metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­bromido(2,2′-di­methyl-4,4′-bi-1,3-thia­zole-κ2N,N′)mercury(II)

aDepartment of Chemistry, Islamic Azad University, North Tehran Branch, Tehran, Iran
*Correspondence e-mail: anita_abedi@yahoo.com

(Received 3 December 2010; accepted 8 December 2010; online 15 December 2010)

The asymmetric unit of the title compound, [HgBr2(C8H8N2S2)], contains two crystallographically independent mol­ecules. The HgII atoms are four-coordinated in a distorted tetra­hedral geometry by two N atoms from a 2,2′-dimethyl-4,4′-bi-1,3-thia­zole ligand and two Br atoms. In the crystal structure, inter­molecular C—H⋯Br hydrogen bonds and ππ contacts between the thia­zole rings [centroid–centroid distances = 3.670 (3) and 3.614 (2) Å] stabilize the structure.

Related literature

For metal complexes with 2,2′-dimethyl-4,4′-bithia­zole ligands, see: Abedi & Yahyazade Bali (2010[Abedi, A. & Yahyazade Bali, E. (2010). Acta Cryst. E66, m1023.]); Al-Hashemi et al. (2009[Al-Hashemi, R., Safari, N., Abedi, A., Notash, B., Amani, V. & Khavasi, H. R. (2009). J. Coord. Chem. 62, 2909-2918.], 2010[Al-Hashemi, R., Safari, N., Amani, S., Amani, V., Abedi, A., Khavasi, H. R. & Ng, S. W. (2010). J. Coord. Chem. 63, 3207-3217.]); Khavasi et al. (2008[Khavasi, H. R., Abedi, A., Amani, V., Notash, B. & Safari, N. (2008). Polyhedron, 27, 1848-1854.]); Notash et al. (2008[Notash, B., Safari, N., Khavasi, H. R., Amani, V. & Abedi, A. (2008). J. Organomet. Chem. 693, 3553-3557.], 2009[Notash, B., Safari, N., Abedi, A., Amani, V. & Khavasi, H. R. (2009). J. Coord. Chem. 62, 1638-1649.]). For related structures, see: Kalateh et al. (2008[Kalateh, K., Norouzi, A., Ebadi, A., Ahmadi, R. & Amani, V. (2008). Acta Cryst. E64, m1583-m1584.]); Safari et al. (2009[Safari, N., Amani, V., Abedi, A., Notash, B. & Ng, S. W. (2009). Acta Cryst. E65, m372.]).

[Scheme 1]

Experimental

Crystal data
  • [HgBr2(C8H8N2S2)]

  • Mr = 556.69

  • Triclinic, [P \overline 1]

  • a = 10.2799 (6) Å

  • b = 11.1595 (7) Å

  • c = 11.6821 (7) Å

  • α = 88.4456 (11)°

  • β = 85.3290 (11)°

  • γ = 77.1162 (11)°

  • V = 1302.02 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 18.25 mm−1

  • T = 100 K

  • 0.14 × 0.12 × 0.08 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.070, Tmax = 0.240

  • 20881 measured reflections

  • 6912 independent reflections

  • 5865 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.062

  • S = 0.94

  • 6912 reflections

  • 275 parameters

  • H-atom parameters constrained

  • Δρmax = 1.28 e Å−3

  • Δρmin = −1.68 e Å−3

Table 1
Selected bond lengths (Å)

Hg1—N1 2.379 (4)
Hg1—N2 2.383 (4)
Hg1—Br1 2.4970 (5)
Hg1—Br2 2.5206 (5)
Hg2—N3 2.357 (4)
Hg2—N4 2.410 (4)
Hg2—Br3 2.4999 (5)
Hg2—Br4 2.4957 (5)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8B⋯Br4i 0.98 2.92 3.826 (5) 155
C10—H10A⋯Br4i 0.95 2.92 3.760 (5) 148
C16—H16B⋯Br3ii 0.98 2.87 3.772 (5) 154
C16—H16C⋯Br2iii 0.98 2.88 3.837 (5) 165
Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) -x+1, -y+1, -z+1; (iii) x-1, y, z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Recently, we reported the synthesis and crystal structure of [HgI2(dm4bt)] (dm4bt is 2,2'-dimethyl-4,4'-bithiazole) (Abedi & Yahyazade Bali, 2010). Dm4bt is a good bidentate ligand, and numerous complexes with dm4bt have been prepared, such as that of zinc (Khavasi et al., 2008), thallium (Notash et al., 2008), cadmium (Notash et al., 2009) and copper (Al-Hashemi et al., 2009, 2010). For further investigation of dm4bt, we synthesis the title complex and report herein its crystal structure.

The asymmetric unit of the title compound (Fig. 1) contains two crystallographically independent molecules. The HgII atom is four-coordinated in a distorted tetrahedral configuration by two N atoms from a dm4bt ligand and two Br atoms. The Hg—N and Hg—Br bond lengths (Table 1) and angles are within normal range found in [Hg(SCN)2(dm4bt)] (Safari et al., 2009) and {HgBr2[NH(py)2]} [NH(py)2 is di-2-pyridylamine] (Kalateh et al., 2008).

In the crystal structure, intermolecular C—H···Br hydrogen bonds (Table 2) and ππ contacts (Fig. 2) between the thiazole rings, Cg1···Cg2i and Cg3···Cg4ii [symmetry codes: (i) 2-x, 1-y, -z; (ii) 1-x, 2-y, 1-z. Cg1, Cg2, Cg3 and Cg4 are the centroids of the rings S1/C1/N1/C3/C2, S2/C4/N2/C6/C5, S3/C9/N3/C11/C10 and S4/C12/N4/C14/C13, respectively] stabilize the structure, with centroid–centroid distances of 3.670 (3) and 3.614 (2) Å.

Related literature top

For metal complexes with 2,2'-dimethyl-4,4'-bithiazole ligands, see: Abedi & Yahyazade Bali (2010); Al-Hashemi et al. (2009, 2010); Khavasi et al. (2008); Notash et al. (2008, 2009). For related structures, see: Kalateh et al. (2008); Safari et al. (2009).

Experimental top

For the preparation of the title compound, a solution of dm4bt (0.26 g, 1.3 mmol) in methanol (15 ml) was added to a solution of HgBr2 (0.47 g, 1.3 mmol) in methanol (15 ml) at room temperature. Crystals suitable for X-ray diffraction experiment were obtained by methanol diffusion into a colorless solution in DMSO after one week (yield: 0.52 g, 71.8%).

Refinement top

H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.95 (CH) and 0.98 (CH3) Å and with Uiso(H) = 1.2(1.5 for methyl)Ueq(C). The highest residual electron density was found at 0.85 Å from Hg2 atom and the deepest hole at 0.70 Å from Hg1 atom.

Structure description top

Recently, we reported the synthesis and crystal structure of [HgI2(dm4bt)] (dm4bt is 2,2'-dimethyl-4,4'-bithiazole) (Abedi & Yahyazade Bali, 2010). Dm4bt is a good bidentate ligand, and numerous complexes with dm4bt have been prepared, such as that of zinc (Khavasi et al., 2008), thallium (Notash et al., 2008), cadmium (Notash et al., 2009) and copper (Al-Hashemi et al., 2009, 2010). For further investigation of dm4bt, we synthesis the title complex and report herein its crystal structure.

The asymmetric unit of the title compound (Fig. 1) contains two crystallographically independent molecules. The HgII atom is four-coordinated in a distorted tetrahedral configuration by two N atoms from a dm4bt ligand and two Br atoms. The Hg—N and Hg—Br bond lengths (Table 1) and angles are within normal range found in [Hg(SCN)2(dm4bt)] (Safari et al., 2009) and {HgBr2[NH(py)2]} [NH(py)2 is di-2-pyridylamine] (Kalateh et al., 2008).

In the crystal structure, intermolecular C—H···Br hydrogen bonds (Table 2) and ππ contacts (Fig. 2) between the thiazole rings, Cg1···Cg2i and Cg3···Cg4ii [symmetry codes: (i) 2-x, 1-y, -z; (ii) 1-x, 2-y, 1-z. Cg1, Cg2, Cg3 and Cg4 are the centroids of the rings S1/C1/N1/C3/C2, S2/C4/N2/C6/C5, S3/C9/N3/C11/C10 and S4/C12/N4/C14/C13, respectively] stabilize the structure, with centroid–centroid distances of 3.670 (3) and 3.614 (2) Å.

For metal complexes with 2,2'-dimethyl-4,4'-bithiazole ligands, see: Abedi & Yahyazade Bali (2010); Al-Hashemi et al. (2009, 2010); Khavasi et al. (2008); Notash et al. (2008, 2009). For related structures, see: Kalateh et al. (2008); Safari et al. (2009).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Crystal packing diagram for the title compound. Dashed lines denote hydrogen bonds.
Dibromido(2,2'-dimethyl-4,4'-bi-1,3-thiazole-κ2N,N')mercury(II) top
Crystal data top
[HgBr2(C8H8N2S2)]Z = 4
Mr = 556.69F(000) = 1008
Triclinic, P1Dx = 2.840 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.2799 (6) ÅCell parameters from 2931 reflections
b = 11.1595 (7) Åθ = 3.0–29.0°
c = 11.6821 (7) ŵ = 18.25 mm1
α = 88.4456 (11)°T = 100 K
β = 85.3290 (11)°Prism, colorless
γ = 77.1162 (11)°0.14 × 0.12 × 0.08 mm
V = 1302.02 (14) Å3
Data collection top
Bruker APEXII CCD
diffractometer
6912 independent reflections
Radiation source: fine-focus sealed tube5865 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
φ and ω scansθmax = 29.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1414
Tmin = 0.070, Tmax = 0.240k = 1515
20881 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.062H-atom parameters constrained
S = 0.94 w = 1/[σ2(Fo2) + (0.0299P)2 + 2.0838P]
where P = (Fo2 + 2Fc2)/3
6912 reflections(Δ/σ)max = 0.002
275 parametersΔρmax = 1.28 e Å3
0 restraintsΔρmin = 1.68 e Å3
Crystal data top
[HgBr2(C8H8N2S2)]γ = 77.1162 (11)°
Mr = 556.69V = 1302.02 (14) Å3
Triclinic, P1Z = 4
a = 10.2799 (6) ÅMo Kα radiation
b = 11.1595 (7) ŵ = 18.25 mm1
c = 11.6821 (7) ÅT = 100 K
α = 88.4456 (11)°0.14 × 0.12 × 0.08 mm
β = 85.3290 (11)°
Data collection top
Bruker APEXII CCD
diffractometer
6912 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
5865 reflections with I > 2σ(I)
Tmin = 0.070, Tmax = 0.240Rint = 0.041
20881 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0260 restraints
wR(F2) = 0.062H-atom parameters constrained
S = 0.94Δρmax = 1.28 e Å3
6912 reflectionsΔρmin = 1.68 e Å3
275 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Hg11.080846 (18)0.703396 (17)0.207265 (14)0.01438 (5)
Br11.27509 (5)0.73077 (5)0.07429 (4)0.01974 (10)
Br21.01869 (5)0.79183 (4)0.40562 (4)0.01472 (9)
S10.96732 (13)0.30682 (11)0.30191 (10)0.0162 (2)
S20.74266 (12)0.71656 (11)0.06846 (10)0.0167 (2)
N11.0123 (4)0.5145 (4)0.2400 (3)0.0126 (8)
N20.9123 (4)0.6940 (3)0.0815 (3)0.0118 (7)
C11.0489 (4)0.4251 (4)0.3135 (4)0.0117 (8)
C20.8814 (5)0.3826 (4)0.1925 (4)0.0160 (9)
H2A0.81890.35230.15220.019*
C30.9157 (5)0.4932 (4)0.1714 (4)0.0129 (9)
C40.8605 (5)0.7689 (4)0.0020 (4)0.0148 (9)
C50.7668 (5)0.5861 (4)0.0144 (4)0.0150 (9)
H5A0.72060.52170.00970.018*
C60.8618 (5)0.5883 (4)0.0881 (4)0.0131 (9)
C71.1512 (5)0.4226 (5)0.3961 (4)0.0186 (10)
H7A1.13900.50430.42960.028*
H7B1.24070.39950.35610.028*
H7C1.14180.36250.45710.028*
C80.8973 (5)0.8888 (4)0.0288 (4)0.0189 (10)
H8A0.99450.87860.02940.028*
H8B0.85310.95070.02800.028*
H8C0.86840.91550.10500.028*
Hg20.411665 (18)0.785100 (16)0.717555 (15)0.01467 (5)
Br30.50713 (5)0.58257 (4)0.80847 (4)0.01660 (10)
Br40.19137 (5)0.93379 (4)0.74712 (4)0.01734 (10)
S30.72536 (12)1.05628 (11)0.68030 (10)0.0150 (2)
S40.59092 (12)0.68616 (11)0.31954 (10)0.0161 (2)
N30.5664 (4)0.9109 (4)0.6782 (3)0.0142 (8)
N40.5044 (4)0.7580 (3)0.5213 (3)0.0110 (7)
C90.6015 (5)0.9912 (4)0.7442 (4)0.0136 (9)
C100.7285 (5)0.9747 (4)0.5581 (4)0.0154 (9)
H10A0.78490.97940.49040.018*
C110.6378 (4)0.9014 (4)0.5721 (4)0.0114 (8)
C120.4840 (4)0.6864 (4)0.4407 (4)0.0138 (9)
C130.6630 (5)0.7909 (4)0.3806 (4)0.0137 (9)
H13A0.73280.82490.34430.016*
C140.6059 (4)0.8182 (4)0.4879 (4)0.0100 (8)
C150.5358 (5)1.0239 (5)0.8604 (4)0.0176 (10)
H15A0.47170.97210.88070.026*
H15B0.48851.11050.86080.026*
H15C0.60361.01070.91640.026*
C160.3766 (5)0.6164 (5)0.4523 (4)0.0181 (10)
H16A0.36320.59120.53260.027*
H16B0.40230.54340.40380.027*
H16C0.29320.66850.42810.027*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Hg10.01399 (9)0.01808 (10)0.01340 (8)0.00844 (7)0.00148 (6)0.00061 (6)
Br10.0193 (2)0.0236 (3)0.0190 (2)0.0124 (2)0.00513 (19)0.00411 (18)
Br20.0117 (2)0.0184 (2)0.0138 (2)0.00327 (17)0.00036 (16)0.00020 (17)
S10.0190 (6)0.0165 (6)0.0161 (5)0.0099 (5)0.0037 (4)0.0045 (4)
S20.0160 (6)0.0177 (6)0.0179 (5)0.0051 (5)0.0079 (5)0.0019 (4)
N10.0086 (18)0.015 (2)0.0150 (18)0.0052 (15)0.0010 (15)0.0000 (15)
N20.0097 (18)0.0125 (19)0.0134 (18)0.0036 (15)0.0000 (14)0.0017 (14)
C10.007 (2)0.012 (2)0.015 (2)0.0021 (16)0.0031 (16)0.0011 (16)
C20.017 (2)0.020 (2)0.014 (2)0.011 (2)0.0026 (18)0.0032 (18)
C30.013 (2)0.015 (2)0.011 (2)0.0035 (18)0.0011 (17)0.0001 (16)
C40.017 (2)0.018 (2)0.011 (2)0.0052 (19)0.0008 (17)0.0031 (17)
C50.014 (2)0.016 (2)0.015 (2)0.0045 (18)0.0055 (18)0.0006 (17)
C60.009 (2)0.016 (2)0.015 (2)0.0045 (18)0.0010 (17)0.0052 (17)
C70.018 (2)0.022 (3)0.019 (2)0.008 (2)0.0075 (19)0.0053 (19)
C80.020 (3)0.015 (2)0.023 (2)0.005 (2)0.004 (2)0.0003 (19)
Hg20.01185 (9)0.01587 (9)0.01664 (9)0.00476 (7)0.00171 (7)0.00051 (6)
Br30.0161 (2)0.0170 (2)0.0169 (2)0.00399 (18)0.00171 (17)0.00080 (17)
Br40.0137 (2)0.0168 (2)0.0201 (2)0.00250 (18)0.00373 (18)0.00131 (17)
S30.0160 (6)0.0169 (6)0.0139 (5)0.0084 (5)0.0024 (4)0.0025 (4)
S40.0136 (5)0.0197 (6)0.0151 (5)0.0042 (5)0.0012 (4)0.0057 (4)
N30.0134 (19)0.015 (2)0.0149 (18)0.0048 (16)0.0012 (15)0.0004 (15)
N40.0065 (17)0.0114 (18)0.0140 (17)0.0002 (14)0.0005 (14)0.0018 (14)
C90.012 (2)0.015 (2)0.013 (2)0.0031 (17)0.0027 (17)0.0006 (17)
C100.015 (2)0.017 (2)0.014 (2)0.0043 (18)0.0002 (18)0.0004 (17)
C110.007 (2)0.015 (2)0.012 (2)0.0022 (17)0.0010 (16)0.0004 (16)
C120.0029 (19)0.020 (2)0.017 (2)0.0006 (17)0.0003 (16)0.0006 (18)
C130.011 (2)0.013 (2)0.017 (2)0.0019 (17)0.0004 (17)0.0004 (17)
C140.0051 (19)0.009 (2)0.015 (2)0.0003 (16)0.0022 (16)0.0033 (16)
C150.022 (3)0.023 (3)0.009 (2)0.009 (2)0.0028 (18)0.0022 (18)
C160.012 (2)0.023 (3)0.021 (2)0.0072 (19)0.0017 (19)0.006 (2)
Geometric parameters (Å, º) top
Hg1—N12.379 (4)Hg2—N32.357 (4)
Hg1—N22.383 (4)Hg2—N42.410 (4)
Hg1—Br12.4970 (5)Hg2—Br32.4999 (5)
Hg1—Br22.5206 (5)Hg2—Br42.4957 (5)
S1—C21.709 (5)S3—C101.708 (5)
S1—C11.727 (4)S3—C91.713 (5)
S2—C51.708 (5)S4—C131.715 (5)
S2—C41.729 (5)S4—C121.720 (5)
N1—C11.309 (6)N3—C91.324 (6)
N1—C31.389 (6)N3—C111.383 (6)
N2—C41.298 (6)N4—C121.310 (6)
N2—C61.388 (6)N4—C141.387 (5)
C1—C71.480 (6)C9—C151.483 (6)
C2—C31.368 (6)C10—C111.368 (6)
C2—H2A0.9500C10—H10A0.9500
C3—C61.467 (7)C11—C141.475 (6)
C4—C81.496 (7)C12—C161.483 (6)
C5—C61.358 (6)C13—C141.353 (6)
C5—H5A0.9500C13—H13A0.9500
C7—H7A0.9800C15—H15A0.9800
C7—H7B0.9800C15—H15B0.9800
C7—H7C0.9800C15—H15C0.9800
C8—H8A0.9800C16—H16A0.9800
C8—H8B0.9800C16—H16B0.9800
C8—H8C0.9800C16—H16C0.9800
N1—Hg1—N271.23 (13)N3—Hg2—N470.25 (13)
N1—Hg1—Br1124.79 (9)N3—Hg2—Br4104.07 (10)
N2—Hg1—Br1103.63 (9)N4—Hg2—Br4115.64 (9)
N1—Hg1—Br298.36 (9)N3—Hg2—Br3114.30 (10)
N2—Hg1—Br2120.67 (9)N4—Hg2—Br3102.77 (9)
Br1—Hg1—Br2126.492 (16)Br4—Hg2—Br3132.848 (17)
C2—S1—C190.8 (2)C10—S3—C990.6 (2)
C5—S2—C490.4 (2)C13—S4—C1290.4 (2)
C1—N1—C3112.7 (4)C9—N3—C11111.5 (4)
C1—N1—Hg1131.2 (3)C9—N3—Hg2130.2 (3)
C3—N1—Hg1116.2 (3)C11—N3—Hg2118.3 (3)
C4—N2—C6111.8 (4)C12—N4—C14112.3 (4)
C4—N2—Hg1131.6 (3)C12—N4—Hg2130.9 (3)
C6—N2—Hg1116.5 (3)C14—N4—Hg2116.6 (3)
N1—C1—C7124.3 (4)N3—C9—C15122.7 (4)
N1—C1—S1112.7 (3)N3—C9—S3113.5 (3)
C7—C1—S1123.0 (4)C15—C9—S3123.8 (4)
C3—C2—S1110.1 (3)C11—C10—S3110.1 (3)
C3—C2—H2A125.0C11—C10—H10A125.0
S1—C2—H2A125.0S3—C10—H10A125.0
C2—C3—N1113.8 (4)C10—C11—N3114.4 (4)
C2—C3—C6127.8 (4)C10—C11—C14128.1 (4)
N1—C3—C6118.4 (4)N3—C11—C14117.5 (4)
N2—C4—C8124.7 (4)N4—C12—C16123.1 (4)
N2—C4—S2113.3 (3)N4—C12—S4112.9 (3)
C8—C4—S2122.0 (4)C16—C12—S4124.0 (4)
C6—C5—S2109.8 (4)C14—C13—S4110.1 (3)
C6—C5—H5A125.1C14—C13—H13A124.9
S2—C5—H5A125.1S4—C13—H13A124.9
C5—C6—N2114.7 (4)C13—C14—N4114.2 (4)
C5—C6—C3127.7 (4)C13—C14—C11128.8 (4)
N2—C6—C3117.7 (4)N4—C14—C11117.0 (4)
C1—C7—H7A109.5C9—C15—H15A109.5
C1—C7—H7B109.5C9—C15—H15B109.5
H7A—C7—H7B109.5H15A—C15—H15B109.5
C1—C7—H7C109.5C9—C15—H15C109.5
H7A—C7—H7C109.5H15A—C15—H15C109.5
H7B—C7—H7C109.5H15B—C15—H15C109.5
C4—C8—H8A109.5C12—C16—H16A109.5
C4—C8—H8B109.5C12—C16—H16B109.5
H8A—C8—H8B109.5H16A—C16—H16B109.5
C4—C8—H8C109.5C12—C16—H16C109.5
H8A—C8—H8C109.5H16A—C16—H16C109.5
H8B—C8—H8C109.5H16B—C16—H16C109.5
N2—Hg1—N1—C1178.0 (4)N4—Hg2—N3—C9177.3 (5)
Br1—Hg1—N1—C188.2 (4)Br4—Hg2—N3—C964.7 (4)
Br2—Hg1—N1—C158.3 (4)Br3—Hg2—N3—C987.2 (4)
N2—Hg1—N1—C31.3 (3)N4—Hg2—N3—C114.7 (3)
Br1—Hg1—N1—C392.5 (3)Br4—Hg2—N3—C11117.3 (3)
Br2—Hg1—N1—C3121.0 (3)Br3—Hg2—N3—C1190.8 (3)
N1—Hg1—N2—C4177.5 (4)N3—Hg2—N4—C12178.4 (4)
Br1—Hg1—N2—C455.0 (4)Br4—Hg2—N4—C1285.0 (4)
Br2—Hg1—N2—C493.8 (4)Br3—Hg2—N4—C1266.9 (4)
N1—Hg1—N2—C60.9 (3)N3—Hg2—N4—C145.4 (3)
Br1—Hg1—N2—C6121.7 (3)Br4—Hg2—N4—C14101.9 (3)
Br2—Hg1—N2—C689.5 (3)Br3—Hg2—N4—C14106.2 (3)
C3—N1—C1—C7179.2 (4)C11—N3—C9—C15176.8 (4)
Hg1—N1—C1—C71.5 (7)Hg2—N3—C9—C155.0 (7)
C3—N1—C1—S10.6 (5)C11—N3—C9—S31.2 (5)
Hg1—N1—C1—S1179.9 (2)Hg2—N3—C9—S3177.0 (2)
C2—S1—C1—N10.3 (4)C10—S3—C9—N31.2 (4)
C2—S1—C1—C7178.3 (4)C10—S3—C9—C15176.8 (5)
C1—S1—C2—C31.2 (4)C9—S3—C10—C110.9 (4)
S1—C2—C3—N11.7 (5)S3—C10—C11—N30.4 (5)
S1—C2—C3—C6177.4 (4)S3—C10—C11—C14178.7 (4)
C1—N1—C3—C21.5 (6)C9—N3—C11—C100.5 (6)
Hg1—N1—C3—C2179.0 (3)Hg2—N3—C11—C10177.9 (3)
C1—N1—C3—C6177.7 (4)C9—N3—C11—C14178.0 (4)
Hg1—N1—C3—C61.7 (5)Hg2—N3—C11—C143.6 (5)
C6—N2—C4—C8178.1 (4)C14—N4—C12—C16176.9 (4)
Hg1—N2—C4—C81.3 (7)Hg2—N4—C12—C169.8 (7)
C6—N2—C4—S21.5 (5)C14—N4—C12—S41.2 (5)
Hg1—N2—C4—S2178.2 (2)Hg2—N4—C12—S4172.1 (2)
C5—S2—C4—N20.4 (4)C13—S4—C12—N41.5 (4)
C5—S2—C4—C8179.2 (4)C13—S4—C12—C16176.6 (4)
C4—S2—C5—C60.8 (4)C12—S4—C13—C141.3 (4)
S2—C5—C6—N21.9 (5)S4—C13—C14—N40.9 (5)
S2—C5—C6—C3177.9 (4)S4—C13—C14—C11178.8 (4)
C4—N2—C6—C52.2 (6)C12—N4—C14—C130.2 (6)
Hg1—N2—C6—C5179.5 (3)Hg2—N4—C14—C13174.1 (3)
C4—N2—C6—C3177.6 (4)C12—N4—C14—C11179.9 (4)
Hg1—N2—C6—C30.3 (5)Hg2—N4—C14—C115.6 (5)
C2—C3—C6—C50.1 (8)C10—C11—C14—C133.5 (8)
N1—C3—C6—C5179.3 (4)N3—C11—C14—C13178.2 (5)
C2—C3—C6—N2179.9 (4)C10—C11—C14—N4176.8 (5)
N1—C3—C6—N21.0 (6)N3—C11—C14—N41.5 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8B···Br4i0.982.923.826 (5)155
C10—H10A···Br4i0.952.923.760 (5)148
C16—H16B···Br3ii0.982.873.772 (5)154
C16—H16C···Br2iii0.982.883.837 (5)165
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+1, y+1, z+1; (iii) x1, y, z.

Experimental details

Crystal data
Chemical formula[HgBr2(C8H8N2S2)]
Mr556.69
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)10.2799 (6), 11.1595 (7), 11.6821 (7)
α, β, γ (°)88.4456 (11), 85.3290 (11), 77.1162 (11)
V3)1302.02 (14)
Z4
Radiation typeMo Kα
µ (mm1)18.25
Crystal size (mm)0.14 × 0.12 × 0.08
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.070, 0.240
No. of measured, independent and
observed [I > 2σ(I)] reflections
20881, 6912, 5865
Rint0.041
(sin θ/λ)max1)0.682
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.062, 0.94
No. of reflections6912
No. of parameters275
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.28, 1.68

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2006), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Hg1—N12.379 (4)Hg2—N32.357 (4)
Hg1—N22.383 (4)Hg2—N42.410 (4)
Hg1—Br12.4970 (5)Hg2—Br32.4999 (5)
Hg1—Br22.5206 (5)Hg2—Br42.4957 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8B···Br4i0.982.923.826 (5)155
C10—H10A···Br4i0.952.923.760 (5)148
C16—H16B···Br3ii0.982.873.772 (5)154
C16—H16C···Br2iii0.982.883.837 (5)165
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+1, y+1, z+1; (iii) x1, y, z.
 

Acknowledgements

The author is grateful to the Islamic Azad University, North Tehran Branch, for financial support.

References

First citationAbedi, A. & Yahyazade Bali, E. (2010). Acta Cryst. E66, m1023.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAl-Hashemi, R., Safari, N., Abedi, A., Notash, B., Amani, V. & Khavasi, H. R. (2009). J. Coord. Chem. 62, 2909–2918.  Web of Science CSD CrossRef CAS Google Scholar
First citationAl-Hashemi, R., Safari, N., Amani, S., Amani, V., Abedi, A., Khavasi, H. R. & Ng, S. W. (2010). J. Coord. Chem. 63, 3207–3217.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKalateh, K., Norouzi, A., Ebadi, A., Ahmadi, R. & Amani, V. (2008). Acta Cryst. E64, m1583–m1584.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationKhavasi, H. R., Abedi, A., Amani, V., Notash, B. & Safari, N. (2008). Polyhedron, 27, 1848–1854.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNotash, B., Safari, N., Abedi, A., Amani, V. & Khavasi, H. R. (2009). J. Coord. Chem. 62, 1638–1649.  Web of Science CSD CrossRef CAS Google Scholar
First citationNotash, B., Safari, N., Khavasi, H. R., Amani, V. & Abedi, A. (2008). J. Organomet. Chem. 693, 3553–3557.  Web of Science CrossRef CAS Google Scholar
First citationSafari, N., Amani, V., Abedi, A., Notash, B. & Ng, S. W. (2009). Acta Cryst. E65, m372.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds