metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[[aqua­(pyridine-4-carboxyl­ato-κN)silver(I)]-μ-hexa­methyl­ene­tetra­amine-κ2N:N′] dihydrate]

aDepartment of Vascular Surgery, The China–Japan Union Hospital of Jilin University, Changchun 130033, People's Republic of China, bDepartment of Gynecology, The Second Hospital of Jilin University, Changchun 130041, People's Republic of China, and cDepartment of Orthopedics, The China–Japan Union Hospital of Jilin University, Changchun 130033, People's Republic of China
*Correspondence e-mail: drhanly2010@163.com

(Received 23 November 2010; accepted 2 December 2010; online 8 December 2010)

In the title compound, {[Ag(C6H4NO2)(C6H12N4)(H2O)]·2H2O}n, the AgI atom shows a distorted triangular pyramidal geometry,, formed by two N atoms from two hexa­methyl­ene­tetra­amine (hmt) ligands and one N atom from a pyridine-4-carboxyl­ate (4-pdc) ligand and one water mol­ecule. The hmt ligands bridge the Ag atoms, forming a chain along [001]. The carboxyl­ate group of the 4-pdc ligand is uncoordinated. O—H⋯O hydrogen bonds between the water mol­ecules and carboxyl­ate groups stabilize the structure.

Related literature

For general background to the design and synthesis of coordination polymers, see: Eddaoudi et al. (2001[Eddaoudi, M., Moler, D. B., Li, H., Chen, B., Reineke, T. M., O'Keeffe, M. & Yaghi, O. M. (2001). Acc. Chem. Res. 34, 319-330.]).

[Scheme 1]

Experimental

Crystal data
  • [Ag(C6H4NO2)(C6H12N4)(H2O)]·2H2O

  • Mr = 424.22

  • Orthorhombic, P n a 21

  • a = 11.8271 (5) Å

  • b = 13.2122 (5) Å

  • c = 10.2560 (4) Å

  • V = 1602.62 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.29 mm−1

  • T = 293 K

  • 0.24 × 0.20 × 0.19 mm

Data collection
  • Bruker APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.747, Tmax = 0.792

  • 7849 measured reflections

  • 2380 independent reflections

  • 2347 reflections with I > 2σ(I)

  • Rint = 0.016

Refinement
  • R[F2 > 2σ(F2)] = 0.016

  • wR(F2) = 0.041

  • S = 1.08

  • 2380 reflections

  • 226 parameters

  • 10 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.55 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 876 Friedel pairs

  • Flack parameter: 0.01 (2)

Table 1
Selected bond lengths (Å)

Ag1—N1 2.287 (2)
Ag1—N2 2.256 (2)
Ag1—N5i 2.306 (2)
Ag1—O1W 2.673 (2)
Symmetry code: (i) [-x, -y, z+{\script{1\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1A⋯O2Wii 0.85 (3) 1.91 (3) 2.743 (3) 169 (3)
O1W—H1B⋯O1iii 0.85 (1) 1.91 (2) 2.714 (2) 157 (3)
O2W—H2A⋯O2 0.84 (1) 1.88 (1) 2.722 (3) 173 (3)
O2W—H2B⋯O3Wiv 0.84 (3) 1.99 (3) 2.787 (3) 161 (3)
O3W—H3A⋯O1Wv 0.85 (1) 1.95 (1) 2.788 (3) 169 (3)
O3W—H3B⋯O1 0.85 (1) 1.89 (1) 2.728 (2) 169 (3)
Symmetry codes: (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z]; (iii) [-x+1, -y, z-{\script{1\over 2}}]; (iv) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (v) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The design and synthesis of coordination polymers have been a research field of rapid expansion not only because of their fascinating structures, but also owing to their interesting properties as new functional materials of tremendous potential applications in molecular recognition, ion-exchange, and catalysis for reactions (Eddaoudi et al., 2001). In this work, the reaction of pyridine-4-carboxylatic acid (4-Hpdc) and hexamethylenetetraamine (hmt) with AgI ion yielded a new coordination polymer.

As shown in Fig. 1, the asymmetric unit of the title compound contains one AgI atom, one 4-pdc ligand, one hmt ligand, one coordinated water molecule and two uncoordinated water molecules. The Ag1 atom shows a distorted triangle pyramidal geometry, completed by three N atoms from two hmt ligands and one 4-pdc ligand and one O atom from a water molecule. The hmt ligands bridge the Ag atoms, forming a one-dimensional chain. The carboxylate group of the 4-pdc ligand is uncoordinated. O—H···O hydrogen bonds between the water molecules and carboxylate groups stabilize the structure.

Related literature top

For general background to the design and synthesis of coordination polymers, see: Eddaoudi et al. (2001).

Experimental top

A mixture of 4-Hpdc (0.615 g, 0.5 mmol), Ag(NO3)2 (0.085 g, 0.5 mmol) and hmt (0.070 g, 0.5 mmol) in water was heated at 150°C in a Teflon-lined stainless steel autoclave for 5 d. The reaction system was then slowly cooled to room temperature. Crystals suitable for X-ray diffraction analysis were collected by filtration.

Refinement top

C-bound H atoms were positioned geometrically and refined using a riding mode, with C—H = 0.93 and 0.97 Å and Uiso(H) = 1.2Ueq(C). The water H atoms were located in a difference Fourier map and refined with restraints of O—H = 0.85 (1) and H···H = 1.38 (1) Å and Uiso(H) = 1.5Ueq(O).

Structure description top

The design and synthesis of coordination polymers have been a research field of rapid expansion not only because of their fascinating structures, but also owing to their interesting properties as new functional materials of tremendous potential applications in molecular recognition, ion-exchange, and catalysis for reactions (Eddaoudi et al., 2001). In this work, the reaction of pyridine-4-carboxylatic acid (4-Hpdc) and hexamethylenetetraamine (hmt) with AgI ion yielded a new coordination polymer.

As shown in Fig. 1, the asymmetric unit of the title compound contains one AgI atom, one 4-pdc ligand, one hmt ligand, one coordinated water molecule and two uncoordinated water molecules. The Ag1 atom shows a distorted triangle pyramidal geometry, completed by three N atoms from two hmt ligands and one 4-pdc ligand and one O atom from a water molecule. The hmt ligands bridge the Ag atoms, forming a one-dimensional chain. The carboxylate group of the 4-pdc ligand is uncoordinated. O—H···O hydrogen bonds between the water molecules and carboxylate groups stabilize the structure.

For general background to the design and synthesis of coordination polymers, see: Eddaoudi et al. (2001).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry code: (i) -x, -y, z+1/2].
[Figure 2] Fig. 2. View of the chain structure in the title compound.
catena-Poly[[[aqua(pyridine-4-carboxylato-κN)silver(I)]- µ-hexamethylenetetraamine-κ2N:N'] dihydrate] top
Crystal data top
[Ag(C6H4NO2)(C6H12N4)(H2O)]·2H2OF(000) = 864
Mr = 424.22Dx = 1.758 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 2380 reflections
a = 11.8271 (5) Åθ = 3.0–26.1°
b = 13.2122 (5) ŵ = 1.29 mm1
c = 10.2560 (4) ÅT = 293 K
V = 1602.62 (11) Å3Block, colorless
Z = 40.24 × 0.20 × 0.19 mm
Data collection top
Bruker APEX CCD
diffractometer
2380 independent reflections
Radiation source: fine-focus sealed tube2347 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.016
φ and ω scansθmax = 25.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1314
Tmin = 0.747, Tmax = 0.792k = 1515
7849 measured reflectionsl = 1012
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.016H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.041 w = 1/[σ2(Fo2) + (0.0231P)2 + 0.3127P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
2380 reflectionsΔρmax = 0.20 e Å3
226 parametersΔρmin = 0.55 e Å3
10 restraintsAbsolute structure: Flack (1983), 876 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.01 (2)
Crystal data top
[Ag(C6H4NO2)(C6H12N4)(H2O)]·2H2OV = 1602.62 (11) Å3
Mr = 424.22Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 11.8271 (5) ŵ = 1.29 mm1
b = 13.2122 (5) ÅT = 293 K
c = 10.2560 (4) Å0.24 × 0.20 × 0.19 mm
Data collection top
Bruker APEX CCD
diffractometer
2380 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2347 reflections with I > 2σ(I)
Tmin = 0.747, Tmax = 0.792Rint = 0.016
7849 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.016H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.041Δρmax = 0.20 e Å3
S = 1.08Δρmin = 0.55 e Å3
2380 reflectionsAbsolute structure: Flack (1983), 876 Friedel pairs
226 parametersAbsolute structure parameter: 0.01 (2)
10 restraints
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag10.128363 (13)0.013803 (11)0.15278 (4)0.02268 (7)
C10.3975 (2)0.04853 (19)0.1327 (3)0.0235 (6)
H10.37560.09610.07080.028*
C20.51160 (18)0.03798 (16)0.1607 (3)0.0213 (5)
H20.56450.07880.11900.026*
C30.5467 (2)0.03375 (17)0.2511 (2)0.0180 (5)
C40.4633 (2)0.09081 (18)0.3108 (3)0.0226 (5)
H40.48260.13950.37240.027*
C50.3513 (2)0.0753 (2)0.2786 (3)0.0253 (6)
H50.29680.11450.32000.030*
C60.6705 (2)0.04864 (19)0.2834 (2)0.0195 (5)
C70.1034 (2)0.1856 (2)0.0106 (3)0.0232 (6)
H7A0.16900.15890.05560.028*
H7B0.12990.22280.06510.028*
C80.0697 (2)0.14419 (19)0.0997 (2)0.0214 (5)
H8A0.04540.18120.17640.026*
H8B0.11890.08980.12810.026*
C90.0568 (2)0.29341 (18)0.0278 (3)0.0298 (6)
H9A0.09770.33950.08420.036*
H9B0.03210.33120.04820.036*
C100.0045 (2)0.19809 (17)0.2111 (2)0.0216 (5)
H10A0.03550.24330.26960.026*
H10B0.06960.17150.25730.026*
C110.0086 (2)0.04628 (17)0.0847 (3)0.0188 (5)
H11A0.05720.00930.05860.023*
H11B0.05600.01790.13010.023*
C120.1700 (2)0.15591 (19)0.1010 (3)0.0207 (5)
H12A0.21950.10120.07410.025*
H12B0.21260.20050.15790.025*
N10.31739 (18)0.00721 (15)0.1914 (2)0.0226 (6)
N20.03133 (16)0.10028 (15)0.0333 (2)0.0175 (4)
N30.04299 (17)0.25501 (15)0.0976 (2)0.0238 (4)
N40.13283 (16)0.21224 (17)0.0138 (2)0.0225 (5)
N50.07120 (15)0.11312 (15)0.1745 (2)0.0165 (4)
O10.69699 (14)0.13139 (13)0.33372 (19)0.0263 (4)
O20.73760 (15)0.02175 (13)0.2588 (2)0.0294 (5)
O1W0.11516 (14)0.16451 (15)0.0205 (2)0.0254 (4)
H1A0.145 (2)0.2117 (19)0.024 (3)0.038*
H1B0.161 (2)0.147 (2)0.080 (2)0.038*
O2W0.73929 (16)0.19124 (15)0.1080 (2)0.0344 (5)
H2A0.736 (2)0.1415 (17)0.159 (2)0.052*
H2B0.777 (3)0.176 (2)0.042 (2)0.052*
O3W0.60916 (15)0.31522 (14)0.4000 (3)0.0330 (5)
H3A0.5402 (12)0.313 (2)0.423 (3)0.049*
H3B0.629 (2)0.2569 (14)0.373 (4)0.049*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.01850 (10)0.02679 (10)0.02274 (11)0.00070 (6)0.00291 (10)0.00824 (17)
C10.0231 (11)0.0237 (11)0.0236 (19)0.0030 (9)0.0032 (12)0.0047 (12)
C20.0200 (10)0.0214 (10)0.0226 (12)0.0030 (8)0.0014 (14)0.0042 (15)
C30.0193 (12)0.0163 (11)0.0185 (13)0.0030 (9)0.0024 (10)0.0034 (10)
C40.0203 (12)0.0220 (12)0.0256 (14)0.0024 (9)0.0013 (11)0.0062 (11)
C50.0201 (12)0.0263 (14)0.0295 (15)0.0025 (10)0.0028 (11)0.0048 (12)
C60.0177 (12)0.0225 (12)0.0184 (13)0.0003 (10)0.0004 (10)0.0004 (10)
C70.0202 (12)0.0234 (14)0.0262 (16)0.0054 (10)0.0018 (12)0.0043 (12)
C80.0206 (12)0.0248 (13)0.0188 (12)0.0023 (10)0.0012 (10)0.0021 (10)
C90.0414 (16)0.0176 (13)0.0305 (15)0.0053 (11)0.0100 (13)0.0024 (11)
C100.0216 (12)0.0223 (12)0.0208 (13)0.0025 (9)0.0006 (11)0.0039 (10)
C110.0179 (12)0.0157 (10)0.0228 (13)0.0002 (9)0.0000 (10)0.0016 (10)
C120.0154 (12)0.0257 (13)0.0208 (13)0.0046 (10)0.0008 (11)0.0032 (11)
N10.0158 (10)0.0237 (10)0.0284 (16)0.0010 (8)0.0010 (9)0.0004 (8)
N20.0132 (9)0.0191 (10)0.0202 (11)0.0020 (8)0.0010 (8)0.0002 (8)
N30.0290 (11)0.0179 (10)0.0244 (11)0.0055 (9)0.0075 (10)0.0041 (9)
N40.0232 (11)0.0252 (12)0.0190 (12)0.0077 (8)0.0014 (9)0.0053 (9)
N50.0150 (10)0.0167 (10)0.0178 (11)0.0032 (8)0.0000 (8)0.0014 (8)
O10.0186 (8)0.0235 (9)0.0366 (11)0.0002 (7)0.0035 (8)0.0104 (8)
O20.0190 (9)0.0265 (10)0.0427 (13)0.0057 (7)0.0055 (9)0.0098 (8)
O1W0.0196 (9)0.0265 (11)0.0300 (12)0.0025 (7)0.0035 (8)0.0021 (9)
O2W0.0317 (10)0.0319 (10)0.0396 (12)0.0047 (8)0.0038 (9)0.0147 (8)
O3W0.0219 (9)0.0206 (10)0.0564 (15)0.0012 (7)0.0013 (10)0.0072 (10)
Geometric parameters (Å, º) top
Ag1—N12.287 (2)C8—H8B0.9700
Ag1—N22.256 (2)C9—N41.463 (3)
Ag1—N5i2.306 (2)C9—N31.470 (4)
Ag1—O1W2.673 (2)C9—H9A0.9700
C1—N11.342 (3)C9—H9B0.9700
C1—C21.387 (3)C10—N31.459 (3)
C1—H10.9300C10—N51.484 (3)
C2—C31.390 (4)C10—H10A0.9700
C2—H20.9300C10—H10B0.9700
C3—C41.384 (3)C11—N51.476 (3)
C3—C61.513 (3)C11—N21.482 (3)
C4—C51.380 (3)C11—H11A0.9700
C4—H40.9300C11—H11B0.9700
C5—N11.330 (3)C12—N41.461 (3)
C5—H50.9300C12—N51.501 (3)
C6—O21.249 (3)C12—H12A0.9700
C6—O11.249 (3)C12—H12B0.9700
C7—N31.465 (3)O1W—H1A0.85 (3)
C7—N21.483 (3)O1W—H1B0.85 (1)
C7—H7A0.9700O2W—H2A0.84 (1)
C7—H7B0.9700O2W—H2B0.84 (3)
C8—N41.464 (3)O3W—H3A0.85 (1)
C8—N21.492 (3)O3W—H3B0.85 (1)
C8—H8A0.9700
N2—Ag1—N1120.67 (7)N3—C10—N5112.10 (19)
N2—Ag1—N5i130.41 (7)N3—C10—H10A109.2
N1—Ag1—N5i102.86 (7)N5—C10—H10A109.2
N2—Ag1—O1W96.13 (7)N3—C10—H10B109.2
N1—Ag1—O1W105.23 (6)N5—C10—H10B109.2
N5i—Ag1—O1W94.00 (7)H10A—C10—H10B107.9
N1—C1—C2122.6 (3)N5—C11—N2112.42 (18)
N1—C1—H1118.7N5—C11—H11A109.1
C2—C1—H1118.7N2—C11—H11A109.1
C1—C2—C3119.8 (2)N5—C11—H11B109.1
C1—C2—H2120.1N2—C11—H11B109.1
C3—C2—H2120.1H11A—C11—H11B107.9
C4—C3—C2116.9 (2)N4—C12—N5111.27 (19)
C4—C3—C6121.5 (2)N4—C12—H12A109.4
C2—C3—C6121.6 (2)N5—C12—H12A109.4
C5—C4—C3119.8 (2)N4—C12—H12B109.4
C5—C4—H4120.1N5—C12—H12B109.4
C3—C4—H4120.1H12A—C12—H12B108.0
N1—C5—C4123.4 (2)C5—N1—C1117.3 (2)
N1—C5—H5118.3C5—N1—Ag1119.57 (17)
C4—C5—H5118.3C1—N1—Ag1123.05 (17)
O2—C6—O1125.1 (2)C11—N2—C7107.5 (2)
O2—C6—C3118.3 (2)C11—N2—C8107.76 (18)
O1—C6—C3116.6 (2)C7—N2—C8107.63 (19)
N3—C7—N2112.35 (19)C11—N2—Ag1106.48 (14)
N3—C7—H7A109.1C7—N2—Ag1112.35 (14)
N2—C7—H7A109.1C8—N2—Ag1114.77 (15)
N3—C7—H7B109.1C10—N3—C7108.4 (2)
N2—C7—H7B109.1C10—N3—C9108.41 (19)
H7A—C7—H7B107.9C7—N3—C9108.1 (2)
N4—C8—N2111.90 (19)C12—N4—C9108.8 (2)
N4—C8—H8A109.2C12—N4—C8109.0 (2)
N2—C8—H8A109.2C9—N4—C8108.17 (19)
N4—C8—H8B109.2C11—N5—C10107.94 (17)
N2—C8—H8B109.2C11—N5—C12107.64 (19)
H8A—C8—H8B107.9C10—N5—C12108.15 (19)
N4—C9—N3112.48 (19)C11—N5—Ag1ii106.63 (14)
N4—C9—H9A109.1C10—N5—Ag1ii114.39 (15)
N3—C9—H9A109.1C12—N5—Ag1ii111.83 (14)
N4—C9—H9B109.1H1A—O1W—H1B108.9 (15)
N3—C9—H9B109.1H2A—O2W—H2B110.2 (16)
H9A—C9—H9B107.8H3A—O3W—H3B108.7 (15)
Symmetry codes: (i) x, y, z+1/2; (ii) x, y, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1A···O2Wiii0.85 (3)1.91 (3)2.743 (3)169 (3)
O1W—H1B···O1iv0.85 (1)1.91 (2)2.714 (2)157 (3)
O2W—H2A···O20.84 (1)1.88 (1)2.722 (3)173 (3)
O2W—H2B···O3Wv0.84 (3)1.99 (3)2.787 (3)161 (3)
O3W—H3A···O1Wvi0.85 (1)1.95 (1)2.788 (3)169 (3)
O3W—H3B···O10.85 (1)1.89 (1)2.728 (2)169 (3)
Symmetry codes: (iii) x1/2, y+1/2, z; (iv) x+1, y, z1/2; (v) x+3/2, y+1/2, z1/2; (vi) x+1/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Ag(C6H4NO2)(C6H12N4)(H2O)]·2H2O
Mr424.22
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)293
a, b, c (Å)11.8271 (5), 13.2122 (5), 10.2560 (4)
V3)1602.62 (11)
Z4
Radiation typeMo Kα
µ (mm1)1.29
Crystal size (mm)0.24 × 0.20 × 0.19
Data collection
DiffractometerBruker APEX CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.747, 0.792
No. of measured, independent and
observed [I > 2σ(I)] reflections
7849, 2380, 2347
Rint0.016
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.016, 0.041, 1.08
No. of reflections2380
No. of parameters226
No. of restraints10
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.20, 0.55
Absolute structureFlack (1983), 876 Friedel pairs
Absolute structure parameter0.01 (2)

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Ag1—N12.287 (2)Ag1—N5i2.306 (2)
Ag1—N22.256 (2)Ag1—O1W2.673 (2)
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1A···O2Wii0.85 (3)1.91 (3)2.743 (3)169 (3)
O1W—H1B···O1iii0.85 (1)1.91 (2)2.714 (2)157 (3)
O2W—H2A···O20.84 (1)1.88 (1)2.722 (3)173 (3)
O2W—H2B···O3Wiv0.84 (3)1.99 (3)2.787 (3)161 (3)
O3W—H3A···O1Wv0.85 (1)1.95 (1)2.788 (3)169 (3)
O3W—H3B···O10.85 (1)1.89 (1)2.728 (2)169 (3)
Symmetry codes: (ii) x1/2, y+1/2, z; (iii) x+1, y, z1/2; (iv) x+3/2, y+1/2, z1/2; (v) x+1/2, y1/2, z+1/2.
 

Acknowledgements

The authors thank the China–Japan Union Hospital of Jilin University for supporting this work.

References

First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEddaoudi, M., Moler, D. B., Li, H., Chen, B., Reineke, T. M., O'Keeffe, M. & Yaghi, O. M. (2001). Acc. Chem. Res. 34, 319–330.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds