 53, 4130–4140. Web of Science CrossRef CAS PubMed Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Suck, D., Saenger, W. & Hobbs, J. (1972). Biochim. Biophys. Acta, 259, 157–163. CrossRef CAS PubMed Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
In the last few decades, there has been dramatic progress in the synthesis of the nucleoside analogues for their biological evaluation of the anticancer activity (Johar et al., 2005; Shakya et al., 2010; Suck et al., 1972). The title compound (I) can be used as important pharmaceutical intermediates (Haraguchi et al., 1993; Kittaka et al., 1992; Pozharskii et al., 1997; Sairam et al., 2003). The synthetic procedure is described below. To know the relative stereochemistry of the anomeric position in the ribofuranose ring, it is necessary to gain the well defined structure of (I) by X-diffraction method. The molecular structure of the title compound is shown in Fig. 1. From the single-crystal structure we observed that the ribofuranose ring has a C2-exo, C3-endo twist configuration and the anomeric carbons are always β configuration in the crystal packing. The crystal structure of (I) is stabilized by two intermolecular O—H···O interactions and one intermolecular N—H···O interaction (Table 1, Fig. 2).