metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Hexa­aqua­magnesium dibromide 5-(pyridinium-3-yl)tetra­zol-1-ide

aOrdered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: fudavid88@yahoo.com.cn

(Received 11 December 2010; accepted 17 December 2010; online 24 December 2010)

In the title compound, [Mg(H2O)6]Br2·2C6H5N5, the MgII atom, lying on an inversion center, is coordinated by six water mol­ecules in a distorted octa­hedral geometry. The pyridine and tetra­zole rings in the 5-(pyridinium-3-yl)tetra­zol-1-ide zwitterion are nearly coplanar, twisted from each other by a dihedral angle of 5.70 (1)°. The zwitterions, Br anions and complex cations are connected by O—H⋯Br, O—H⋯N and N—H⋯Br hydrogen bonds, leading to the formation of a three-dimensional network.

Related literature

For tetra­zole derivatives, see: Fu et al. (2008[Fu, D.-W., Zhang, W. & Xiong, R.-G. (2008). Cryst. Growth Des. 8, 3461-3464.]); Zhao et al. (2008[Zhao, H., Qu, Z.-R., Ye, H.-Y. & Xiong, R.-G. (2008). Chem. Soc. Rev. 37, 84-100.]). For the crystal structures and properties of related compounds, see: Fu et al. (2007[Fu, D.-W., Song, Y.-M., Wang, G.-X., Ye, Q., Xiong, R.-G., Akutagawa, T., Nakamura, T., Chan, P. W. H. & Huang, S. D. (2007). J. Am. Chem. Soc. 129, 5346-5347.], 2009[Fu, D.-W., Ge, J.-Z., Dai, J., Ye, H.-Y. & Qu, Z.-R. (2009). Inorg. Chem. Commun. 12, 994-997.]); Fu & Xiong (2008[Fu, D.-W. & Xiong, R.-G. (2008). Dalton Trans. pp. 3946-3948.]).

[Scheme 1]

Experimental

Crystal data
  • [Mg(H2O)6]Br2·2C6H5N5

  • Mr = 586.53

  • Triclinic, [P \overline 1]

  • a = 7.3439 (15) Å

  • b = 8.7786 (18) Å

  • c = 9.5863 (19) Å

  • α = 94.04 (3)°

  • β = 90.94 (3)°

  • γ = 111.75 (3)°

  • V = 572.0 (2) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 3.62 mm−1

  • T = 298 K

  • 0.40 × 0.05 × 0.05 mm

Data collection
  • Rigaku SCXmini CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.89, Tmax = 0.95

  • 5933 measured reflections

  • 2627 independent reflections

  • 2172 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.097

  • S = 1.09

  • 2627 reflections

  • 142 parameters

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.52 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯Br1i 0.86 2.41 3.240 (3) 161
O1W—H1WA⋯N5 0.81 1.98 2.780 (3) 171
O1W—H1WB⋯Br1ii 0.89 2.66 3.382 (3) 138
O2W—H2WA⋯N4 0.86 1.89 2.738 (3) 167
O2W—H2WB⋯Br1iii 0.76 2.53 3.296 (2) 178
O3W—H3WA⋯Br1iv 0.91 2.48 3.328 (2) 156
O3W—H3WB⋯N2v 0.96 1.78 2.730 (3) 174
Symmetry codes: (i) x-1, y, z-1; (ii) x-1, y, z; (iii) x, y+1, z; (iv) -x+1, -y+1, -z+2; (v) x, y, z+1.

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL and DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Tetrazole compounds have attracted more attention as phase transition dielectric materials for its applications in micro-electronics, memory storage. With the purpose of obtaining phase transition crystals of 3-(1H-tetrazol-5-yl)pyridine compounds, its interaction with various metal ions has been studied and a series of new materials have been elaborated with this organic molecule (Fu et al., 2007, 2008; Fu & Xiong 2008; Zhao et al., 2008). In this paper, we describe the crystal structure of the title compound.

The asymmetric unit of the title compound (Fig. 1) is composed of one zwitterionic organic molecule, half [Mg(H2O)6]2+ cation and one Br anion. In the zwitterionic organic molecule, the pyridine N atom is protonated. The pyridine and tetrazole rings are nearly coplanar and only twisted from each other by a dihedral angle of 5.70 (1)°. The geometric parameters of the tetrazole ring are comparable to those in related molecules (Fu et al., 2009; Zhao et al., 2008).

In the crystal structure, the intermolecular hydrogen bonds are formed by all H atoms of the water molecules and pyridine N atoms with the tetrazole N atoms or Br anions. The complex cations [Mg(H2O)6]2+ and Br anions are linked in the crystal through O—H···Br hydrogen bonds into an infinite cation–anion sheet parallel to (0 0 1). The two-dimensional sheets are linked by organic molecules through O—H···N and N—H···Br hydrogen bonds into a three-dimensional network (Table 1 and Fig. 2).

Related literature top

For tetrazole derivatives, see: Fu et al. (2008); Zhao et al. (2008). For the crystal structures and properties of related compounds, see: Fu et al. (2007, 2009); Fu & Xiong (2008).

Experimental top

MgBr2.6H2O (2 mmol) and 3-(1H-tetrazol-5-yl)pyridine (0.528 g, 2 mmol) were dissolved in 70% methanol aqueous solution, and then 2 ml HBr was added. Single crystals suitable for X-ray diffraction analysis were obtained by slow evaporation of the solution at room temperature after two weeks. The crystals were colourless, block, and of average size 0.2×0.3×0.4 mm.

The permittivity measurement shows that there is no phase transition within temperature range from 100 to 400 K, and the permittivity is 9.1 at 1 MHz at room temperature.

Refinement top

H atoms attached to C and N atoms were positioned geometrically and treated as riding, with C—H = 0.93 and N—H = 0.86 Å and with Uiso(H) = 1.2Ueq(C, N). H atoms of water molecules were located in a difference Fourier map and refined using a riding model, with Uiso(H) = 1.5Ueq(O).

Structure description top

Tetrazole compounds have attracted more attention as phase transition dielectric materials for its applications in micro-electronics, memory storage. With the purpose of obtaining phase transition crystals of 3-(1H-tetrazol-5-yl)pyridine compounds, its interaction with various metal ions has been studied and a series of new materials have been elaborated with this organic molecule (Fu et al., 2007, 2008; Fu & Xiong 2008; Zhao et al., 2008). In this paper, we describe the crystal structure of the title compound.

The asymmetric unit of the title compound (Fig. 1) is composed of one zwitterionic organic molecule, half [Mg(H2O)6]2+ cation and one Br anion. In the zwitterionic organic molecule, the pyridine N atom is protonated. The pyridine and tetrazole rings are nearly coplanar and only twisted from each other by a dihedral angle of 5.70 (1)°. The geometric parameters of the tetrazole ring are comparable to those in related molecules (Fu et al., 2009; Zhao et al., 2008).

In the crystal structure, the intermolecular hydrogen bonds are formed by all H atoms of the water molecules and pyridine N atoms with the tetrazole N atoms or Br anions. The complex cations [Mg(H2O)6]2+ and Br anions are linked in the crystal through O—H···Br hydrogen bonds into an infinite cation–anion sheet parallel to (0 0 1). The two-dimensional sheets are linked by organic molecules through O—H···N and N—H···Br hydrogen bonds into a three-dimensional network (Table 1 and Fig. 2).

For tetrazole derivatives, see: Fu et al. (2008); Zhao et al. (2008). For the crystal structures and properties of related compounds, see: Fu et al. (2007, 2009); Fu & Xiong (2008).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry code: (A) 1 - x, 1 - y, 2 - z.]
[Figure 2] Fig. 2. The crystal packing of the title compound. H atoms not involved in hydrogen bonds (dashed lines) have been omitted for clarity.
Hexaaquamagnesium dibromide 5-(pyridinium-3-yl)tetrazol-1-ide top
Crystal data top
[Mg(H2O)6]Br2·2C6H5N5Z = 1
Mr = 586.53F(000) = 294
Triclinic, P1Dx = 1.703 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.3439 (15) ÅCell parameters from 2627 reflections
b = 8.7786 (18) Åθ = 3.1–24.5°
c = 9.5863 (19) ŵ = 3.62 mm1
α = 94.04 (3)°T = 298 K
β = 90.94 (3)°Block, colourless
γ = 111.75 (3)°0.40 × 0.05 × 0.05 mm
V = 572.0 (2) Å3
Data collection top
Rigaku SCXmini CCD
diffractometer
2627 independent reflections
Radiation source: fine-focus sealed tube2172 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.1°
ω scansh = 99
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1111
Tmin = 0.89, Tmax = 0.95l = 1212
5933 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0426P)2 + 0.1011P]
where P = (Fo2 + 2Fc2)/3
2627 reflections(Δ/σ)max = 0.001
142 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.52 e Å3
Crystal data top
[Mg(H2O)6]Br2·2C6H5N5γ = 111.75 (3)°
Mr = 586.53V = 572.0 (2) Å3
Triclinic, P1Z = 1
a = 7.3439 (15) ÅMo Kα radiation
b = 8.7786 (18) ŵ = 3.62 mm1
c = 9.5863 (19) ÅT = 298 K
α = 94.04 (3)°0.40 × 0.05 × 0.05 mm
β = 90.94 (3)°
Data collection top
Rigaku SCXmini CCD
diffractometer
2627 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
2172 reflections with I > 2σ(I)
Tmin = 0.89, Tmax = 0.95Rint = 0.040
5933 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.097H-atom parameters constrained
S = 1.09Δρmax = 0.32 e Å3
2627 reflectionsΔρmin = 0.52 e Å3
142 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N40.3716 (3)0.6009 (3)0.6076 (3)0.0347 (6)
N20.2637 (3)0.5318 (3)0.3932 (2)0.0315 (5)
C60.1639 (4)0.4135 (3)0.4740 (3)0.0263 (6)
N50.2266 (3)0.4528 (3)0.6073 (2)0.0328 (5)
C20.0038 (4)0.2612 (3)0.4229 (3)0.0272 (6)
C30.1073 (4)0.1506 (4)0.5142 (3)0.0319 (6)
H30.07920.17300.61010.038*
N10.1923 (4)0.0847 (4)0.2374 (3)0.0481 (7)
H1A0.22020.06420.14890.058*
N30.3947 (3)0.6479 (3)0.4800 (3)0.0360 (6)
C10.0427 (5)0.2234 (4)0.2822 (3)0.0398 (7)
H10.02960.29410.21800.048*
C50.3000 (5)0.0234 (4)0.3232 (4)0.0464 (8)
H50.40170.11880.28730.056*
C40.2598 (4)0.0073 (4)0.4639 (4)0.0408 (7)
H40.33350.06680.52530.049*
Mg10.50000.50001.00000.0303 (3)
O1W0.2634 (3)0.3471 (3)0.8692 (2)0.0497 (6)
H1WA0.24530.36740.79060.075*
H1WB0.18060.24670.88490.075*
O2W0.5507 (3)0.6851 (2)0.8697 (2)0.0465 (6)
H2WA0.51170.66020.78290.070*
H2WB0.60980.77770.87800.070*
O3W0.3123 (4)0.5786 (3)1.1155 (2)0.0532 (6)
H3WA0.27600.65851.08340.080*
H3WB0.30300.56061.21300.080*
Br10.79518 (5)0.08632 (4)0.89951 (3)0.04481 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N40.0315 (12)0.0309 (13)0.0353 (14)0.0055 (11)0.0054 (10)0.0025 (11)
N20.0307 (12)0.0285 (12)0.0293 (13)0.0041 (10)0.0010 (10)0.0027 (10)
C60.0242 (13)0.0277 (14)0.0257 (14)0.0080 (11)0.0012 (10)0.0028 (11)
N50.0325 (12)0.0336 (13)0.0262 (13)0.0053 (11)0.0038 (10)0.0027 (10)
C20.0270 (13)0.0270 (14)0.0269 (14)0.0097 (11)0.0010 (11)0.0009 (11)
C30.0309 (14)0.0311 (15)0.0313 (15)0.0083 (12)0.0010 (11)0.0051 (12)
N10.0513 (16)0.0464 (17)0.0333 (15)0.0059 (14)0.0096 (12)0.0124 (13)
N30.0332 (13)0.0292 (13)0.0411 (15)0.0063 (11)0.0026 (11)0.0039 (11)
C10.0410 (16)0.0376 (17)0.0297 (16)0.0025 (14)0.0027 (13)0.0010 (13)
C50.0369 (17)0.0301 (17)0.061 (2)0.0016 (14)0.0041 (16)0.0084 (16)
C40.0344 (16)0.0307 (16)0.052 (2)0.0049 (13)0.0049 (14)0.0061 (15)
Mg10.0387 (7)0.0245 (7)0.0216 (7)0.0047 (6)0.0004 (5)0.0022 (5)
O1W0.0520 (13)0.0454 (14)0.0302 (12)0.0069 (11)0.0088 (10)0.0073 (10)
O2W0.0710 (15)0.0213 (10)0.0310 (12)0.0015 (10)0.0103 (10)0.0041 (9)
O3W0.0792 (17)0.0629 (17)0.0342 (13)0.0432 (15)0.0173 (12)0.0161 (12)
Br10.0546 (2)0.03047 (19)0.0402 (2)0.00473 (15)0.00206 (14)0.00592 (14)
Geometric parameters (Å, º) top
N4—N31.312 (4)C5—H50.9300
N4—N51.341 (3)C4—H40.9300
N2—N31.336 (3)Mg1—O2Wi2.048 (2)
N2—C61.336 (3)Mg1—O2W2.048 (2)
C6—N51.329 (3)Mg1—O3Wi2.061 (2)
C6—C21.460 (4)Mg1—O3W2.061 (2)
C2—C11.373 (4)Mg1—O1W2.087 (2)
C2—C31.390 (4)Mg1—O1Wi2.087 (2)
C3—C41.386 (4)O1W—H1WA0.8068
C3—H30.9300O1W—H1WB0.8907
N1—C51.333 (4)O2W—H2WA0.8615
N1—C11.339 (4)O2W—H2WB0.7636
N1—H1A0.8600O3W—H3WA0.9085
C1—H10.9300O3W—H3WB0.9576
C5—C41.363 (5)
N3—N4—N5110.0 (2)O2Wi—Mg1—O2W180.000 (1)
N3—N2—C6105.2 (2)O2Wi—Mg1—O3Wi91.93 (10)
N5—C6—N2111.4 (2)O2W—Mg1—O3Wi88.07 (10)
N5—C6—C2124.2 (2)O2Wi—Mg1—O3W88.07 (10)
N2—C6—C2124.4 (2)O2W—Mg1—O3W91.93 (10)
C6—N5—N4104.5 (2)O3Wi—Mg1—O3W180.000 (1)
C1—C2—C3117.8 (3)O2Wi—Mg1—O1W89.55 (9)
C1—C2—C6120.7 (3)O2W—Mg1—O1W90.45 (9)
C3—C2—C6121.5 (3)O3Wi—Mg1—O1W90.10 (11)
C4—C3—C2120.7 (3)O3W—Mg1—O1W89.90 (11)
C4—C3—H3119.6O2Wi—Mg1—O1Wi90.45 (9)
C2—C3—H3119.6O2W—Mg1—O1Wi89.55 (9)
C5—N1—C1123.3 (3)O3Wi—Mg1—O1Wi89.90 (11)
C5—N1—H1A118.3O3W—Mg1—O1Wi90.10 (11)
C1—N1—H1A118.3O1W—Mg1—O1Wi180.000 (1)
N4—N3—N2108.8 (2)Mg1—O1W—H1WA122.5
N1—C1—C2119.9 (3)Mg1—O1W—H1WB126.6
N1—C1—H1120.1H1WA—O1W—H1WB110.2
C2—C1—H1120.1Mg1—O2W—H2WA119.0
N1—C5—C4119.4 (3)Mg1—O2W—H2WB133.7
N1—C5—H5120.3H2WA—O2W—H2WB107.0
C4—C5—H5120.3Mg1—O3W—H3WA118.6
C5—C4—C3119.0 (3)Mg1—O3W—H3WB118.7
C5—C4—H4120.5H3WA—O3W—H3WB119.2
C3—C4—H4120.5
Symmetry code: (i) x+1, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Br1ii0.862.413.240 (3)161
O1W—H1WA···N50.811.982.780 (3)171
O1W—H1WB···Br1iii0.892.663.382 (3)138
O2W—H2WA···N40.861.892.738 (3)167
O2W—H2WB···Br1iv0.762.533.296 (2)178
O3W—H3WA···Br1i0.912.483.328 (2)156
O3W—H3WB···N2v0.961.782.730 (3)174
Symmetry codes: (i) x+1, y+1, z+2; (ii) x1, y, z1; (iii) x1, y, z; (iv) x, y+1, z; (v) x, y, z+1.

Experimental details

Crystal data
Chemical formula[Mg(H2O)6]Br2·2C6H5N5
Mr586.53
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)7.3439 (15), 8.7786 (18), 9.5863 (19)
α, β, γ (°)94.04 (3), 90.94 (3), 111.75 (3)
V3)572.0 (2)
Z1
Radiation typeMo Kα
µ (mm1)3.62
Crystal size (mm)0.40 × 0.05 × 0.05
Data collection
DiffractometerRigaku SCXmini CCD
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.89, 0.95
No. of measured, independent and
observed [I > 2σ(I)] reflections
5933, 2627, 2172
Rint0.040
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.097, 1.09
No. of reflections2627
No. of parameters142
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.52

Computer programs: CrystalClear (Rigaku, 2005), SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Br1i0.862.413.240 (3)161
O1W—H1WA···N50.811.982.780 (3)171
O1W—H1WB···Br1ii0.892.663.382 (3)138
O2W—H2WA···N40.861.892.738 (3)167
O2W—H2WB···Br1iii0.762.533.296 (2)178
O3W—H3WA···Br1iv0.912.483.328 (2)156
O3W—H3WB···N2v0.961.782.730 (3)174
Symmetry codes: (i) x1, y, z1; (ii) x1, y, z; (iii) x, y+1, z; (iv) x+1, y+1, z+2; (v) x, y, z+1.
 

Acknowledgements

This work was supported by a start-up grant from Southeast University.

References

First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFu, D.-W., Ge, J.-Z., Dai, J., Ye, H.-Y. & Qu, Z.-R. (2009). Inorg. Chem. Commun. 12, 994–997.  Web of Science CSD CrossRef CAS Google Scholar
First citationFu, D.-W., Song, Y.-M., Wang, G.-X., Ye, Q., Xiong, R.-G., Akutagawa, T., Nakamura, T., Chan, P. W. H. & Huang, S. D. (2007). J. Am. Chem. Soc. 129, 5346–5347.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFu, D.-W. & Xiong, R.-G. (2008). Dalton Trans. pp. 3946–3948.  Web of Science CSD CrossRef Google Scholar
First citationFu, D.-W., Zhang, W. & Xiong, R.-G. (2008). Cryst. Growth Des. 8, 3461–3464.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhao, H., Qu, Z.-R., Ye, H.-Y. & Xiong, R.-G. (2008). Chem. Soc. Rev. 37, 84–100.  Web of Science CrossRef PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds