metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

trans-Bis(di­methyl sulfoxide-κO)bis­­(thio­semicarbazide-κ2N1,S)cadmium dipicrate dihydrate

aDepartment of Physics, Government Arts College for Women, Pudukkottai 622 001, India, bDepartment of Physics, Seethalakshmi Ramaswami College (Autonomous), Tiruchirappalli 620 002, India, cCrystal Growth and Thin Film Laboratory, School of Physics, Bharathidasan University, Tiruchirapalli 620 024, India, and dInstitute of Physics, University of Neuchâtel, Rue Emile-Argand 11, CH-2009 Neuchâtel, Switzerland
*Correspondence e-mail: santhasrinithi@yahoo.co.in, helen.stoeckli-evans@unine.ch

(Received 17 December 2010; accepted 21 December 2010; online 24 December 2010)

In the cation of the title compound, [Cd(CH5N3S)2(C2H6OS)2](C6H2N3O7)2·2H2O, the CdII atom is located on an inversion center. It is hexa­coordinated in an octahedral fashion by two thio­semicarbazide mol­ecules, which coordinate in a bidentate manner via the S and N atoms, and to the O atom of two dimethyl sufoxide (DMSO) mol­ecules. The charges are equilibrated by two picrate anions and the complex crystallizes as a dihydrate. In the crystal, these units are linked by a number of O—H⋯O and N—H⋯S hydrogen bonds and weak C—H⋯O inter­actions, forming a three-dimensional network.

Related literature

For the role of hydrogen bonding in the construction of supra­molecular structures, see: Braga et al. (2004[Braga, D., Maini, L., Polito, M. & Grepioni, F. (2004). Struct. Bond. 111, 1-32.]). For the crystal structure of a similar compound, see: Li et al. (2006[Li, S.-L., Fun, H.-K., Chantrapromma, S., Wu, J.-Y. & Tian, Y.-P. (2006). Acta Cryst. E62, m64-m66.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd(CH5N3S)2(C2H6OS)2](C6H2N3O7)2·2H2O

  • Mr = 943.18

  • Triclinic, [P \overline 1]

  • a = 5.3496 (3) Å

  • b = 11.0788 (6) Å

  • c = 15.0049 (8) Å

  • α = 98.745 (5)°

  • β = 98.288 (4)°

  • γ = 95.032 (5)°

  • V = 864.30 (8) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.97 mm−1

  • T = 173 K

  • 0.45 × 0.30 × 0.21 mm

Data collection
  • STOE IPDS 2 diffractometer

  • Absorption correction: multi-scan [MULscanABS in PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.])] Tmin = 0.773, Tmax = 1.000

  • 10206 measured reflections

  • 3273 independent reflections

  • 3058 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.023

  • wR(F2) = 0.059

  • S = 1.05

  • 3273 reflections

  • 272 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.61 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1NA⋯O2i 0.87 (3) 2.00 (3) 2.773 (3) 148 (2)
N1—H1NA⋯O8i 0.87 (3) 2.47 (2) 3.178 (2) 140 (2)
N1—H1NB⋯O7ii 0.79 (3) 2.25 (3) 3.037 (3) 175 (2)
N2—H2N⋯O2i 0.88 (3) 1.97 (3) 2.755 (2) 148 (2)
N2—H2N⋯O3i 0.88 (3) 2.33 (3) 3.026 (2) 136 (2)
N3—H3NA⋯S1i 0.83 (3) 2.69 (3) 3.4653 (17) 155 (2)
N3—H3NB⋯O1Wi 0.86 (2) 2.21 (2) 3.049 (3) 165 (2)
O1W—H1WA⋯O5iii 0.76 (4) 2.46 (3) 3.081 (2) 140 (3)
O1W—H1WB⋯O4iv 0.84 (3) 2.03 (3) 2.844 (2) 165 (3)
C3—H3A⋯O1W 0.98 2.60 3.272 (3) 126
Symmetry codes: (i) x+1, y, z; (ii) -x+1, -y, -z+1; (iii) -x+2, -y+1, -z+1; (iv) x-1, y, z.

Data collection: X-AREA (Stoe & Cie, 2009[Stoe & Cie (2009). X-AREA and X-RED32. Stoe & Cie.GmbH, Darmstat, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2009[Stoe & Cie (2009). X-AREA and X-RED32. Stoe & Cie.GmbH, Darmstat, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Intermolecular and inter-ionic hydrogen bonding interactions, which are not only the strongest of the noncovalent interactions but also highly directional, play an important role in constructing supramolecular structures (Braga et al., 2004). Recently we have obtained crystals of the title compound from the reaction of thiosemicarbazide, picric acid and DMSO, and we report herein on its crystal structure.

In the cation of the title compound the cadmium(II) atom is hexa-coordinated to two thiosemcarbazide and to two DMSO molecules (Fig. 1). This cation is centrosymmetric with the metal atom being located on an invesion center. The thiosemicarbazide molecules behave as bidentate ligands coordinating via atoms N3 and S1. The bond distances and angles are similar to those reported for a similar complex, bis(Thiosemicarbazide)-diaqua-cadmium(II) bis(maleate) dihydrate (Li et al., 2006).

In the crystal the cation, the picrate anions and the water molecules of crystallization are involved in N—H···O, O—H···O and N—H···S hydrogen bonds and C—H···O interactions, to form a three-dimensional supramolecular network (Table 1 and Fig. 2).

Related literature top

For the role of hydrogen bonding in the construction of supramolecular structures, see: Braga et al. (2004). For the crystal structure of a similar compound, see: Li et al. (2006).

Experimental top

The title compound was synthesized by reacting thiosemicarbazide, picric acid and cadmium bromide in a 2:1:1 (1.8 g: 2.5 g: 2.8 g) molar ratio. The calculated amount of thiosemicarbazide and cadmium bromide were dissolved in distilled water and the required amount of picric acid (dissolved in acetone) was added to the solution slowly with stirring. Within a few minutes the solution became turbid. The reaction was ensured with continous stirring. After 1 h a yellow salt was deposited at the bottom of the beaker and it was filtered off and dried. This solid was recrystallized in a DMSO solution to obtain yellow rod-like crystals of the title compound on slow evaporation of the solvent.

Refinement top

The water molecule, the NH2 and NH H-atoms were located in difference Fourier maps and were freely refined. The C-bound H atoms were included in calculated positions and treated as riding atoms; C—H = 0.95 Å and 0.98 Å for CH and methyl H-atoms, respectively, with Uiso(H) = k × Ueq(C), where k = 1.2 for CH H-atoms, and k = 1.5 for methyl H-atoms.

Structure description top

Intermolecular and inter-ionic hydrogen bonding interactions, which are not only the strongest of the noncovalent interactions but also highly directional, play an important role in constructing supramolecular structures (Braga et al., 2004). Recently we have obtained crystals of the title compound from the reaction of thiosemicarbazide, picric acid and DMSO, and we report herein on its crystal structure.

In the cation of the title compound the cadmium(II) atom is hexa-coordinated to two thiosemcarbazide and to two DMSO molecules (Fig. 1). This cation is centrosymmetric with the metal atom being located on an invesion center. The thiosemicarbazide molecules behave as bidentate ligands coordinating via atoms N3 and S1. The bond distances and angles are similar to those reported for a similar complex, bis(Thiosemicarbazide)-diaqua-cadmium(II) bis(maleate) dihydrate (Li et al., 2006).

In the crystal the cation, the picrate anions and the water molecules of crystallization are involved in N—H···O, O—H···O and N—H···S hydrogen bonds and C—H···O interactions, to form a three-dimensional supramolecular network (Table 1 and Fig. 2).

For the role of hydrogen bonding in the construction of supramolecular structures, see: Braga et al. (2004). For the crystal structure of a similar compound, see: Li et al. (2006).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2009); cell refinement: X-AREA (Stoe & Cie, 2009); data reduction: X-RED32 (Stoe & Cie, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the molecular structure of the title compound, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level [symmetry code: (a) = -x + 2, -y, -z]. The symmetry related picrate anion and water molecule of crystallization are not shown.
[Figure 2] Fig. 2. A view along the a axis of the crystal packing of the title compound. The hydrogen bonds are shown as dashed lines (see Table 1 for details; C-bound H-atoms not involved in C—H···O interactions have been omitted for clarity].
trans-Bis(dimethyl sulfoxide-κO)bis(thiosemicarbazide-κ2N1,S)cadmium bis(2,4,6-trinitrophenolate) dihydrate top
Crystal data top
[Cd(CH5N3S)2(C2H6OS)2](C6H2N3O7)2·2H2OZ = 1
Mr = 943.18F(000) = 478
Triclinic, P1Dx = 1.812 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.3496 (3) ÅCell parameters from 15389 reflections
b = 11.0788 (6) Åθ = 1.4–26.2°
c = 15.0049 (8) ŵ = 0.97 mm1
α = 98.745 (5)°T = 173 K
β = 98.288 (4)°Rod, yellow
γ = 95.032 (5)°0.45 × 0.30 × 0.21 mm
V = 864.30 (8) Å3
Data collection top
STOE IPDS 2
diffractometer
3273 independent reflections
Radiation source: fine-focus sealed tube3058 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
φ + ω scansθmax = 25.6°, θmin = 1.4°
Absorption correction: multi-scan
[MULscanABS in PLATON (Spek, 2009)]
h = 66
Tmin = 0.773, Tmax = 1.000k = 1313
10206 measured reflectionsl = 1818
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.023H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.059 w = 1/[σ2(Fo2) + (0.0346P)2 + 0.3178P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
3273 reflectionsΔρmax = 0.45 e Å3
272 parametersΔρmin = 0.61 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0043 (12)
Crystal data top
[Cd(CH5N3S)2(C2H6OS)2](C6H2N3O7)2·2H2Oγ = 95.032 (5)°
Mr = 943.18V = 864.30 (8) Å3
Triclinic, P1Z = 1
a = 5.3496 (3) ÅMo Kα radiation
b = 11.0788 (6) ŵ = 0.97 mm1
c = 15.0049 (8) ÅT = 173 K
α = 98.745 (5)°0.45 × 0.30 × 0.21 mm
β = 98.288 (4)°
Data collection top
STOE IPDS 2
diffractometer
3273 independent reflections
Absorption correction: multi-scan
[MULscanABS in PLATON (Spek, 2009)]
3058 reflections with I > 2σ(I)
Tmin = 0.773, Tmax = 1.000Rint = 0.037
10206 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0230 restraints
wR(F2) = 0.059H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.45 e Å3
3273 reflectionsΔρmin = 0.61 e Å3
272 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd11.000000.000000.000000.0212 (1)
S10.82169 (8)0.05948 (4)0.13804 (3)0.0235 (1)
S20.86010 (9)0.28748 (4)0.02021 (3)0.0269 (1)
O10.7484 (3)0.16934 (13)0.00566 (10)0.0311 (4)
N11.0413 (4)0.00580 (18)0.30857 (11)0.0278 (5)
N21.2618 (3)0.08648 (15)0.20958 (11)0.0238 (4)
N31.3070 (3)0.10988 (16)0.12296 (10)0.0217 (5)
C11.0580 (3)0.01743 (16)0.22259 (12)0.0205 (5)
C20.6902 (5)0.2973 (2)0.12943 (16)0.0415 (7)
C30.7285 (5)0.4052 (2)0.04653 (19)0.0450 (8)
O20.4733 (3)0.16250 (19)0.39020 (11)0.0518 (6)
O30.7565 (3)0.24983 (16)0.27887 (10)0.0392 (5)
O41.0803 (3)0.37978 (17)0.33787 (11)0.0464 (6)
O51.4020 (3)0.46927 (16)0.64927 (12)0.0458 (5)
O61.1907 (3)0.40466 (16)0.74913 (11)0.0441 (5)
O70.4239 (3)0.14920 (16)0.65922 (10)0.0406 (5)
O80.2735 (3)0.07080 (14)0.51955 (10)0.0345 (4)
N40.9009 (3)0.30544 (15)0.34539 (11)0.0273 (5)
N51.2187 (3)0.40910 (17)0.66954 (12)0.0340 (5)
N60.4329 (3)0.13765 (15)0.57626 (11)0.0259 (5)
C40.6439 (4)0.21409 (19)0.45209 (13)0.0262 (5)
C50.8669 (4)0.28941 (17)0.43761 (13)0.0243 (5)
C61.0516 (4)0.35091 (17)0.50671 (13)0.0259 (5)
C71.0285 (4)0.34163 (18)0.59632 (13)0.0262 (5)
C80.8251 (4)0.27133 (18)0.61769 (13)0.0253 (5)
C90.6418 (4)0.20911 (17)0.54848 (13)0.0241 (5)
O1W0.2815 (4)0.38530 (16)0.17293 (11)0.0367 (5)
H1NA1.152 (5)0.048 (2)0.3525 (17)0.030 (6)*
H1NB0.915 (5)0.031 (2)0.3166 (16)0.028 (6)*
H2A0.721500.228700.174400.0620*
H2B0.747600.375200.147500.0620*
H2C0.507900.293500.126600.0620*
H2N1.374 (5)0.123 (2)0.2565 (18)0.036 (6)*
H3NA1.449 (5)0.087 (2)0.1177 (16)0.030 (6)*
H3A0.544400.384200.040300.0680*
H3B0.763600.483400.025200.0680*
H3C0.805200.413000.110800.0680*
H3NB1.311 (4)0.188 (2)0.1279 (15)0.026 (6)*
H61.193000.399000.493300.0310*
H80.812600.266300.679600.0300*
H1WA0.403 (7)0.425 (3)0.197 (2)0.056 (10)*
H1WB0.197 (7)0.377 (3)0.215 (2)0.065 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.0240 (1)0.0238 (1)0.0150 (1)0.0017 (1)0.0020 (1)0.0022 (1)
S10.0209 (2)0.0285 (2)0.0186 (2)0.0053 (2)0.0014 (2)0.0027 (2)
S20.0252 (2)0.0271 (2)0.0270 (2)0.0032 (2)0.0013 (2)0.0032 (2)
O10.0370 (8)0.0301 (7)0.0314 (7)0.0111 (6)0.0105 (6)0.0123 (6)
N10.0249 (9)0.0385 (9)0.0180 (8)0.0057 (8)0.0014 (7)0.0058 (7)
N20.0218 (8)0.0327 (8)0.0144 (7)0.0043 (7)0.0000 (6)0.0027 (6)
N30.0199 (8)0.0262 (9)0.0189 (8)0.0015 (7)0.0052 (6)0.0035 (6)
C10.0186 (8)0.0223 (9)0.0200 (9)0.0019 (7)0.0027 (7)0.0025 (7)
C20.0473 (13)0.0404 (12)0.0349 (12)0.0064 (10)0.0060 (10)0.0184 (10)
C30.0392 (12)0.0376 (12)0.0556 (15)0.0126 (10)0.0067 (11)0.0044 (11)
O20.0445 (10)0.0797 (13)0.0210 (7)0.0336 (9)0.0026 (7)0.0068 (8)
O30.0430 (9)0.0490 (9)0.0216 (7)0.0094 (7)0.0035 (6)0.0032 (7)
O40.0449 (10)0.0565 (10)0.0356 (9)0.0181 (8)0.0134 (7)0.0075 (7)
O50.0294 (8)0.0468 (10)0.0503 (10)0.0123 (7)0.0025 (7)0.0086 (8)
O60.0443 (9)0.0511 (10)0.0272 (8)0.0005 (8)0.0069 (7)0.0083 (7)
O70.0405 (9)0.0577 (10)0.0211 (7)0.0112 (8)0.0084 (6)0.0049 (7)
O80.0306 (8)0.0407 (8)0.0278 (7)0.0114 (6)0.0032 (6)0.0018 (6)
N40.0281 (8)0.0279 (8)0.0267 (9)0.0018 (7)0.0080 (7)0.0048 (7)
N50.0273 (9)0.0330 (9)0.0341 (10)0.0002 (7)0.0052 (7)0.0072 (8)
N60.0240 (8)0.0302 (8)0.0225 (8)0.0015 (7)0.0032 (7)0.0040 (6)
C40.0243 (9)0.0311 (10)0.0202 (9)0.0043 (8)0.0014 (7)0.0016 (7)
C50.0248 (9)0.0253 (9)0.0221 (9)0.0013 (7)0.0037 (7)0.0026 (7)
C60.0221 (9)0.0233 (9)0.0305 (10)0.0007 (7)0.0039 (8)0.0008 (8)
C70.0234 (9)0.0254 (9)0.0253 (9)0.0001 (8)0.0020 (7)0.0025 (7)
C80.0251 (10)0.0280 (9)0.0204 (9)0.0022 (8)0.0001 (7)0.0001 (7)
C90.0235 (9)0.0254 (9)0.0221 (9)0.0009 (7)0.0040 (7)0.0019 (7)
O1W0.0375 (9)0.0432 (9)0.0254 (8)0.0032 (7)0.0030 (7)0.0006 (7)
Geometric parameters (Å, º) top
Cd1—S12.5512 (5)N1—H1NB0.79 (3)
Cd1—O12.4013 (15)N1—H1NA0.87 (3)
Cd1—N32.3824 (16)N2—H2N0.88 (3)
Cd1—S1i2.5512 (5)N3—H3NB0.86 (2)
Cd1—O1i2.4013 (15)N3—H3NA0.83 (3)
Cd1—N3i2.3824 (16)N4—C51.456 (3)
S1—C11.7186 (18)N5—C71.448 (3)
S2—O11.5182 (15)N6—C91.459 (3)
S2—C21.779 (2)C2—H2C0.9800
S2—C31.780 (3)C2—H2A0.9800
O2—C41.235 (3)C2—H2B0.9800
O3—N41.217 (2)C3—H3C0.9800
O4—N41.238 (2)C3—H3A0.9800
O5—N51.238 (2)C3—H3B0.9800
O6—N51.233 (2)C4—C51.457 (3)
O7—N61.240 (2)C4—C91.457 (3)
O8—N61.220 (2)C5—C61.374 (3)
O1W—H1WA0.76 (4)C6—C71.386 (3)
O1W—H1WB0.84 (3)C7—C81.386 (3)
N1—C11.331 (2)C8—C91.373 (3)
N2—N31.413 (2)C6—H60.9500
N2—C11.331 (2)C8—H80.9500
S1—Cd1—O188.75 (4)O5—N5—C7118.35 (17)
S1—Cd1—N378.48 (4)O7—N6—C9117.15 (16)
S1—Cd1—S1i180.00O8—N6—C9120.80 (16)
S1—Cd1—O1i91.25 (4)O7—N6—O8122.04 (17)
S1—Cd1—N3i101.53 (4)S1—C1—N1118.01 (14)
O1—Cd1—N391.01 (6)S1—C1—N2125.54 (14)
S1i—Cd1—O191.25 (4)N1—C1—N2116.43 (17)
O1—Cd1—O1i180.00S2—C2—H2C110.00
O1—Cd1—N3i88.99 (6)H2A—C2—H2B109.00
S1i—Cd1—N3101.53 (4)S2—C2—H2B109.00
O1i—Cd1—N388.99 (6)H2B—C2—H2C109.00
N3—Cd1—N3i180.00S2—C2—H2A109.00
S1i—Cd1—O1i88.75 (4)H2A—C2—H2C109.00
S1i—Cd1—N3i78.48 (4)S2—C3—H3B109.00
O1i—Cd1—N3i91.01 (6)H3A—C3—H3C110.00
Cd1—S1—C198.67 (6)H3B—C3—H3C109.00
O1—S2—C2106.27 (10)H3A—C3—H3B109.00
O1—S2—C3104.19 (10)S2—C3—H3A109.00
C2—S2—C398.64 (12)S2—C3—H3C110.00
Cd1—O1—S2117.54 (9)O2—C4—C9123.8 (2)
H1WA—O1W—H1WB104 (3)C5—C4—C9112.18 (17)
N3—N2—C1123.73 (16)O2—C4—C5124.06 (18)
Cd1—N3—N2113.40 (11)N4—C5—C6115.94 (18)
C1—N1—H1NB116.3 (17)C4—C5—C6124.10 (18)
H1NA—N1—H1NB123 (2)N4—C5—C4119.95 (17)
C1—N1—H1NA119.5 (16)C5—C6—C7118.96 (19)
N3—N2—H2N116.2 (17)N5—C7—C6119.19 (18)
C1—N2—H2N120.0 (17)C6—C7—C8121.65 (19)
Cd1—N3—H3NB113.7 (15)N5—C7—C8119.15 (17)
Cd1—N3—H3NA109.2 (16)C7—C8—C9119.29 (18)
N2—N3—H3NB103.6 (15)N6—C9—C8116.16 (17)
H3NA—N3—H3NB112 (2)C4—C9—C8123.79 (19)
N2—N3—H3NA105.1 (16)N6—C9—C4120.03 (17)
O3—N4—O4121.57 (17)C5—C6—H6121.00
O4—N4—C5117.04 (16)C7—C6—H6121.00
O3—N4—C5121.38 (17)C7—C8—H8120.00
O6—N5—C7118.75 (17)C9—C8—H8120.00
O5—N5—O6122.90 (18)
O1—Cd1—S1—C193.63 (7)O5—N5—C7—C8178.44 (19)
N3—Cd1—S1—C12.35 (7)O6—N5—C7—C6176.82 (19)
O1i—Cd1—S1—C186.37 (7)O6—N5—C7—C81.9 (3)
N3i—Cd1—S1—C1177.65 (7)O7—N6—C9—C4171.03 (18)
S1—Cd1—O1—S2145.05 (8)O7—N6—C9—C87.4 (3)
N3—Cd1—O1—S266.61 (9)O8—N6—C9—C48.2 (3)
S1i—Cd1—O1—S234.95 (8)O8—N6—C9—C8173.45 (18)
N3i—Cd1—O1—S2113.40 (9)O2—C4—C5—N41.2 (3)
S1—Cd1—N3—N23.88 (11)O2—C4—C5—C6177.2 (2)
O1—Cd1—N3—N292.39 (12)C9—C4—C5—N4179.76 (17)
S1i—Cd1—N3—N2176.13 (11)C9—C4—C5—C61.3 (3)
O1i—Cd1—N3—N287.61 (12)O2—C4—C9—N61.6 (3)
Cd1—S1—C1—N1177.43 (15)O2—C4—C9—C8176.7 (2)
Cd1—S1—C1—N21.06 (17)C5—C4—C9—N6179.89 (17)
C2—S2—O1—Cd1106.89 (11)C5—C4—C9—C81.9 (3)
C3—S2—O1—Cd1149.51 (11)N4—C5—C6—C7178.76 (18)
C1—N2—N3—Cd14.9 (2)C4—C5—C6—C70.2 (3)
N3—N2—C1—S12.5 (3)C5—C6—C7—N5178.22 (18)
N3—N2—C1—N1178.99 (17)C5—C6—C7—C80.5 (3)
O3—N4—C5—C45.6 (3)N5—C7—C8—C9178.76 (19)
O3—N4—C5—C6175.84 (19)C6—C7—C8—C90.1 (3)
O4—N4—C5—C4173.14 (18)C7—C8—C9—N6179.67 (18)
O4—N4—C5—C65.5 (3)C7—C8—C9—C41.3 (3)
O5—N5—C7—C62.9 (3)
Symmetry code: (i) x+2, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1NA···O2ii0.87 (3)2.00 (3)2.773 (3)148 (2)
N1—H1NA···O8ii0.87 (3)2.47 (2)3.178 (2)140 (2)
N1—H1NB···O7iii0.79 (3)2.25 (3)3.037 (3)175 (2)
N2—H2N···O2ii0.88 (3)1.97 (3)2.755 (2)148 (2)
N2—H2N···O3ii0.88 (3)2.33 (3)3.026 (2)136 (2)
N3—H3NA···S1ii0.83 (3)2.69 (3)3.4653 (17)155 (2)
N3—H3NB···O1Wii0.86 (2)2.21 (2)3.049 (3)165 (2)
O1W—H1WA···O5iv0.76 (4)2.46 (3)3.081 (2)140 (3)
O1W—H1WB···O4v0.84 (3)2.03 (3)2.844 (2)165 (3)
C3—H3A···O1W0.982.603.272 (3)126
C6—H6···O40.952.302.626 (3)100
C8—H8···O70.952.312.638 (3)100
Symmetry codes: (ii) x+1, y, z; (iii) x+1, y, z+1; (iv) x+2, y+1, z+1; (v) x1, y, z.

Experimental details

Crystal data
Chemical formula[Cd(CH5N3S)2(C2H6OS)2](C6H2N3O7)2·2H2O
Mr943.18
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)5.3496 (3), 11.0788 (6), 15.0049 (8)
α, β, γ (°)98.745 (5), 98.288 (4), 95.032 (5)
V3)864.30 (8)
Z1
Radiation typeMo Kα
µ (mm1)0.97
Crystal size (mm)0.45 × 0.30 × 0.21
Data collection
DiffractometerSTOE IPDS 2
Absorption correctionMulti-scan
[MULscanABS in PLATON (Spek, 2009)]
Tmin, Tmax0.773, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
10206, 3273, 3058
Rint0.037
(sin θ/λ)max1)0.608
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.059, 1.05
No. of reflections3273
No. of parameters272
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.45, 0.61

Computer programs: X-AREA (Stoe & Cie, 2009), X-RED32 (Stoe & Cie, 2009), SHELXS97 (Sheldrick, 2008), PLATON (Spek, 2009), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1NA···O2i0.87 (3)2.00 (3)2.773 (3)148 (2)
N1—H1NA···O8i0.87 (3)2.47 (2)3.178 (2)140 (2)
N1—H1NB···O7ii0.79 (3)2.25 (3)3.037 (3)175 (2)
N2—H2N···O2i0.88 (3)1.97 (3)2.755 (2)148 (2)
N2—H2N···O3i0.88 (3)2.33 (3)3.026 (2)136 (2)
N3—H3NA···S1i0.83 (3)2.69 (3)3.4653 (17)155 (2)
N3—H3NB···O1Wi0.86 (2)2.21 (2)3.049 (3)165 (2)
O1W—H1WA···O5iii0.76 (4)2.46 (3)3.081 (2)140 (3)
O1W—H1WB···O4iv0.84 (3)2.03 (3)2.844 (2)165 (3)
C3—H3A···O1W0.982.603.272 (3)126
Symmetry codes: (i) x+1, y, z; (ii) x+1, y, z+1; (iii) x+2, y+1, z+1; (iv) x1, y, z.
 

Acknowledgements

RS thanks the University Grants Commission, India, for the award of a minor research project (file No. MRP 2976/2009). HSE thanks the staff of the XRD Application Laboratory, CSEM, Neuchâtel, for access to the X-ray diffraction equipment.

References

First citationBraga, D., Maini, L., Polito, M. & Grepioni, F. (2004). Struct. Bond. 111, 1–32.  Web of Science CrossRef CAS Google Scholar
First citationLi, S.-L., Fun, H.-K., Chantrapromma, S., Wu, J.-Y. & Tian, Y.-P. (2006). Acta Cryst. E62, m64–m66.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2009). X-AREA and X-RED32. Stoe & Cie.GmbH, Darmstat, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds