metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­iodidobis(tri­phenyl­phosphine oxide)cadmium

aDepartment of Physics, Government Arts College for Women, Pudukottai 622 001, Tamil Nadu, India, bDepartment of Physics, Seethalakshmi Ramaswami College (Autonomous), Tiruchirappalli 620 002, Tamil Nadu, India, cCrystal Growth and Thin Film Laboratory, School of Physics,, Bharathidasan University, Tiruchirapalli 620 024, India, and dInstitute of Physics, University of Neuchâtel, Rue Emile-Argand 11, CH-2009 Neuchâtel, Switzerland
*Correspondence e-mail: santhasrinithi@yahoo.co.in, helen.stoeckli-evans@unine.ch

(Received 16 December 2010; accepted 17 December 2010; online 24 December 2010)

In the title compound, [CdI2{(C6H5)3PO}2], the CdII atom is ligated by two I atoms and two O atoms from two triphenyl­phosphine oxide ligands in a disorted tetra­hedral arrangement. While the O—Cd—I angles vary from 106.67 (7) to 111.23 (7)°, the O—Cd—O angle is 88.60 (10)° and the I—Cd—I angle angle is 125.47 (2)°. The crystal structure is stabilized by van der Waals forces only.

Related literature

For the structures of similar diiodo-bis­(triphenyl­phosphine oxide)–metal complexes, see: Beagley et al. (1988[Beagley, B., McAuliffe, C. A., Pritchard, R. G. & White, E. W. (1988). Acta Chem. Scand. 42, 544-553.]); Aviles et al. (1990[Aviles, T., Carrondo, M. A. A. F. de C. T. & Piedade, M. F. M. (1990). J. Organomet. Chem. 388, 143-149.]); Cotton et al. (2002[Cotton, S. A., Franckevicus, V. & Fawcett, J. (2002). Transition Met. Chem. 27, 38-41.]); Nie et al. (2005[Nie, Y., Pritzkow, H., Wadepohl, H. & Siebert, W. (2005). J. Organomet. Chem. 690, 4531-4536.]). For details of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • [CdI2(C18H15OP)2]

  • Mr = 922.74

  • Orthorhombic, P 21 21 21

  • a = 10.5492 (5) Å

  • b = 17.7053 (7) Å

  • c = 19.1985 (9) Å

  • V = 3585.8 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.45 mm−1

  • T = 293 K

  • 0.34 × 0.33 × 0.23 mm

Data collection
  • Stoe IPDS 2 diffractometer

  • Absorption correction: multi-scan (MULscanABS in PLATON; Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) Tmin = 0.786, Tmax = 1.000

  • 33377 measured reflections

  • 6767 independent reflections

  • 5935 reflections with I > 2σ(I)

  • Rint = 0.052

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.050

  • S = 1.01

  • 6767 reflections

  • 389 parameters

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.42 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2970 Friedel pairs

  • Flack parameter: −0.020 (16)

Data collection: X-AREA (Stoe & Cie, 2009[Stoe & Cie (2009). X-AREA and X-RED32. Stoe & Cie, GmbH, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2009[Stoe & Cie (2009). X-AREA and X-RED32. Stoe & Cie, GmbH, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The title compound consists of discrete {Cd[(C6H5)3PO]2I2] molecules (Fig. 1). It crystallized in the chiral orthorhombic space group P212121. Each cadmium atom is ligated by two iodine atoms and two oxygen atoms, of the triphenylphosphine oxide ligands, which yield an approximate tetrahedral coordination geometry.

A search of the Cambridge Structural Database (CSD, version 5.31, last update Aug. 2010; Allen, 2002) gave 13 hits for non-solvated M[(Ph)3PO]2X2 complexes (where M = Mn, Co, Ni, Cu, Zn, Hg; and X = Cl, Br, I), all of which crystallized in non-centrosymmetric space groups; Fdd2 (5×), P1(5×), Cc(1×), Pca21(1×) and Pna21(1×). The iodide complexes, which include M = Mn (Beagley et al., 1988; Aviles et al., 1990), M = Co (Cotton et al., 2002) and M = Zn (Nie et al., 2005), all crystallized in the noncentrosymmetric triclinic space group P1. The title compound is the first cadmium halide complex to be obtained and the first that crystallizes in space group P212121.

The coordination polyhedron of the title compound is considerabley distorted. While the I—Cd—O angles vary from 106.67 (7) to 111.23 (7) °, angle O1—Cd1—O2 is 88.6 (1) ° and angle I1—Cd1—I2 angle is 125.47 (2) °. This differs significantly from the situation in the three iodide complexes mentioned above. There the O···M···O angles vary from 101.0 - 105.2 ° and the I—M—I angles from 112.5 - 116.3 °.

In the crystal there are no π···π stacking interactions, the molecules are simply stabilized by Van der Waals forces (Fig. 2).

Related literature top

For the structures of similar diiodo-bis(triphenylphosphine oxide)–metal complexes, see: Beagley et al. (1988); Aviles et al. (1990); Cotton et al. (2002); Nie et al. (2005). For details of the Cambridge Structural database, see: Allen (2002).

Experimental top

The title compound was synthesized by reacting triphenylphosphine oxide and cadmium iodide in a 1:1 (1.8 g:2.5 g) molar ratio. The calculated amount of triphenylphosphine oxide was dissolved in ethanol and the cadmium iodide was slowly added to the solution with stirring. Within a few minutes the solution became turbid. The reaction was ensured with continuous strirring. After an hour the product, a white salt, deposited at the bottom of the beaker and was then filtered and dried. This compound was recrystallized from DMSO to give colourless block-like crystals of title compound.

Refinement top

The C-bound H-atoms were included in calculated positions and treated as riding atoms: C—H = 0.93 Å, with Uiso(H) = 1.2 Ueq(parent C-atom).

Structure description top

The title compound consists of discrete {Cd[(C6H5)3PO]2I2] molecules (Fig. 1). It crystallized in the chiral orthorhombic space group P212121. Each cadmium atom is ligated by two iodine atoms and two oxygen atoms, of the triphenylphosphine oxide ligands, which yield an approximate tetrahedral coordination geometry.

A search of the Cambridge Structural Database (CSD, version 5.31, last update Aug. 2010; Allen, 2002) gave 13 hits for non-solvated M[(Ph)3PO]2X2 complexes (where M = Mn, Co, Ni, Cu, Zn, Hg; and X = Cl, Br, I), all of which crystallized in non-centrosymmetric space groups; Fdd2 (5×), P1(5×), Cc(1×), Pca21(1×) and Pna21(1×). The iodide complexes, which include M = Mn (Beagley et al., 1988; Aviles et al., 1990), M = Co (Cotton et al., 2002) and M = Zn (Nie et al., 2005), all crystallized in the noncentrosymmetric triclinic space group P1. The title compound is the first cadmium halide complex to be obtained and the first that crystallizes in space group P212121.

The coordination polyhedron of the title compound is considerabley distorted. While the I—Cd—O angles vary from 106.67 (7) to 111.23 (7) °, angle O1—Cd1—O2 is 88.6 (1) ° and angle I1—Cd1—I2 angle is 125.47 (2) °. This differs significantly from the situation in the three iodide complexes mentioned above. There the O···M···O angles vary from 101.0 - 105.2 ° and the I—M—I angles from 112.5 - 116.3 °.

In the crystal there are no π···π stacking interactions, the molecules are simply stabilized by Van der Waals forces (Fig. 2).

For the structures of similar diiodo-bis(triphenylphosphine oxide)–metal complexes, see: Beagley et al. (1988); Aviles et al. (1990); Cotton et al. (2002); Nie et al. (2005). For details of the Cambridge Structural database, see: Allen (2002).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2009); cell refinement: X-AREA (Stoe & Cie, 2009); data reduction: X-RED32 (Stoe & Cie, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the molecular structure of the title compound, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Crystal packing, viewed down a axis, of the title compound.
Diiodidobis(triphenylphosphine oxide)cadmium top
Crystal data top
[CdI2(C18H15OP)2]F(000) = 1784
Mr = 922.74Dx = 1.709 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 24384 reflections
a = 10.5492 (5) Åθ = 1.6–26.1°
b = 17.7053 (7) ŵ = 2.45 mm1
c = 19.1985 (9) ÅT = 293 K
V = 3585.8 (3) Å3Block, colourless
Z = 40.34 × 0.33 × 0.23 mm
Data collection top
Stoe IPDS 2
diffractometer
6767 independent reflections
Radiation source: fine-focus sealed tube5935 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.052
φ and ω scansθmax = 25.7°, θmin = 1.6°
Absorption correction: multi-scan
(MULscanABS on PLATON; Spek, 2009)
h = 1212
Tmin = 0.786, Tmax = 1.000k = 2121
33377 measured reflectionsl = 2322
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.031 w = 1/[σ2(Fo2) + (0.0223P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.050(Δ/σ)max = 0.001
S = 1.01Δρmax = 0.39 e Å3
6767 reflectionsΔρmin = 0.42 e Å3
389 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.00162 (7)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 2950 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.020 (16)
Crystal data top
[CdI2(C18H15OP)2]V = 3585.8 (3) Å3
Mr = 922.74Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 10.5492 (5) ŵ = 2.45 mm1
b = 17.7053 (7) ÅT = 293 K
c = 19.1985 (9) Å0.34 × 0.33 × 0.23 mm
Data collection top
Stoe IPDS 2
diffractometer
6767 independent reflections
Absorption correction: multi-scan
(MULscanABS on PLATON; Spek, 2009)
5935 reflections with I > 2σ(I)
Tmin = 0.786, Tmax = 1.000Rint = 0.052
33377 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.031H-atom parameters constrained
wR(F2) = 0.050Δρmax = 0.39 e Å3
S = 1.01Δρmin = 0.42 e Å3
6767 reflectionsAbsolute structure: Flack (1983), 2950 Friedel pairs
389 parametersAbsolute structure parameter: 0.020 (16)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I11.18644 (3)0.082133 (18)0.23181 (2)0.07658 (11)
I20.74406 (3)0.126641 (17)0.270473 (19)0.06842 (10)
Cd10.93992 (3)0.072930 (15)0.195467 (15)0.04256 (8)
P10.86596 (10)0.12527 (5)0.18071 (5)0.0410 (2)
P20.90645 (9)0.08668 (5)0.01070 (5)0.0403 (2)
O10.8885 (3)0.04392 (13)0.16396 (15)0.0484 (7)
O20.9237 (3)0.10704 (13)0.08553 (14)0.0487 (7)
C10.9126 (4)0.1857 (2)0.1099 (2)0.0453 (10)
C20.9962 (5)0.2454 (2)0.1185 (3)0.0598 (12)
H21.03170.25530.16190.072*
C31.0259 (5)0.2898 (3)0.0619 (3)0.0737 (15)
H31.08070.33050.06800.088*
C40.9779 (6)0.2762 (3)0.0025 (3)0.0769 (16)
H40.99990.30690.03980.092*
C50.8971 (5)0.2169 (3)0.0117 (3)0.0747 (15)
H50.86380.20700.05570.090*
C60.8643 (5)0.1713 (3)0.0443 (3)0.0627 (12)
H60.80950.13080.03770.075*
C70.9530 (4)0.15302 (18)0.2570 (2)0.0438 (10)
C81.0737 (4)0.1233 (2)0.2657 (3)0.0610 (11)
H81.10750.09170.23180.073*
C91.1433 (5)0.1401 (3)0.3236 (3)0.0762 (15)
H91.22300.11850.32960.091*
C101.0953 (5)0.1895 (3)0.3737 (3)0.0755 (15)
H101.14250.20080.41320.091*
C110.9782 (5)0.2212 (3)0.3643 (3)0.0692 (15)
H110.94650.25510.39690.083*
C120.9073 (4)0.2027 (2)0.3063 (3)0.0555 (11)
H120.82760.22420.30040.067*
C130.7004 (4)0.1429 (2)0.1953 (2)0.0455 (10)
C140.6512 (4)0.2156 (3)0.1886 (3)0.0641 (13)
H140.70520.25550.17790.077*
C150.5250 (5)0.2291 (3)0.1974 (3)0.0776 (15)
H150.49340.27780.19260.093*
C160.4463 (5)0.1718 (3)0.2132 (3)0.0846 (18)
H160.36000.18110.21800.101*
C170.4920 (5)0.0997 (3)0.2223 (3)0.0905 (18)
H170.43740.06070.23470.109*
C180.6202 (4)0.0855 (3)0.2127 (3)0.0662 (13)
H180.65150.03670.21810.079*
C191.0159 (4)0.0149 (2)0.0169 (2)0.0471 (10)
C201.0988 (4)0.0163 (3)0.0302 (3)0.0639 (13)
H201.10120.00210.07560.077*
C211.1794 (5)0.0753 (3)0.0112 (3)0.0829 (16)
H211.23310.09680.04410.099*
C221.1795 (5)0.1011 (3)0.0550 (4)0.0827 (17)
H221.23460.13960.06800.099*
C231.0993 (6)0.0709 (3)0.1023 (4)0.0899 (18)
H231.09940.08920.14770.108*
C241.0169 (6)0.0132 (3)0.0843 (3)0.0771 (16)
H240.96220.00680.11750.093*
C250.7489 (4)0.0529 (2)0.0065 (2)0.0454 (9)
C260.6703 (5)0.0353 (3)0.0477 (3)0.0666 (13)
H260.69860.04120.09330.080*
C270.5483 (5)0.0085 (3)0.0355 (4)0.0921 (19)
H270.49550.00320.07280.111*
C280.5063 (6)0.0007 (3)0.0305 (4)0.0869 (19)
H280.42490.01890.03850.104*
C290.5831 (6)0.0168 (3)0.0857 (4)0.0833 (17)
H290.55360.01070.13100.100*
C300.7039 (5)0.0433 (3)0.0743 (3)0.0694 (14)
H300.75590.05490.11190.083*
C310.9299 (4)0.1687 (2)0.0436 (2)0.0450 (9)
C320.8330 (5)0.2208 (2)0.0492 (3)0.0586 (12)
H320.75480.21090.02880.070*
C330.8515 (5)0.2872 (3)0.0847 (3)0.0704 (15)
H330.78590.32200.08850.085*
C340.9669 (5)0.3021 (3)0.1145 (3)0.0752 (16)
H340.97920.34700.13860.090*
C351.0644 (7)0.2510 (3)0.1091 (3)0.0888 (18)
H351.14230.26080.12990.107*
C361.0455 (5)0.1847 (3)0.0721 (3)0.0694 (14)
H361.11210.15080.06660.083*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.06132 (19)0.06743 (18)0.1010 (3)0.01232 (16)0.03074 (19)0.0126 (2)
I20.0711 (2)0.06905 (19)0.0651 (2)0.01968 (16)0.01331 (18)0.00869 (16)
Cd10.04879 (16)0.04223 (14)0.03666 (15)0.00255 (14)0.00130 (13)0.00194 (13)
P10.0430 (6)0.0347 (5)0.0454 (7)0.0008 (4)0.0039 (5)0.0052 (4)
P20.0476 (6)0.0388 (5)0.0345 (5)0.0016 (4)0.0015 (4)0.0018 (4)
O10.0506 (17)0.0352 (13)0.0595 (18)0.0008 (11)0.0012 (15)0.0045 (12)
O20.0673 (18)0.0434 (13)0.0355 (16)0.0021 (14)0.0002 (14)0.0049 (11)
C10.046 (3)0.044 (2)0.046 (3)0.0039 (19)0.008 (2)0.0018 (19)
C20.068 (3)0.053 (3)0.058 (3)0.008 (2)0.003 (3)0.003 (2)
C30.078 (4)0.060 (3)0.084 (4)0.016 (2)0.017 (3)0.013 (3)
C40.092 (4)0.080 (3)0.059 (4)0.001 (3)0.018 (3)0.018 (3)
C50.085 (4)0.086 (4)0.052 (3)0.008 (3)0.001 (3)0.000 (3)
C60.070 (3)0.057 (3)0.062 (3)0.002 (2)0.006 (3)0.001 (2)
C70.050 (2)0.0379 (18)0.043 (3)0.0009 (17)0.005 (2)0.0016 (17)
C80.054 (3)0.062 (2)0.067 (3)0.002 (2)0.002 (3)0.015 (3)
C90.054 (3)0.098 (4)0.076 (4)0.002 (3)0.014 (3)0.012 (3)
C100.070 (4)0.091 (4)0.065 (4)0.019 (3)0.002 (3)0.015 (3)
C110.078 (4)0.074 (3)0.056 (3)0.012 (3)0.004 (3)0.022 (3)
C120.058 (3)0.051 (2)0.057 (3)0.000 (2)0.004 (2)0.011 (2)
C130.046 (2)0.046 (2)0.044 (2)0.0018 (17)0.005 (2)0.0054 (19)
C140.057 (3)0.057 (3)0.079 (4)0.007 (2)0.009 (3)0.001 (3)
C150.065 (4)0.076 (3)0.092 (4)0.020 (3)0.021 (3)0.007 (3)
C160.053 (3)0.109 (4)0.092 (5)0.028 (3)0.019 (3)0.002 (3)
C170.059 (3)0.097 (4)0.116 (5)0.019 (3)0.037 (3)0.004 (3)
C180.059 (3)0.058 (2)0.082 (4)0.004 (2)0.019 (2)0.001 (2)
C190.049 (3)0.047 (2)0.045 (3)0.0030 (19)0.007 (2)0.0001 (19)
C200.047 (3)0.074 (3)0.070 (4)0.011 (2)0.007 (3)0.006 (3)
C210.056 (3)0.086 (4)0.107 (5)0.024 (3)0.013 (3)0.010 (4)
C220.058 (3)0.069 (3)0.120 (6)0.009 (3)0.017 (4)0.019 (3)
C230.087 (4)0.088 (4)0.094 (4)0.001 (4)0.022 (4)0.039 (4)
C240.082 (4)0.085 (4)0.065 (4)0.022 (3)0.004 (3)0.013 (3)
C250.047 (2)0.040 (2)0.049 (3)0.0003 (18)0.006 (2)0.0006 (17)
C260.056 (3)0.090 (3)0.054 (3)0.005 (3)0.001 (3)0.010 (3)
C270.046 (3)0.121 (5)0.110 (6)0.019 (3)0.005 (3)0.019 (4)
C280.056 (4)0.077 (4)0.127 (6)0.021 (3)0.021 (4)0.007 (4)
C290.070 (4)0.084 (4)0.096 (5)0.014 (3)0.023 (4)0.023 (3)
C300.061 (3)0.085 (3)0.062 (3)0.011 (3)0.003 (3)0.010 (3)
C310.048 (2)0.051 (2)0.036 (2)0.008 (2)0.001 (2)0.0058 (18)
C320.057 (3)0.056 (3)0.063 (3)0.002 (2)0.000 (2)0.012 (2)
C330.075 (4)0.054 (3)0.083 (4)0.002 (3)0.016 (3)0.019 (3)
C340.092 (5)0.057 (3)0.078 (4)0.017 (3)0.011 (3)0.022 (3)
C350.074 (4)0.086 (4)0.107 (5)0.014 (4)0.020 (4)0.040 (3)
C360.066 (3)0.063 (3)0.079 (4)0.002 (3)0.009 (3)0.023 (3)
Geometric parameters (Å, º) top
I1—Cd12.6975 (4)C15—H150.9300
I2—Cd12.6920 (4)C16—C171.376 (7)
Cd1—O22.202 (3)C16—H160.9300
Cd1—O12.223 (2)C17—C181.388 (7)
P1—O11.495 (3)C17—H170.9300
P1—C131.796 (4)C18—H180.9300
P1—C71.797 (4)C19—C201.375 (6)
P1—C11.799 (4)C19—C241.386 (6)
P2—O21.492 (3)C20—C211.395 (7)
P2—C251.796 (5)C20—H200.9300
P2—C191.797 (4)C21—C221.350 (8)
P2—C311.805 (4)C21—H210.9300
C1—C61.381 (6)C22—C231.352 (8)
C1—C21.385 (6)C22—H220.9300
C2—C31.379 (7)C23—C241.385 (7)
C2—H20.9300C23—H230.9300
C3—C41.357 (8)C24—H240.9300
C3—H30.9300C25—C261.367 (6)
C4—C51.364 (7)C25—C301.397 (6)
C4—H40.9300C26—C271.391 (7)
C5—C61.389 (7)C26—H260.9300
C5—H50.9300C27—C281.352 (8)
C6—H60.9300C27—H270.9300
C7—C121.379 (5)C28—C291.369 (8)
C7—C81.389 (6)C28—H280.9300
C8—C91.364 (7)C29—C301.375 (7)
C8—H80.9300C29—H290.9300
C9—C101.396 (7)C30—H300.9300
C9—H90.9300C31—C361.366 (6)
C10—C111.368 (8)C31—C321.382 (6)
C10—H100.9300C32—C331.372 (6)
C11—C121.380 (7)C32—H320.9300
C11—H110.9300C33—C341.370 (7)
C12—H120.9300C33—H330.9300
C13—C181.364 (6)C34—C351.374 (7)
C13—C141.393 (6)C34—H340.9300
C14—C151.363 (7)C35—C361.387 (6)
C14—H140.9300C35—H350.9300
C15—C161.345 (7)C36—H360.9300
O2—Cd1—O188.60 (10)C14—C15—H15120.0
O2—Cd1—I2110.88 (8)C15—C16—C17120.7 (5)
O1—Cd1—I2106.67 (7)C15—C16—H16119.6
O2—Cd1—I1107.82 (8)C17—C16—H16119.6
O1—Cd1—I1111.23 (7)C16—C17—C18119.5 (5)
I2—Cd1—I1125.469 (16)C16—C17—H17120.2
O1—P1—C13110.84 (17)C18—C17—H17120.2
O1—P1—C7110.96 (17)C13—C18—C17120.1 (5)
C13—P1—C7108.8 (2)C13—C18—H18120.0
O1—P1—C1111.55 (17)C17—C18—H18120.0
C13—P1—C1106.26 (19)C20—C19—C24117.7 (4)
C7—P1—C1108.28 (19)C20—C19—P2119.9 (3)
O2—P2—C25111.72 (19)C24—C19—P2122.3 (4)
O2—P2—C19112.11 (19)C19—C20—C21121.1 (5)
C25—P2—C19107.76 (19)C19—C20—H20119.5
O2—P2—C31110.16 (16)C21—C20—H20119.5
C25—P2—C31106.78 (19)C22—C21—C20120.0 (5)
C19—P2—C31108.1 (2)C22—C21—H21120.0
P1—O1—Cd1151.30 (18)C20—C21—H21120.0
P2—O2—Cd1149.99 (15)C21—C22—C23119.8 (5)
C6—C1—C2119.0 (4)C21—C22—H22120.1
C6—C1—P1118.5 (3)C23—C22—H22120.1
C2—C1—P1122.5 (4)C22—C23—C24121.2 (6)
C3—C2—C1119.1 (5)C22—C23—H23119.4
C3—C2—H2120.5C24—C23—H23119.4
C1—C2—H2120.5C23—C24—C19120.1 (5)
C4—C3—C2122.1 (5)C23—C24—H24119.9
C4—C3—H3119.0C19—C24—H24119.9
C2—C3—H3119.0C26—C25—C30118.4 (4)
C3—C4—C5119.3 (5)C26—C25—P2119.9 (4)
C3—C4—H4120.4C30—C25—P2121.7 (3)
C5—C4—H4120.4C25—C26—C27120.7 (5)
C4—C5—C6120.1 (5)C25—C26—H26119.7
C4—C5—H5120.0C27—C26—H26119.7
C6—C5—H5120.0C28—C27—C26120.2 (6)
C1—C6—C5120.5 (5)C28—C27—H27119.9
C1—C6—H6119.8C26—C27—H27119.9
C5—C6—H6119.8C27—C28—C29120.3 (5)
C12—C7—C8118.7 (4)C27—C28—H28119.9
C12—C7—P1123.8 (3)C29—C28—H28119.9
C8—C7—P1117.6 (3)C28—C29—C30120.2 (6)
C9—C8—C7120.6 (5)C28—C29—H29119.9
C9—C8—H8119.7C30—C29—H29119.9
C7—C8—H8119.7C29—C30—C25120.3 (5)
C8—C9—C10120.1 (5)C29—C30—H30119.8
C8—C9—H9119.9C25—C30—H30119.8
C10—C9—H9119.9C36—C31—C32119.4 (4)
C11—C10—C9119.6 (5)C36—C31—P2121.4 (3)
C11—C10—H10120.2C32—C31—P2118.8 (3)
C9—C10—H10120.2C33—C32—C31120.3 (5)
C10—C11—C12119.9 (5)C33—C32—H32119.8
C10—C11—H11120.1C31—C32—H32119.8
C12—C11—H11120.1C34—C33—C32119.9 (5)
C11—C12—C7121.0 (4)C34—C33—H33120.0
C11—C12—H12119.5C32—C33—H33120.0
C7—C12—H12119.5C33—C34—C35120.5 (5)
C18—C13—C14118.7 (4)C33—C34—H34119.8
C18—C13—P1120.7 (3)C35—C34—H34119.8
C14—C13—P1120.6 (3)C34—C35—C36119.2 (6)
C15—C14—C13120.9 (5)C34—C35—H35120.4
C15—C14—H14119.6C36—C35—H35120.4
C13—C14—H14119.6C31—C36—C35120.6 (5)
C16—C15—C14120.0 (5)C31—C36—H36119.7
C16—C15—H15120.0C35—C36—H36119.7
C13—P1—O1—Cd195.8 (4)C13—C14—C15—C160.3 (9)
C7—P1—O1—Cd125.2 (4)C14—C15—C16—C171.6 (10)
C1—P1—O1—Cd1146.0 (3)C15—C16—C17—C182.2 (10)
O2—Cd1—O1—P1177.4 (4)C14—C13—C18—C171.0 (7)
I2—Cd1—O1—P171.2 (4)P1—C13—C18—C17178.6 (5)
I1—Cd1—O1—P168.8 (4)C16—C17—C18—C130.9 (9)
C25—P2—O2—Cd169.3 (4)O2—P2—C19—C202.5 (4)
C19—P2—O2—Cd151.8 (4)C25—P2—C19—C20120.8 (4)
C31—P2—O2—Cd1172.2 (3)C31—P2—C19—C20124.1 (4)
O1—Cd1—O2—P27.7 (4)O2—P2—C19—C24179.7 (4)
I2—Cd1—O2—P2115.0 (4)C25—P2—C19—C2456.3 (5)
I1—Cd1—O2—P2104.2 (4)C31—P2—C19—C2458.7 (5)
O1—P1—C1—C653.1 (4)C24—C19—C20—C211.2 (7)
C13—P1—C1—C667.8 (4)P2—C19—C20—C21176.1 (4)
C7—P1—C1—C6175.4 (3)C19—C20—C21—C221.9 (8)
O1—P1—C1—C2126.1 (4)C20—C21—C22—C231.5 (9)
C13—P1—C1—C2113.0 (4)C21—C22—C23—C240.4 (9)
C7—P1—C1—C23.7 (4)C22—C23—C24—C190.3 (9)
C6—C1—C2—C31.8 (7)C20—C19—C24—C230.1 (8)
P1—C1—C2—C3179.1 (4)P2—C19—C24—C23177.1 (4)
C1—C2—C3—C41.3 (8)O2—P2—C25—C2612.2 (4)
C2—C3—C4—C50.3 (8)C19—P2—C25—C26111.4 (4)
C3—C4—C5—C60.2 (8)C31—P2—C25—C26132.7 (4)
C2—C1—C6—C51.3 (7)O2—P2—C25—C30168.4 (4)
P1—C1—C6—C5179.5 (4)C19—P2—C25—C3068.0 (4)
C4—C5—C6—C10.3 (7)C31—P2—C25—C3047.9 (4)
O1—P1—C7—C12142.9 (3)C30—C25—C26—C270.1 (7)
C13—P1—C7—C1220.7 (4)P2—C25—C26—C27179.5 (4)
C1—P1—C7—C1294.4 (4)C25—C26—C27—C280.2 (9)
O1—P1—C7—C838.2 (4)C26—C27—C28—C290.4 (10)
C13—P1—C7—C8160.4 (3)C27—C28—C29—C300.4 (9)
C1—P1—C7—C884.6 (3)C28—C29—C30—C250.2 (8)
C12—C7—C8—C93.2 (7)C26—C25—C30—C290.1 (7)
P1—C7—C8—C9177.9 (4)P2—C25—C30—C29179.5 (4)
C7—C8—C9—C102.1 (8)O2—P2—C31—C3693.3 (4)
C8—C9—C10—C110.2 (8)C25—P2—C31—C36145.2 (4)
C9—C10—C11—C121.5 (8)C19—P2—C31—C3629.5 (4)
C10—C11—C12—C70.5 (7)O2—P2—C31—C3278.7 (4)
C8—C7—C12—C111.9 (6)C25—P2—C31—C3242.8 (4)
P1—C7—C12—C11179.2 (4)C19—P2—C31—C32158.5 (3)
O1—P1—C13—C1821.2 (4)C36—C31—C32—C331.8 (7)
C7—P1—C13—C18101.1 (4)P2—C31—C32—C33174.0 (4)
C1—P1—C13—C18142.5 (4)C31—C32—C33—C340.3 (8)
O1—P1—C13—C14158.4 (4)C32—C33—C34—C350.1 (9)
C7—P1—C13—C1479.3 (4)C33—C34—C35—C361.0 (10)
C1—P1—C13—C1437.0 (4)C32—C31—C36—C352.9 (8)
C18—C13—C14—C151.6 (8)P2—C31—C36—C35174.9 (5)
P1—C13—C14—C15178.0 (5)C34—C35—C36—C312.5 (10)

Experimental details

Crystal data
Chemical formula[CdI2(C18H15OP)2]
Mr922.74
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)10.5492 (5), 17.7053 (7), 19.1985 (9)
V3)3585.8 (3)
Z4
Radiation typeMo Kα
µ (mm1)2.45
Crystal size (mm)0.34 × 0.33 × 0.23
Data collection
DiffractometerStoe IPDS 2
Absorption correctionMulti-scan
(MULscanABS on PLATON; Spek, 2009)
Tmin, Tmax0.786, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
33377, 6767, 5935
Rint0.052
(sin θ/λ)max1)0.610
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.050, 1.01
No. of reflections6767
No. of parameters389
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.39, 0.42
Absolute structureFlack (1983), 2950 Friedel pairs
Absolute structure parameter0.020 (16)

Computer programs: X-AREA (Stoe & Cie, 2009), X-RED32 (Stoe & Cie, 2009), SHELXS97 (Sheldrick, 2008), PLATON (Spek, 2009), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

 

Acknowledgements

RS thanks the UGC, India, for the award of a minor research project (File No. MRP 2976/2009). HSE thanks the staff of the XRD Appplication LAB, CSEM, Neuchâtel, for access to the X-ray diffraction eqipment.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationAviles, T., Carrondo, M. A. A. F. de C. T. & Piedade, M. F. M. (1990). J. Organomet. Chem. 388, 143–149.  CAS Google Scholar
First citationBeagley, B., McAuliffe, C. A., Pritchard, R. G. & White, E. W. (1988). Acta Chem. Scand. 42, 544–553.  CrossRef Web of Science Google Scholar
First citationCotton, S. A., Franckevicus, V. & Fawcett, J. (2002). Transition Met. Chem. 27, 38–41.  Web of Science CSD CrossRef CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationNie, Y., Pritzkow, H., Wadepohl, H. & Siebert, W. (2005). J. Organomet. Chem. 690, 4531–4536.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2009). X-AREA and X-RED32. Stoe & Cie, GmbH, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds