organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-(5-Methyl-3-phenyl-1H-pyrazol-1-yl)propanamide monohydrate

aState Key Lab. Base of Novel Functional Materials and Preparation Science, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, People's Republic of China
*Correspondence e-mail: zjf@nbu.edu.cn

(Received 3 November 2010; accepted 1 December 2010; online 8 December 2010)

In the title compound, C13H15N3O·H2O, the dihedral angle between the pyrazole and benzene rings is 26.6 (2)° and the N—C—C—C torsion angle is 153.6 (3)°. In the crystal, adjacent mol­ecules are linked by N—H⋯N, N—H⋯O and O—H⋯O hydrogen bonds into a network structure running along the a axis.

Related literature

For the potential applications of substituted pyrazole derivatives as ligands, see: Shaw et al. (2004[Shaw, J. L., Garrison, S. A., Aleman, E. A., Ziegler, C. J. & Modarelli, D. A. (2004). J. Org. Chem. 69, 7423-7427.];) Pal et al. (2005[Pal, S., Barik, A. K., Gupta, S., Hazra, A., Kar, S. K., Peng, S. M., Lee, G. H., Butcher, R. J., Fallah, M. S. & Ribas, J. (2005). Inorg. Chem. 44, 3880-3889.]). For the design and synthesis of various pyrazole ligands with special structural properties to fulfill the stereochemical requirements of the metal-binding sites, see: Bell et al. (2003[Bell, Z. R., Harding, L. P. & Ward, M. D. (2003). Chem. Commun. pp. 2432-2433.]); Paul et al. (2004[Paul, R. L., Argent, S. P., Jeffery, J. C., Harding, L. P., Lynamd, J. M. & Ward, M. D. (2004). Dalton Trans. pp. 3453-3458.]) For pyrazole ligands with propanamide side-chains, see: Huang et al. (2009[Huang, F., Jin, B. & Zhang, J.-F. (2009). Acta Cryst. E65, o1411.]); Zhang et al. (2009[Zhang, J.-F., Huang, F. & Chen, S.-J. (2009). Acta Cryst. E65, o2442.]).

[Scheme 1]

Experimental

Crystal data
  • C13H15N3O·H2O

  • Mr = 247.30

  • Orthorhombic, P 21 21 21

  • a = 6.5482 (13) Å

  • b = 12.609 (3) Å

  • c = 16.606 (3) Å

  • V = 1371.1 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 296 K

  • 0.45 × 0.23 × 0.12 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.977, Tmax = 0.990

  • 13414 measured reflections

  • 1815 independent reflections

  • 1323 reflections with I > 2σ(I)

  • Rint = 0.056

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.140

  • S = 1.08

  • 1815 reflections

  • 164 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O2 0.86 2.03 2.867 (3) 165
N1—H1B⋯N3i 0.86 2.22 3.036 (3) 159
O2—H2D⋯O1ii 0.84 1.96 2.783 (3) 166.2
O2—H2C⋯O1i 0.85 2.03 2.872 (3) 168.5
Symmetry codes: (i) x-1, y, z; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1].

Data collection: RAPID-AUTO (Rigaku, 1998)[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]; cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004[Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: CrystalStructure.

Supporting information


Comment top

In recent years, there has been considerable interest in the use of hemilabile ligands containing substituted pyrazole groups because of their potential applications in catalysis and their ability for complexes construction (Shaw et al., 2004; Pal et al., 2005). Nowadays, much attention has been focused on the design of various pyrazole ligands with special structural properties to fulfill the specific stereochemical requirement of a particular metal-binding site (Bell et al., 2003; Paul et al., 2004). Some new pyrazole ligands combined with propanamide side-chains were reported (Zhang et al., 2009; Huang et al., 2009). Here, we report another new N-pyrazolylpropanamide ligand, C13H15N3O . H2O, (Scheme 1).

As is shown in Figure 1, in the title compound, the dihedral angle between pyrazole ring and benzene ring is 26.6 (2)° and the torsion angle N3—C7—C8—C13 is 153.6 (3)°. In the crystal structure, there is a N—H···N hydrogen bond between two organic molecules. Additional O—H···O and N—H···O hydrogen-bonding interactions between the organic molecules and water produce a network structure (Figure 2). The hydrogen bonds in the network structure relate three organic molecules and one water molecule, where two O atoms in the O—H···O hydrogen bonds originate from two organic molecules while one N atom in the N—H···O hydrogen bond from a third organic molecule. The hydrogen bond geometry parameters are listed in Table 1.

Related literature top

For the potential applications of substituted pyrazole derivatives as ligands, see: Shaw et al. (2004; )Pal et al. (2005). For the design and synthesis of various pyrazole ligands with special structural properties to fulfill stereochemical requirement of the metal-binding sites, see: Bell et al. (2003); Paul et al. (2004) For pyrazole ligands with propanamide side-chains, see: Huang et al. (2009); Zhang et al. (2009).

Experimental top

A mixture of 5-methyl-3-phenyl-1H-pyrazole (1.58 g, 10 mmol), sodium hydroxide solution (2 mol/l, 2 ml) and N,N'-dimethylformamide (DMF) (50 ml) was stirred and heated to 333 K. A solution of acrylamide (1.0 g, 14 mmol) in DMF (10 ml) was added dropwise over a period of 15 minutes. The reaction was conducted by heating for 7 h at 333 K. The mixture was cooled to room temperature and filtered. Afterwards DMF was removed by vacuum distillation to give 1.94 g analytically pure 3-(5-methyl-3-phenyl-1H-pyrazol-1- yl)propanamide (yield: 85%; mp: 386 K). Recrystallization an acetonitrile water mixture in a 1:1 ratio yielded colorless single-crystals suitable for X-ray diffraction analysis. Analysis calculated for C13H17N3O2: C 63.14, H 6.93, N 16.99%; found: C 63.25, H 6.87, N 16.92%.

Refinement top

In the absence of significant anomalous dispersion effects, Friedel pairs were averaged. Atoms H2C and H2D (for H2O) were located in difference Fourier map and refined isotropically, with restrains of O2—H2C = 0.8506 Å, O2—H2D = 0.8424Å and H2C—O2—H2D = 104.5°. The remaining H atoms were positioned geometrically with N—H = 0.86Å (for NH2) and C—H = 0.93 (aromatic) or 0.96 (methyl) or 0.97Å (methylene) and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C,N), where x = 1.5 for methyl H and x = 1.2 for all other H atoms.

Structure description top

In recent years, there has been considerable interest in the use of hemilabile ligands containing substituted pyrazole groups because of their potential applications in catalysis and their ability for complexes construction (Shaw et al., 2004; Pal et al., 2005). Nowadays, much attention has been focused on the design of various pyrazole ligands with special structural properties to fulfill the specific stereochemical requirement of a particular metal-binding site (Bell et al., 2003; Paul et al., 2004). Some new pyrazole ligands combined with propanamide side-chains were reported (Zhang et al., 2009; Huang et al., 2009). Here, we report another new N-pyrazolylpropanamide ligand, C13H15N3O . H2O, (Scheme 1).

As is shown in Figure 1, in the title compound, the dihedral angle between pyrazole ring and benzene ring is 26.6 (2)° and the torsion angle N3—C7—C8—C13 is 153.6 (3)°. In the crystal structure, there is a N—H···N hydrogen bond between two organic molecules. Additional O—H···O and N—H···O hydrogen-bonding interactions between the organic molecules and water produce a network structure (Figure 2). The hydrogen bonds in the network structure relate three organic molecules and one water molecule, where two O atoms in the O—H···O hydrogen bonds originate from two organic molecules while one N atom in the N—H···O hydrogen bond from a third organic molecule. The hydrogen bond geometry parameters are listed in Table 1.

For the potential applications of substituted pyrazole derivatives as ligands, see: Shaw et al. (2004; )Pal et al. (2005). For the design and synthesis of various pyrazole ligands with special structural properties to fulfill stereochemical requirement of the metal-binding sites, see: Bell et al. (2003); Paul et al. (2004) For pyrazole ligands with propanamide side-chains, see: Huang et al. (2009); Zhang et al. (2009).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2004).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Interconnections between the organic and water molecules of the title compound. Dashed lines indicate N—H···O, N—H···N and O—H···O hydrogen bonds.
3-(5-Methyl-3-phenyl-1H-pyrazol-1-yl)propanamide monohydrate top
Crystal data top
C13H15N3O·H2OF(000) = 528
Mr = 247.30Dx = 1.198 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 13460 reflections
a = 6.5482 (13) Åθ = 3.2–27.4°
b = 12.609 (3) ŵ = 0.08 mm1
c = 16.606 (3) ÅT = 296 K
V = 1371.1 (5) Å3Chip, colorless
Z = 40.45 × 0.23 × 0.12 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
1815 independent reflections
Radiation source: fine-focus sealed tube1323 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.056
ω scansθmax = 27.4°, θmin = 3.2°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 87
Tmin = 0.977, Tmax = 0.990k = 1616
13414 measured reflectionsl = 2121
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.050H-atom parameters constrained
wR(F2) = 0.140 w = 1/[σ2(Fo2) + (0.0693P)2 + 0.2276P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
1815 reflectionsΔρmax = 0.23 e Å3
164 parametersΔρmin = 0.16 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.048 (6)
Crystal data top
C13H15N3O·H2OV = 1371.1 (5) Å3
Mr = 247.30Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 6.5482 (13) ŵ = 0.08 mm1
b = 12.609 (3) ÅT = 296 K
c = 16.606 (3) Å0.45 × 0.23 × 0.12 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
1815 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
1323 reflections with I > 2σ(I)
Tmin = 0.977, Tmax = 0.990Rint = 0.056
13414 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.140H-atom parameters constrained
S = 1.08Δρmax = 0.23 e Å3
1815 reflectionsΔρmin = 0.16 e Å3
164 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.1503 (3)0.37278 (16)0.44426 (14)0.0598 (6)
N30.6165 (4)0.63188 (17)0.33836 (14)0.0455 (6)
N20.4723 (4)0.58241 (16)0.29243 (14)0.0456 (6)
C70.7043 (4)0.7022 (2)0.28840 (17)0.0432 (6)
C10.0612 (4)0.4538 (2)0.42065 (18)0.0451 (7)
C30.3511 (4)0.4985 (2)0.32841 (19)0.0505 (7)
H3A0.43820.45540.36250.061*
H3B0.29760.45340.28610.061*
N10.1361 (4)0.4692 (2)0.43135 (16)0.0572 (7)
H1A0.20840.42200.45560.069*
H1B0.19260.52640.41410.069*
C60.6151 (5)0.6976 (2)0.21225 (18)0.0529 (7)
H6A0.64950.73860.16770.063*
C80.8697 (5)0.7707 (2)0.31861 (18)0.0463 (7)
C20.1763 (5)0.5407 (2)0.3778 (2)0.0578 (8)
H2A0.08300.57880.34280.069*
H2B0.22870.59050.41720.069*
C40.4663 (5)0.6208 (2)0.21594 (18)0.0509 (7)
O20.4388 (4)0.32706 (19)0.4938 (2)0.0888 (10)
H2D0.43290.26620.51460.168*
H2C0.56550.33750.48570.092*
C90.8839 (5)0.7964 (3)0.4002 (2)0.0596 (8)
H9A0.78630.77080.43600.072*
C121.1724 (6)0.8742 (3)0.2958 (3)0.0849 (12)
H12A1.27060.90030.26050.102*
C131.0158 (5)0.8108 (2)0.2666 (2)0.0612 (9)
H13A1.00900.79520.21190.073*
C101.0405 (6)0.8592 (3)0.4285 (2)0.0767 (11)
H10A1.04890.87480.48320.092*
C50.3188 (6)0.5832 (3)0.1551 (2)0.0749 (11)
H5A0.23620.52780.17780.112*
H5B0.39130.55630.10920.112*
H5C0.23280.64100.13870.112*
C111.1840 (7)0.8988 (4)0.3764 (3)0.0923 (14)
H11A1.28840.94210.39550.111*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0465 (11)0.0555 (11)0.0775 (15)0.0054 (11)0.0067 (12)0.0248 (11)
N30.0438 (12)0.0434 (12)0.0493 (13)0.0047 (11)0.0011 (11)0.0076 (10)
N20.0465 (13)0.0423 (11)0.0479 (13)0.0057 (11)0.0041 (12)0.0079 (10)
C70.0445 (14)0.0357 (12)0.0495 (15)0.0022 (12)0.0054 (14)0.0087 (12)
C10.0418 (15)0.0457 (14)0.0480 (16)0.0001 (13)0.0033 (13)0.0050 (13)
C30.0473 (15)0.0414 (13)0.0628 (18)0.0064 (14)0.0083 (15)0.0044 (13)
N10.0415 (13)0.0558 (14)0.0742 (18)0.0034 (12)0.0085 (14)0.0194 (13)
C60.0634 (18)0.0479 (14)0.0475 (16)0.0078 (15)0.0016 (16)0.0092 (13)
C80.0443 (14)0.0376 (12)0.0569 (17)0.0012 (12)0.0000 (15)0.0088 (12)
C20.0488 (17)0.0455 (14)0.079 (2)0.0016 (15)0.0151 (17)0.0110 (15)
C40.0569 (17)0.0487 (14)0.0470 (15)0.0042 (15)0.0000 (15)0.0032 (13)
O20.0472 (13)0.0764 (16)0.143 (3)0.0005 (12)0.0038 (16)0.0493 (17)
C90.0590 (19)0.0586 (17)0.0611 (19)0.0053 (17)0.0007 (17)0.0017 (15)
C120.060 (2)0.102 (3)0.092 (3)0.030 (2)0.008 (2)0.011 (2)
C130.0547 (18)0.0627 (18)0.066 (2)0.0080 (17)0.0053 (17)0.0067 (16)
C100.073 (2)0.084 (2)0.074 (2)0.014 (2)0.014 (2)0.007 (2)
C50.086 (3)0.078 (2)0.060 (2)0.019 (2)0.014 (2)0.0029 (18)
C110.069 (3)0.109 (3)0.098 (3)0.033 (3)0.011 (2)0.003 (3)
Geometric parameters (Å, º) top
O1—C11.240 (3)C2—H2A0.9700
N3—C71.344 (3)C2—H2B0.9700
N3—N21.365 (3)C4—C51.476 (4)
N2—C41.360 (4)O2—H2D0.8424
N2—C31.451 (3)O2—H2C0.8505
C7—C61.394 (4)C9—C101.378 (5)
C7—C81.473 (4)C9—H9A0.9300
C1—N11.319 (4)C12—C111.376 (6)
C1—C21.509 (4)C12—C131.388 (5)
C3—C21.505 (4)C12—H12A0.9300
C3—H3A0.9700C13—H13A0.9300
C3—H3B0.9700C10—C111.371 (6)
N1—H1A0.8600C10—H10A0.9300
N1—H1B0.8600C5—H5A0.9600
C6—C41.375 (4)C5—H5B0.9600
C6—H6A0.9300C5—H5C0.9600
C8—C131.385 (4)C11—H11A0.9300
C8—C91.397 (4)
C7—N3—N2104.6 (2)C3—C2—H2B109.1
C4—N2—N3112.3 (2)C1—C2—H2B109.1
C4—N2—C3128.9 (3)H2A—C2—H2B107.9
N3—N2—C3118.8 (2)N2—C4—C6105.8 (3)
N3—C7—C6110.7 (2)N2—C4—C5122.9 (3)
N3—C7—C8119.4 (2)C6—C4—C5131.3 (3)
C6—C7—C8129.9 (2)H2D—O2—H2C104.5
O1—C1—N1122.7 (3)C10—C9—C8120.9 (3)
O1—C1—C2120.8 (3)C10—C9—H9A119.6
N1—C1—C2116.5 (3)C8—C9—H9A119.6
N2—C3—C2112.5 (2)C11—C12—C13120.7 (4)
N2—C3—H3A109.1C11—C12—H12A119.6
C2—C3—H3A109.1C13—C12—H12A119.6
N2—C3—H3B109.1C8—C13—C12120.1 (3)
C2—C3—H3B109.1C8—C13—H13A119.9
H3A—C3—H3B107.8C12—C13—H13A119.9
C1—N1—H1A120.0C11—C10—C9120.3 (4)
C1—N1—H1B120.0C11—C10—H10A119.9
H1A—N1—H1B120.0C9—C10—H10A119.9
C4—C6—C7106.6 (3)C4—C5—H5A109.5
C4—C6—H6A126.7C4—C5—H5B109.5
C7—C6—H6A126.7H5A—C5—H5B109.5
C13—C8—C9118.4 (3)C4—C5—H5C109.5
C13—C8—C7120.6 (3)H5A—C5—H5C109.5
C9—C8—C7121.0 (3)H5B—C5—H5C109.5
C3—C2—C1112.4 (2)C10—C11—C12119.6 (4)
C3—C2—H2A109.1C10—C11—H11A120.2
C1—C2—H2A109.1C12—C11—H11A120.2
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O20.862.032.867 (3)165
N1—H1B···N3i0.862.223.036 (3)159
O2—H2D···O1ii0.841.962.783 (3)166.2
O2—H2C···O1i0.852.032.872 (3)168.5
Symmetry codes: (i) x1, y, z; (ii) x1/2, y+1/2, z+1.

Experimental details

Crystal data
Chemical formulaC13H15N3O·H2O
Mr247.30
Crystal system, space groupOrthorhombic, P212121
Temperature (K)296
a, b, c (Å)6.5482 (13), 12.609 (3), 16.606 (3)
V3)1371.1 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.45 × 0.23 × 0.12
Data collection
DiffractometerRigaku R-AXIS RAPID
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.977, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
13414, 1815, 1323
Rint0.056
(sin θ/λ)max1)0.648
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.140, 1.08
No. of reflections1815
No. of parameters164
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.16

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O20.862.032.867 (3)164.6
N1—H1B···N3i0.862.223.036 (3)159.2
O2—H2D···O1ii0.841.962.783 (3)166.2
O2—H2C···O1i0.852.032.872 (3)168.5
Symmetry codes: (i) x1, y, z; (ii) x1/2, y+1/2, z+1.
 

Acknowledgements

This project was sponsored by the K. C. Wong Magna Fund in Ningbo University and supported by the Zhejiang Provincial Natural Science Foundation of China (grant No. Y4090657) and the Ningbo Natural Science Foundation (grant No. 2009 A610037). We thank Mr X. Li and B.-B. Liu for the help of structure analysis and Mr J.-L. Lin for the diffraction data collection.

References

First citationBell, Z. R., Harding, L. P. & Ward, M. D. (2003). Chem. Commun. pp. 2432–2433.  Web of Science CSD CrossRef Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationHuang, F., Jin, B. & Zhang, J.-F. (2009). Acta Cryst. E65, o1411.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPal, S., Barik, A. K., Gupta, S., Hazra, A., Kar, S. K., Peng, S. M., Lee, G. H., Butcher, R. J., Fallah, M. S. & Ribas, J. (2005). Inorg. Chem. 44, 3880–3889.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationPaul, R. L., Argent, S. P., Jeffery, J. C., Harding, L. P., Lynamd, J. M. & Ward, M. D. (2004). Dalton Trans. pp. 3453–3458.  Web of Science CSD CrossRef PubMed Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2004). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationShaw, J. L., Garrison, S. A., Aleman, E. A., Ziegler, C. J. & Modarelli, D. A. (2004). J. Org. Chem. 69, 7423–7427.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, J.-F., Huang, F. & Chen, S.-J. (2009). Acta Cryst. E65, o2442.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds