organic compounds
Bis(2-phenylbiguanidium) adipate tetrahydrate
aDepartment of Inorganic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 2030, 128 40 Prague 2, Czech Republic, and bDepartment of Spectroscopy, J. Heyrovský Institute of Physical Chemistry of the ASCR, v.v.i., Dolejškova 3, 182 23 Prague 8, Czech Republic
*Correspondence e-mail: irena.mat@atlas.cz
In the title salt, 2C8H12N5+·C6H8O42−·4H2O, the anion is located on a centre of symmetry. The observed supramolecular network of the is produced by ten different hydrogen bonds of the N—H⋯N, N—H⋯O and O—H⋯O types. One additional O—H group is not connected to an acceptor site.
Related literature
For uses of biguanide complexes in medicine, see: Sirtori & Pasik (1994); Clement & Girreser (1999); Thompson et al. (1999); Ross et al. (2004); Woo et al. (1999); Watkins et al. (1987); Morain et al. (1994); Marchi et al. (1999); Shapiro et al. (1959a,b). The salts of biguanidium (1+) or (2+) cations have been tested for non-linear optical properties, see: Matulková et al. (2008, 2010); Martin et al. (1996); Martin & Pinkerton (1996); Pinkerton et al. (1978).
Experimental
Crystal data
|
Data collection
|
Refinement
|
Data collection: COLLECT (Hooft, 1998) and DENZO (Otwinowski & Minor, 1997); cell COLLECT and DENZO; data reduction: COLLECT and DENZO; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.
Supporting information
https://doi.org/10.1107/S1600536810049925/im2248sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810049925/im2248Isup2.hkl
Crystals of the title compound were obtained from a solution of 0.3 g of N-phenylbiguanide (98%, Aldrich) and 0.53 g of adipic acid (purum, Lachema) in 4 ml of water and 8 ml of methanol. The solution was left to crystallize at room temperature for several weeks. The colourless crystals obtained were filtered off, washed with methanol and dried in a vacuum desiccator over KOH (m.p. 350-352 K).
Infrared spectra were recorded at room temperature using DRIFTS and nujol or fluorolube mull techniques on a Nicolet Magna 760 FTIR spectrometer with 2 cm-1 resolution (4 cm-1 resolution in far IR region) and Happ-Genzel apodization in the 85–4000 cm-1 region.
FTIR spectrum (cm-1): 3623 w; 3377 m; 3307 m; 3139 m; 3072 m; 2923 m; 2723 m; 1650 s; 1632 s; 1600 m; 1582 m; 1555 m; 1494 vw; 1456 vw; 1409 s; 1365 sh; 1317 m; 1303 s; 1290 s; 1266 s; 1200 m; 1169 w; 1153 vw; 1139 w; 1122 w; 1073 w; 1065 w; 1026 vw; 1003 vw; 936 w; 926 w; 911 w; 860 vw; 835 vw; 799 vw; 772 w; 741 m; 722 m; 714 vw; 696 m; 673 vw; 640 vw; 623 vw; 581 wb; 541 vw; 497 w; 483 w; 389 w; 316 w; 280 w; 235 w; 179 w.
Raman spectra of polycrystalline samples were recorded at room temperature on a Nicolet Magna 760 FTIR spectrometer equipped with the Nicolet Nexus FT Raman module (2 cm-1 resolution, Happ-Genzel apodization, 1064 nm Nd:YVO4 laser excitation, 450 mW power at the sample) in the 100–3700 cm-1 region.
FT Raman spectrum (cm-1): 3296 vw; 3196 wb; 3069 m; 3057 m; 2967 w; 2931 m; 2919 m; 2900 w; 2875 w; 1696 vw; 1647 vwb; 1601 s; 1586 m; 1545 w; 1515 w; 1494 m; 1444 w; 1424 m; 1411 m; 1362 vw; 1321 m; 1308 w; 1288 w; 1269 s; 1243 sh; 1229 sh; 1176 m; 1155 m; 1084 m; 1060 m; 1030 m; 1018 vw; 1003 vs; 991 vw; 963 vw; 936 m; 909 m; 885 m; 857 m; 775 w; 740 m; 728 w; 671 w; 638 w; 615 m; 539 m; 493 m; 482 w; 408 m; 388 m; 376 w; 274 m; 234 m; 183 m; 151 mb.
H atoms attached to C atoms were calculated in geometrically idealized positions, with Csp3 - H = 0.97 Å and Csp2 - H = 0.93 Å. The positions of H atoms attached to O and N atoms were localized on difference Fourier maps. All hydrogen atoms were constrained to ride on their parent atoms during
with Uiso(H) = 1.2 Ueq(pivot atom).The wide area of application of biguanides involves the field of medical research (Sirtori & Pasik, 1994; Clement & Girreser, 1999), especially in the treatment of diabetes mellitus (N,N-dimethylbiguanide and N-phenylethylbiguanide) (Thompson et al., 1999; Ross et al., 2004; Woo et al., 1999). Biguanide derivatives are also used in the synthesis of antimalarial drugs (N-butylbiguanide) (Watkins et al., 1987), and in therapeutic treatment of pain, anxiety, memory disorders (Morain et al., 1994) and hypoglycaemic activity (Marchi et al., 1999; Sirtori & Pasik, 1994; Shapiro et al., 1959a, 1959b).
All the ionic crystal structures containing biguanide moieties are formed by relatively strong hydrogen bonds (Matulková et al., 2010; Matulková et al., 2008). These intermolecular and intramolecular hydrogen bonds can substantially affect the geometry of the biguanidium cations (Martin et al., 1996; Martin & Pinkerton, 1996; Pinkerton et al., 1978). It was found in general that, as the value of the angle between the planes (formed by three nitrogen atoms and one carbon atom) in the biguanide molecule increases, the bonding distances increase and thus the electron distribution changes.
The
of the constituents of the title compound is illustrated in Fig. 1. Hydrogen bonds in the are formed between N-phenylbiguanidium cations and adipate anions, between N-phenylbiguanidium cations and water molecules, as well as between the carboxylate functions and water molecules. Hydrogen-bonding geometries in the title compound are listed in Table 1 and are illustrated in Fig. 2. Additionally, two N-phenylbiguanidium cations form a dimer via two centrosymmetrically related N—H···N hydrogen bonds. These dimers are interconnected by adipate anions into a network further supported by hydrogen bonds involving water molecules. The lengths of the N—H···O hydrogen bonds range from 2.837 (1) to 3.000 (1) Å. O - H···O hydrogen bonds connect water molecules with adipate anions and range from 2.781 (1) to 2.825 (1) Å.For uses of biguanide complexes in medicine, see: Sirtori & Pasik (1994); Clement & Girreser (1999); Thompson et al. (1999); Ross et al. (2004); Woo et al. (1999); Watkins et al. (1987); Morain et al. (1994); Marchi et al. (1999); Shapiro et al. (1959a,b). The salts of biguanidium (1+) or (2+) cations have been tested for non-linear optical properties, see: Matulková et al. (2008, 2010); Martin et al. (1996); Martin & Pinkerton (1996); Pinkerton et al. (1978).
Data collection: COLLECT (Hooft, 1998) and DENZO (Otwinowski & Minor, 1997); cell
COLLECT (Hooft, 1998) and DENZO (Otwinowski & Minor, 1997); data reduction: COLLECT (Hooft, 1998) and DENZO (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).Fig. 1. Atom-labelling scheme of N-phenylbiguanidium(1+) adipate dihydrate. Displacement ellipsoids are drawn at the 50% probability level. | |
Fig. 2. Packing scheme of the crystalstructure of N-phenylbiguanidium(1+) adipate dihydrate. Hydrogen bonds are indicated by dashed lines. |
2C8H12N5+·C6H8O42−·4H2O | Z = 1 |
Mr = 572.64 | F(000) = 306 |
Triclinic, P1 | Dx = 1.330 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 7.1560 (1) Å | Cell parameters from 3257 reflections |
b = 10.8670 (2) Å | θ = 1.0–27.5° |
c = 11.1410 (2) Å | µ = 0.10 mm−1 |
α = 61.5590 (9)° | T = 150 K |
β = 88.682 (1)° | Prism, colourless |
γ = 71.702 (1)° | 0.4 × 0.4 × 0.3 mm |
V = 714.93 (2) Å3 |
Nonius KappaCCD area-detector diffractometer | 2953 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.025 |
Graphite monochromator | θmax = 27.4°, θmin = 2.1° |
Detector resolution: 9.091 pixels mm-1 | h = −9→9 |
ω and π scans to fill the Ewald sphere | k = −14→14 |
20455 measured reflections | l = −14→14 |
3260 independent reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.035 | w = 1/[σ2(Fo2) + (0.0427P)2 + 0.2629P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.093 | (Δ/σ)max < 0.001 |
S = 1.06 | Δρmax = 0.25 e Å−3 |
3260 reflections | Δρmin = −0.25 e Å−3 |
181 parameters |
2C8H12N5+·C6H8O42−·4H2O | γ = 71.702 (1)° |
Mr = 572.64 | V = 714.93 (2) Å3 |
Triclinic, P1 | Z = 1 |
a = 7.1560 (1) Å | Mo Kα radiation |
b = 10.8670 (2) Å | µ = 0.10 mm−1 |
c = 11.1410 (2) Å | T = 150 K |
α = 61.5590 (9)° | 0.4 × 0.4 × 0.3 mm |
β = 88.682 (1)° |
Nonius KappaCCD area-detector diffractometer | 2953 reflections with I > 2σ(I) |
20455 measured reflections | Rint = 0.025 |
3260 independent reflections |
R[F2 > 2σ(F2)] = 0.035 | 0 restraints |
wR(F2) = 0.093 | H-atom parameters constrained |
S = 1.06 | Δρmax = 0.25 e Å−3 |
3260 reflections | Δρmin = −0.25 e Å−3 |
181 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 1.08265 (15) | 0.19532 (11) | 0.51868 (10) | 0.0166 (2) | |
C2 | 1.02860 (14) | 0.43683 (11) | 0.33714 (10) | 0.0157 (2) | |
N1 | 1.01068 (14) | 0.10880 (10) | 0.62783 (9) | 0.0198 (2) | |
H1 | 0.9966 | 0.3356 | 0.2376 | 0.024* | |
N2 | 1.23411 (14) | 0.12406 (10) | 0.47705 (10) | 0.0211 (2) | |
H2A | 1.2927 | 0.0211 | 0.5352 | 0.025* | |
H2B | 1.3012 | 0.1750 | 0.4191 | 0.025* | |
N3 | 1.00775 (13) | 0.34344 (10) | 0.46586 (9) | 0.01745 (19) | |
N4 | 1.03596 (14) | 0.56792 (10) | 0.31118 (9) | 0.0205 (2) | |
H4A | 1.0268 | 0.5929 | 0.3779 | 0.025* | |
H4B | 1.0357 | 0.6423 | 0.2236 | 0.025* | |
N5 | 1.03464 (14) | 0.40864 (10) | 0.23239 (9) | 0.01899 (19) | |
H5A | 1.0784 | 0.0048 | 0.6749 | 0.023* | |
H5B | 1.0304 | 0.4875 | 0.1479 | 0.023* | |
C3 | 0.83808 (15) | 0.16121 (11) | 0.67987 (11) | 0.0170 (2) | |
C4 | 0.85199 (17) | 0.11060 (13) | 0.82069 (11) | 0.0232 (2) | |
H4 | 0.9739 | 0.0489 | 0.8776 | 0.028* | |
C5 | 0.68398 (18) | 0.15191 (14) | 0.87700 (12) | 0.0262 (2) | |
H5 | 0.6938 | 0.1175 | 0.9715 | 0.031* | |
C6 | 0.50251 (17) | 0.24393 (13) | 0.79302 (13) | 0.0246 (2) | |
H6 | 0.3900 | 0.2708 | 0.8308 | 0.030* | |
C7 | 0.48929 (17) | 0.29590 (14) | 0.65196 (13) | 0.0289 (3) | |
H7 | 0.3678 | 0.3591 | 0.5950 | 0.035* | |
C8 | 0.65620 (17) | 0.25428 (14) | 0.59510 (12) | 0.0251 (2) | |
H8 | 0.6461 | 0.2886 | 0.5006 | 0.030* | |
C9 | 0.65021 (15) | 0.26120 (11) | 0.25517 (10) | 0.0159 (2) | |
C10 | 0.55128 (16) | 0.42815 (11) | 0.19755 (11) | 0.0185 (2) | |
H10A | 0.6186 | 0.4595 | 0.2467 | 0.022* | |
H10B | 0.4142 | 0.4488 | 0.2143 | 0.022* | |
C11 | 0.55403 (16) | 0.51991 (11) | 0.04279 (10) | 0.0180 (2) | |
H11A | 0.4914 | 0.6250 | 0.0133 | 0.022* | |
H11B | 0.6910 | 0.5030 | 0.0260 | 0.022* | |
O1 | 0.82344 (11) | 0.21203 (8) | 0.23165 (8) | 0.02091 (18) | |
O2 | 0.55463 (12) | 0.17812 (8) | 0.32638 (8) | 0.02243 (18) | |
O1W | 0.98182 (13) | 0.70284 (10) | 0.00316 (8) | 0.0287 (2) | |
H11 | 1.0494 | 0.7325 | −0.0619 | 0.034* | |
H12 | 0.8552 | 0.7580 | −0.0462 | 0.034* | |
O2W | 0.40159 (15) | 0.11820 (11) | 0.13910 (10) | 0.0353 (2) | |
H21 | 0.4200 | 0.0216 | 0.1821 | 0.042* | |
H22 | 0.4504 | 0.1220 | 0.2138 | 0.042* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0182 (5) | 0.0161 (5) | 0.0150 (5) | −0.0064 (4) | 0.0028 (4) | −0.0069 (4) |
C2 | 0.0126 (4) | 0.0157 (5) | 0.0168 (5) | −0.0042 (4) | 0.0033 (4) | −0.0070 (4) |
N1 | 0.0214 (4) | 0.0130 (4) | 0.0193 (4) | −0.0042 (3) | 0.0081 (4) | −0.0049 (3) |
N2 | 0.0208 (5) | 0.0142 (4) | 0.0214 (4) | −0.0042 (3) | 0.0091 (4) | −0.0050 (4) |
N3 | 0.0211 (4) | 0.0142 (4) | 0.0158 (4) | −0.0063 (3) | 0.0057 (3) | −0.0065 (3) |
N4 | 0.0296 (5) | 0.0158 (4) | 0.0166 (4) | −0.0101 (4) | 0.0067 (4) | −0.0071 (4) |
N5 | 0.0246 (5) | 0.0182 (4) | 0.0151 (4) | −0.0103 (4) | 0.0043 (3) | −0.0073 (3) |
C3 | 0.0197 (5) | 0.0140 (5) | 0.0186 (5) | −0.0077 (4) | 0.0064 (4) | −0.0080 (4) |
C4 | 0.0222 (5) | 0.0234 (5) | 0.0182 (5) | −0.0051 (4) | 0.0024 (4) | −0.0075 (4) |
C5 | 0.0303 (6) | 0.0293 (6) | 0.0185 (5) | −0.0092 (5) | 0.0081 (4) | −0.0124 (5) |
C6 | 0.0229 (5) | 0.0248 (6) | 0.0299 (6) | −0.0083 (4) | 0.0110 (5) | −0.0166 (5) |
C7 | 0.0195 (6) | 0.0327 (6) | 0.0277 (6) | −0.0031 (5) | 0.0016 (5) | −0.0133 (5) |
C8 | 0.0236 (6) | 0.0303 (6) | 0.0171 (5) | −0.0069 (5) | 0.0026 (4) | −0.0099 (5) |
C9 | 0.0177 (5) | 0.0159 (5) | 0.0121 (4) | −0.0055 (4) | 0.0011 (4) | −0.0055 (4) |
C10 | 0.0194 (5) | 0.0152 (5) | 0.0176 (5) | −0.0041 (4) | 0.0027 (4) | −0.0068 (4) |
C11 | 0.0199 (5) | 0.0132 (5) | 0.0171 (5) | −0.0053 (4) | 0.0013 (4) | −0.0047 (4) |
O1 | 0.0181 (4) | 0.0159 (4) | 0.0228 (4) | −0.0045 (3) | 0.0060 (3) | −0.0061 (3) |
O2 | 0.0218 (4) | 0.0176 (4) | 0.0228 (4) | −0.0080 (3) | 0.0078 (3) | −0.0056 (3) |
O1W | 0.0340 (5) | 0.0277 (4) | 0.0182 (4) | −0.0116 (4) | 0.0084 (3) | −0.0063 (3) |
O2W | 0.0436 (5) | 0.0304 (5) | 0.0366 (5) | −0.0187 (4) | 0.0049 (4) | −0.0164 (4) |
C1—N2 | 1.3347 (13) | C5—H5 | 0.9300 |
C1—N3 | 1.3397 (13) | C6—C7 | 1.3877 (17) |
C1—N1 | 1.3469 (13) | C6—H6 | 0.9300 |
C2—N4 | 1.3303 (13) | C7—C8 | 1.3897 (16) |
C2—N5 | 1.3370 (13) | C7—H7 | 0.9300 |
C2—N3 | 1.3445 (13) | C8—H8 | 0.9300 |
N1—C3 | 1.4233 (13) | C9—O2 | 1.2622 (13) |
N1—H5A | 0.9432 | C9—O1 | 1.2623 (13) |
N2—H2A | 0.9353 | C9—C10 | 1.5198 (14) |
N2—H2B | 0.8755 | C10—C11 | 1.5299 (14) |
N4—H4A | 0.8999 | C10—H10A | 0.9700 |
N4—H4B | 0.9233 | C10—H10B | 0.9700 |
N5—H1 | 0.8934 | C11—C11i | 1.527 (2) |
N5—H5B | 0.9158 | C11—H11A | 0.9700 |
C3—C4 | 1.3874 (15) | C11—H11B | 0.9700 |
C3—C8 | 1.3888 (15) | O1W—H11 | 0.8499 |
C4—C5 | 1.3911 (16) | O1W—H12 | 0.9225 |
C4—H4 | 0.9300 | O2W—H21 | 0.8864 |
C5—C6 | 1.3824 (17) | O2W—H22 | 0.9334 |
N2—C1—N3 | 124.93 (9) | C4—C5—H5 | 119.9 |
N2—C1—N1 | 116.20 (9) | C5—C6—C7 | 119.57 (10) |
N3—C1—N1 | 118.73 (9) | C5—C6—H6 | 120.2 |
N4—C2—N5 | 117.95 (9) | C7—C6—H6 | 120.2 |
N4—C2—N3 | 117.89 (9) | C6—C7—C8 | 120.50 (11) |
N5—C2—N3 | 124.12 (9) | C6—C7—H7 | 119.8 |
C1—N1—C3 | 125.27 (9) | C8—C7—H7 | 119.8 |
C1—N1—H5A | 118.6 | C3—C8—C7 | 119.77 (10) |
C3—N1—H5A | 116.1 | C3—C8—H8 | 120.1 |
C1—N2—H2A | 116.5 | C7—C8—H8 | 120.1 |
C1—N2—H2B | 118.5 | O2—C9—O1 | 123.20 (9) |
H2A—N2—H2B | 120.5 | O2—C9—C10 | 117.75 (9) |
C1—N3—C2 | 121.23 (9) | O1—C9—C10 | 119.03 (9) |
C2—N4—H4A | 120.7 | C9—C10—C11 | 113.44 (8) |
C2—N4—H4B | 123.1 | C9—C10—H10A | 108.9 |
H4A—N4—H4B | 115.8 | C11—C10—H10A | 108.9 |
C2—N5—H1 | 121.2 | C9—C10—H10B | 108.9 |
C2—N5—H5B | 114.6 | C11—C10—H10B | 108.9 |
H1—N5—H5B | 119.8 | H10A—C10—H10B | 107.7 |
C4—C3—C8 | 119.78 (10) | C11i—C11—C10 | 112.27 (11) |
C4—C3—N1 | 118.26 (10) | C11i—C11—H11A | 109.2 |
C8—C3—N1 | 121.87 (10) | C10—C11—H11A | 109.2 |
C3—C4—C5 | 120.12 (11) | C11i—C11—H11B | 109.2 |
C3—C4—H4 | 119.9 | C10—C11—H11B | 109.2 |
C5—C4—H4 | 119.9 | H11A—C11—H11B | 107.9 |
C6—C5—C4 | 120.25 (11) | H11—O1W—H12 | 99.6 |
C6—C5—H5 | 119.9 | H21—O2W—H22 | 97.8 |
Symmetry code: (i) −x+1, −y+1, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
N5—H1···O1 | 0.89 | 2.12 | 2.982 (1) | 163 |
N2—H2A···O2ii | 0.94 | 1.92 | 2.837 (1) | 168 |
N2—H2B···O2iii | 0.88 | 2.07 | 2.855 (1) | 149 |
N4—H4A···N3iv | 0.90 | 2.14 | 3.041 (1) | 178 |
N4—H4B···O1W | 0.92 | 2.23 | 2.998 (1) | 141 |
N1—H5A···O1ii | 0.94 | 1.95 | 2.882 (1) | 171 |
N5—H5B···O1W | 0.92 | 2.03 | 2.897 (1) | 158 |
O1W—H11···O1v | 0.85 | 1.99 | 2.825 (1) | 168 |
O1W—H12···O2Wi | 0.92 | 1.86 | 2.781 (1) | 174 |
O2W—H22···O2 | 0.93 | 1.89 | 2.797 (1) | 165 |
Symmetry codes: (i) −x+1, −y+1, −z; (ii) −x+2, −y, −z+1; (iii) x+1, y, z; (iv) −x+2, −y+1, −z+1; (v) −x+2, −y+1, −z. |
Experimental details
Crystal data | |
Chemical formula | 2C8H12N5+·C6H8O42−·4H2O |
Mr | 572.64 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 150 |
a, b, c (Å) | 7.1560 (1), 10.8670 (2), 11.1410 (2) |
α, β, γ (°) | 61.5590 (9), 88.682 (1), 71.702 (1) |
V (Å3) | 714.93 (2) |
Z | 1 |
Radiation type | Mo Kα |
µ (mm−1) | 0.10 |
Crystal size (mm) | 0.4 × 0.4 × 0.3 |
Data collection | |
Diffractometer | Nonius KappaCCD area-detector |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 20455, 3260, 2953 |
Rint | 0.025 |
(sin θ/λ)max (Å−1) | 0.648 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.035, 0.093, 1.06 |
No. of reflections | 3260 |
No. of parameters | 181 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.25, −0.25 |
Computer programs: COLLECT (Hooft, 1998) and DENZO (Otwinowski & Minor, 1997), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
N5—H1···O1 | 0.89 | 2.12 | 2.982 (1) | 163 |
N2—H2A···O2i | 0.94 | 1.92 | 2.837 (1) | 168 |
N2—H2B···O2ii | 0.88 | 2.07 | 2.855 (1) | 149 |
N4—H4A···N3iii | 0.90 | 2.14 | 3.041 (1) | 178 |
N4—H4B···O1W | 0.92 | 2.23 | 2.998 (1) | 141 |
N1—H5A···O1i | 0.94 | 1.95 | 2.882 (1) | 171 |
N5—H5B···O1W | 0.92 | 2.03 | 2.897 (1) | 158 |
O1W—H11···O1iv | 0.85 | 1.99 | 2.825 (1) | 168 |
O1W—H12···O2Wv | 0.92 | 1.86 | 2.781 (1) | 174 |
O2W—H22···O2 | 0.93 | 1.89 | 2.797 (1) | 165 |
Symmetry codes: (i) −x+2, −y, −z+1; (ii) x+1, y, z; (iii) −x+2, −y+1, −z+1; (iv) −x+2, −y+1, −z; (v) −x+1, −y+1, −z. |
Acknowledgements
This work was supported financially by the Czech Science Foundation (grant No. 203/09/0878) and is part of Long-term Research Plan of the Ministry of Education of the Czech Republic (No. MSM 0021620857).
References
Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435. CrossRef Web of Science IUCr Journals Google Scholar
Clement, B. & Girreser, U. (1999). Magn. Reson. Chem. 37, 662–666. CrossRef CAS Google Scholar
Hooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Marchi, A., Marvelli, L., Cattabriga, M., Rossi, R., Neves, M., Bertolasi, V. & Ferretti, V. (1999). J. Chem. Soc. Dalton Trans. pp. 1937–1943. Web of Science CSD CrossRef Google Scholar
Martin, A. & Pinkerton, A. A. (1996). Acta Cryst. C52, 1048–1052. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Martin, A., Pinkerton, A. A. & Schiemann, A. (1996). Acta Cryst. C52, 966–970. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Matulková, I., Němec, I., Císařová, I., Němec, P. & Mička, Z. (2008). J. Mol. Struct. 886, 103–120. Google Scholar
Matulková, I., Němec, I., Císařová, I., Němec, P. & Vaněk, P. (2010). J. Mol. Struct. 966, 23–32. Google Scholar
Morain, P., Abraham, C., Portevin, B. & De Nanteuil, G. (1994). Mol. Pharmacol. 46, 732–742. CAS PubMed Web of Science Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Pinkerton, A. A. & Schwarzenbach, D. (1978). J. Chem. Soc. Dalton Trans. pp. 989–996. CSD CrossRef Web of Science Google Scholar
Ross, S. A., Gulve, E. A. & Wang, M. (2004). Chem. Rev. 104, 1255–1282. Web of Science CrossRef PubMed CAS Google Scholar
Shapiro, S. L., Parrino, V. A. & Freedman, L. (1959b). J. Am. Chem. Soc. 81, 2220–2225. CrossRef CAS Web of Science Google Scholar
Shapiro, S. L., Parrino, V. A., Rogow, E. & Freedman, L. (1959a). J. Am. Chem. Soc. 81, 3725–3728. CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sirtori, C. R. & Pasik, C. (1994). Pharmacol. Res. 30, 187–228. CrossRef CAS PubMed Web of Science Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Thompson, K. H., McNeill, J. H. & Orvig, C. (1999). Chem. Rev. 99, 2561–2571. Web of Science CrossRef PubMed CAS Google Scholar
Watkins, W. M., Chulay, J. D., Sixsmith, D. G., Spencer, H. C. & Howells, R. E. (1987). J. Pharm. Pharmacol. 39, 261–265. CrossRef CAS PubMed Google Scholar
Woo, L. C. Y., Yuen, V. G., Thompson, K. H., McNeill, J. H. & Orvig, C. (1999). J. Inorg. Biochem., 76, 251–257. Web of Science CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The wide area of application of biguanides involves the field of medical research (Sirtori & Pasik, 1994; Clement & Girreser, 1999), especially in the treatment of diabetes mellitus (N,N-dimethylbiguanide and N-phenylethylbiguanide) (Thompson et al., 1999; Ross et al., 2004; Woo et al., 1999). Biguanide derivatives are also used in the synthesis of antimalarial drugs (N-butylbiguanide) (Watkins et al., 1987), and in therapeutic treatment of pain, anxiety, memory disorders (Morain et al., 1994) and hypoglycaemic activity (Marchi et al., 1999; Sirtori & Pasik, 1994; Shapiro et al., 1959a, 1959b).
All the ionic crystal structures containing biguanide moieties are formed by relatively strong hydrogen bonds (Matulková et al., 2010; Matulková et al., 2008). These intermolecular and intramolecular hydrogen bonds can substantially affect the geometry of the biguanidium cations (Martin et al., 1996; Martin & Pinkerton, 1996; Pinkerton et al., 1978). It was found in general that, as the value of the angle between the planes (formed by three nitrogen atoms and one carbon atom) in the biguanide molecule increases, the bonding distances increase and thus the electron distribution changes.
The molecular conformation of the constituents of the title compound is illustrated in Fig. 1. Hydrogen bonds in the crystal structure are formed between N-phenylbiguanidium cations and adipate anions, between N-phenylbiguanidium cations and water molecules, as well as between the carboxylate functions and water molecules. Hydrogen-bonding geometries in the title compound are listed in Table 1 and are illustrated in Fig. 2. Additionally, two N-phenylbiguanidium cations form a dimer via two centrosymmetrically related N—H···N hydrogen bonds. These dimers are interconnected by adipate anions into a network further supported by hydrogen bonds involving water molecules. The lengths of the N—H···O hydrogen bonds range from 2.837 (1) to 3.000 (1) Å. O - H···O hydrogen bonds connect water molecules with adipate anions and range from 2.781 (1) to 2.825 (1) Å.