organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(2-phenyl­biguanidium) adipate tetra­hydrate

aDepartment of Inorganic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 2030, 128 40 Prague 2, Czech Republic, and bDepartment of Spectroscopy, J. Heyrovský Institute of Physical Chemistry of the ASCR, v.v.i., Dolejškova 3, 182 23 Prague 8, Czech Republic
*Correspondence e-mail: irena.mat@atlas.cz

(Received 8 November 2010; accepted 29 November 2010; online 11 December 2010)

In the title salt, 2C8H12N5+·C6H8O42−·4H2O, the anion is located on a centre of symmetry. The observed supra­molecular network of the crystal structure is produced by ten different hydrogen bonds of the N—H⋯N, N—H⋯O and O—H⋯O types. One additional O—H group is not connected to an acceptor site.

Related literature

For uses of biguanide complexes in medicine, see: Sirtori & Pasik (1994[Sirtori, C. R. & Pasik, C. (1994). Pharmacol. Res. 30, 187-228.]); Clement & Girreser (1999[Clement, B. & Girreser, U. (1999). Magn. Reson. Chem. 37, 662-666.]); Thompson et al. (1999[Thompson, K. H., McNeill, J. H. & Orvig, C. (1999). Chem. Rev. 99, 2561-2571.]); Ross et al. (2004[Ross, S. A., Gulve, E. A. & Wang, M. (2004). Chem. Rev. 104, 1255-1282.]); Woo et al. (1999[Woo, L. C. Y., Yuen, V. G., Thompson, K. H., McNeill, J. H. & Orvig, C. (1999). J. Inorg. Biochem., 76, 251-257.]); Watkins et al. (1987[Watkins, W. M., Chulay, J. D., Sixsmith, D. G., Spencer, H. C. & Howells, R. E. (1987). J. Pharm. Pharmacol. 39, 261-265.]); Morain et al. (1994[Morain, P., Abraham, C., Portevin, B. & De Nanteuil, G. (1994). Mol. Pharmacol. 46, 732-742.]); Marchi et al. (1999[Marchi, A., Marvelli, L., Cattabriga, M., Rossi, R., Neves, M., Bertolasi, V. & Ferretti, V. (1999). J. Chem. Soc. Dalton Trans. pp. 1937-1943.]); Shapiro et al. (1959a[Shapiro, S. L., Parrino, V. A., Rogow, E. & Freedman, L. (1959a). J. Am. Chem. Soc. 81, 3725-3728.],b[Shapiro, S. L., Parrino, V. A. & Freedman, L. (1959b). J. Am. Chem. Soc. 81, 2220-2225.]). The salts of biguanidium (1+) or (2+) cations have been tested for non-linear optical properties, see: Matulková et al. (2008[Matulková, I., Němec, I., Císařová, I., Němec, P. & Mička, Z. (2008). J. Mol. Struct. 886, 103-120.], 2010[Matulková, I., Němec, I., Císařová, I., Němec, P. & Vaněk, P. (2010). J. Mol. Struct. 966, 23-32.]); Martin et al. (1996[Martin, A., Pinkerton, A. A. & Schiemann, A. (1996). Acta Cryst. C52, 966-970.]); Martin & Pinkerton (1996[Martin, A. & Pinkerton, A. A. (1996). Acta Cryst. C52, 1048-1052.]); Pinkerton et al. (1978[Pinkerton, A. A. & Schwarzenbach, D. (1978). J. Chem. Soc. Dalton Trans. pp. 989-996.]).

[Scheme 1]

Experimental

Crystal data
  • 2C8H12N5+·C6H8O42−·4H2O

  • Mr = 572.64

  • Triclinic, [P \overline 1]

  • a = 7.1560 (1) Å

  • b = 10.8670 (2) Å

  • c = 11.1410 (2) Å

  • α = 61.5590 (9)°

  • β = 88.682 (1)°

  • γ = 71.702 (1)°

  • V = 714.93 (2) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 150 K

  • 0.4 × 0.4 × 0.3 mm

Data collection
  • Nonius KappaCCD area-detector diffractometer

  • 20455 measured reflections

  • 3260 independent reflections

  • 2953 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.093

  • S = 1.06

  • 3260 reflections

  • 181 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N5—H1⋯O1 0.89 2.12 2.982 (1) 163
N2—H2A⋯O2i 0.94 1.92 2.837 (1) 168
N2—H2B⋯O2ii 0.88 2.07 2.855 (1) 149
N4—H4A⋯N3iii 0.90 2.14 3.041 (1) 178
N4—H4B⋯O1W 0.92 2.23 2.998 (1) 141
N1—H5A⋯O1i 0.94 1.95 2.882 (1) 171
N5—H5B⋯O1W 0.92 2.03 2.897 (1) 158
O1W—H11⋯O1iv 0.85 1.99 2.825 (1) 168
O1W—H12⋯O2Wv 0.92 1.86 2.781 (1) 174
O2W—H22⋯O2 0.93 1.89 2.797 (1) 165
Symmetry codes: (i) -x+2, -y, -z+1; (ii) x+1, y, z; (iii) -x+2, -y+1, -z+1; (iv) -x+2, -y+1, -z; (v) -x+1, -y+1, -z.

Data collection: COLLECT (Hooft, 1998[Hooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]) and DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); cell refinement: COLLECT and DENZO; data reduction: COLLECT and DENZO; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The wide area of application of biguanides involves the field of medical research (Sirtori & Pasik, 1994; Clement & Girreser, 1999), especially in the treatment of diabetes mellitus (N,N-dimethylbiguanide and N-phenylethylbiguanide) (Thompson et al., 1999; Ross et al., 2004; Woo et al., 1999). Biguanide derivatives are also used in the synthesis of antimalarial drugs (N-butylbiguanide) (Watkins et al., 1987), and in therapeutic treatment of pain, anxiety, memory disorders (Morain et al., 1994) and hypoglycaemic activity (Marchi et al., 1999; Sirtori & Pasik, 1994; Shapiro et al., 1959a, 1959b).

All the ionic crystal structures containing biguanide moieties are formed by relatively strong hydrogen bonds (Matulková et al., 2010; Matulková et al., 2008). These intermolecular and intramolecular hydrogen bonds can substantially affect the geometry of the biguanidium cations (Martin et al., 1996; Martin & Pinkerton, 1996; Pinkerton et al., 1978). It was found in general that, as the value of the angle between the planes (formed by three nitrogen atoms and one carbon atom) in the biguanide molecule increases, the bonding distances increase and thus the electron distribution changes.

The molecular conformation of the constituents of the title compound is illustrated in Fig. 1. Hydrogen bonds in the crystal structure are formed between N-phenylbiguanidium cations and adipate anions, between N-phenylbiguanidium cations and water molecules, as well as between the carboxylate functions and water molecules. Hydrogen-bonding geometries in the title compound are listed in Table 1 and are illustrated in Fig. 2. Additionally, two N-phenylbiguanidium cations form a dimer via two centrosymmetrically related N—H···N hydrogen bonds. These dimers are interconnected by adipate anions into a network further supported by hydrogen bonds involving water molecules. The lengths of the N—H···O hydrogen bonds range from 2.837 (1) to 3.000 (1) Å. O - H···O hydrogen bonds connect water molecules with adipate anions and range from 2.781 (1) to 2.825 (1) Å.

Related literature top

For uses of biguanide complexes in medicine, see: Sirtori & Pasik (1994); Clement & Girreser (1999); Thompson et al. (1999); Ross et al. (2004); Woo et al. (1999); Watkins et al. (1987); Morain et al. (1994); Marchi et al. (1999); Shapiro et al. (1959a,b). The salts of biguanidium (1+) or (2+) cations have been tested for non-linear optical properties, see: Matulková et al. (2008, 2010); Martin et al. (1996); Martin & Pinkerton (1996); Pinkerton et al. (1978).

Experimental top

Crystals of the title compound were obtained from a solution of 0.3 g of N-phenylbiguanide (98%, Aldrich) and 0.53 g of adipic acid (purum, Lachema) in 4 ml of water and 8 ml of methanol. The solution was left to crystallize at room temperature for several weeks. The colourless crystals obtained were filtered off, washed with methanol and dried in a vacuum desiccator over KOH (m.p. 350-352 K).

Infrared spectra were recorded at room temperature using DRIFTS and nujol or fluorolube mull techniques on a Nicolet Magna 760 FTIR spectrometer with 2 cm-1 resolution (4 cm-1 resolution in far IR region) and Happ-Genzel apodization in the 85–4000 cm-1 region.

FTIR spectrum (cm-1): 3623 w; 3377 m; 3307 m; 3139 m; 3072 m; 2923 m; 2723 m; 1650 s; 1632 s; 1600 m; 1582 m; 1555 m; 1494 vw; 1456 vw; 1409 s; 1365 sh; 1317 m; 1303 s; 1290 s; 1266 s; 1200 m; 1169 w; 1153 vw; 1139 w; 1122 w; 1073 w; 1065 w; 1026 vw; 1003 vw; 936 w; 926 w; 911 w; 860 vw; 835 vw; 799 vw; 772 w; 741 m; 722 m; 714 vw; 696 m; 673 vw; 640 vw; 623 vw; 581 wb; 541 vw; 497 w; 483 w; 389 w; 316 w; 280 w; 235 w; 179 w.

Raman spectra of polycrystalline samples were recorded at room temperature on a Nicolet Magna 760 FTIR spectrometer equipped with the Nicolet Nexus FT Raman module (2 cm-1 resolution, Happ-Genzel apodization, 1064 nm Nd:YVO4 laser excitation, 450 mW power at the sample) in the 100–3700 cm-1 region.

FT Raman spectrum (cm-1): 3296 vw; 3196 wb; 3069 m; 3057 m; 2967 w; 2931 m; 2919 m; 2900 w; 2875 w; 1696 vw; 1647 vwb; 1601 s; 1586 m; 1545 w; 1515 w; 1494 m; 1444 w; 1424 m; 1411 m; 1362 vw; 1321 m; 1308 w; 1288 w; 1269 s; 1243 sh; 1229 sh; 1176 m; 1155 m; 1084 m; 1060 m; 1030 m; 1018 vw; 1003 vs; 991 vw; 963 vw; 936 m; 909 m; 885 m; 857 m; 775 w; 740 m; 728 w; 671 w; 638 w; 615 m; 539 m; 493 m; 482 w; 408 m; 388 m; 376 w; 274 m; 234 m; 183 m; 151 mb.

Refinement top

H atoms attached to C atoms were calculated in geometrically idealized positions, with Csp3 - H = 0.97 Å and Csp2 - H = 0.93 Å. The positions of H atoms attached to O and N atoms were localized on difference Fourier maps. All hydrogen atoms were constrained to ride on their parent atoms during refinement, with Uiso(H) = 1.2 Ueq(pivot atom).

Structure description top

The wide area of application of biguanides involves the field of medical research (Sirtori & Pasik, 1994; Clement & Girreser, 1999), especially in the treatment of diabetes mellitus (N,N-dimethylbiguanide and N-phenylethylbiguanide) (Thompson et al., 1999; Ross et al., 2004; Woo et al., 1999). Biguanide derivatives are also used in the synthesis of antimalarial drugs (N-butylbiguanide) (Watkins et al., 1987), and in therapeutic treatment of pain, anxiety, memory disorders (Morain et al., 1994) and hypoglycaemic activity (Marchi et al., 1999; Sirtori & Pasik, 1994; Shapiro et al., 1959a, 1959b).

All the ionic crystal structures containing biguanide moieties are formed by relatively strong hydrogen bonds (Matulková et al., 2010; Matulková et al., 2008). These intermolecular and intramolecular hydrogen bonds can substantially affect the geometry of the biguanidium cations (Martin et al., 1996; Martin & Pinkerton, 1996; Pinkerton et al., 1978). It was found in general that, as the value of the angle between the planes (formed by three nitrogen atoms and one carbon atom) in the biguanide molecule increases, the bonding distances increase and thus the electron distribution changes.

The molecular conformation of the constituents of the title compound is illustrated in Fig. 1. Hydrogen bonds in the crystal structure are formed between N-phenylbiguanidium cations and adipate anions, between N-phenylbiguanidium cations and water molecules, as well as between the carboxylate functions and water molecules. Hydrogen-bonding geometries in the title compound are listed in Table 1 and are illustrated in Fig. 2. Additionally, two N-phenylbiguanidium cations form a dimer via two centrosymmetrically related N—H···N hydrogen bonds. These dimers are interconnected by adipate anions into a network further supported by hydrogen bonds involving water molecules. The lengths of the N—H···O hydrogen bonds range from 2.837 (1) to 3.000 (1) Å. O - H···O hydrogen bonds connect water molecules with adipate anions and range from 2.781 (1) to 2.825 (1) Å.

For uses of biguanide complexes in medicine, see: Sirtori & Pasik (1994); Clement & Girreser (1999); Thompson et al. (1999); Ross et al. (2004); Woo et al. (1999); Watkins et al. (1987); Morain et al. (1994); Marchi et al. (1999); Shapiro et al. (1959a,b). The salts of biguanidium (1+) or (2+) cations have been tested for non-linear optical properties, see: Matulková et al. (2008, 2010); Martin et al. (1996); Martin & Pinkerton (1996); Pinkerton et al. (1978).

Computing details top

Data collection: COLLECT (Hooft, 1998) and DENZO (Otwinowski & Minor, 1997); cell refinement: COLLECT (Hooft, 1998) and DENZO (Otwinowski & Minor, 1997); data reduction: COLLECT (Hooft, 1998) and DENZO (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Atom-labelling scheme of N-phenylbiguanidium(1+) adipate dihydrate. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Packing scheme of the crystalstructure of N-phenylbiguanidium(1+) adipate dihydrate. Hydrogen bonds are indicated by dashed lines.
Bis(1-phenylbiguanidium) hexanedioate tetrahydrate top
Crystal data top
2C8H12N5+·C6H8O42·4H2OZ = 1
Mr = 572.64F(000) = 306
Triclinic, P1Dx = 1.330 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.1560 (1) ÅCell parameters from 3257 reflections
b = 10.8670 (2) Åθ = 1.0–27.5°
c = 11.1410 (2) ŵ = 0.10 mm1
α = 61.5590 (9)°T = 150 K
β = 88.682 (1)°Prism, colourless
γ = 71.702 (1)°0.4 × 0.4 × 0.3 mm
V = 714.93 (2) Å3
Data collection top
Nonius KappaCCD area-detector
diffractometer
2953 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.025
Graphite monochromatorθmax = 27.4°, θmin = 2.1°
Detector resolution: 9.091 pixels mm-1h = 99
ω and π scans to fill the Ewald spherek = 1414
20455 measured reflectionsl = 1414
3260 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.035 w = 1/[σ2(Fo2) + (0.0427P)2 + 0.2629P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.093(Δ/σ)max < 0.001
S = 1.06Δρmax = 0.25 e Å3
3260 reflectionsΔρmin = 0.25 e Å3
181 parameters
Crystal data top
2C8H12N5+·C6H8O42·4H2Oγ = 71.702 (1)°
Mr = 572.64V = 714.93 (2) Å3
Triclinic, P1Z = 1
a = 7.1560 (1) ÅMo Kα radiation
b = 10.8670 (2) ŵ = 0.10 mm1
c = 11.1410 (2) ÅT = 150 K
α = 61.5590 (9)°0.4 × 0.4 × 0.3 mm
β = 88.682 (1)°
Data collection top
Nonius KappaCCD area-detector
diffractometer
2953 reflections with I > 2σ(I)
20455 measured reflectionsRint = 0.025
3260 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.093H-atom parameters constrained
S = 1.06Δρmax = 0.25 e Å3
3260 reflectionsΔρmin = 0.25 e Å3
181 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11.08265 (15)0.19532 (11)0.51868 (10)0.0166 (2)
C21.02860 (14)0.43683 (11)0.33714 (10)0.0157 (2)
N11.01068 (14)0.10880 (10)0.62783 (9)0.0198 (2)
H10.99660.33560.23760.024*
N21.23411 (14)0.12406 (10)0.47705 (10)0.0211 (2)
H2A1.29270.02110.53520.025*
H2B1.30120.17500.41910.025*
N31.00775 (13)0.34344 (10)0.46586 (9)0.01745 (19)
N41.03596 (14)0.56792 (10)0.31118 (9)0.0205 (2)
H4A1.02680.59290.37790.025*
H4B1.03570.64230.22360.025*
N51.03464 (14)0.40864 (10)0.23239 (9)0.01899 (19)
H5A1.07840.00480.67490.023*
H5B1.03040.48750.14790.023*
C30.83808 (15)0.16121 (11)0.67987 (11)0.0170 (2)
C40.85199 (17)0.11060 (13)0.82069 (11)0.0232 (2)
H40.97390.04890.87760.028*
C50.68398 (18)0.15191 (14)0.87700 (12)0.0262 (2)
H50.69380.11750.97150.031*
C60.50251 (17)0.24393 (13)0.79302 (13)0.0246 (2)
H60.39000.27080.83080.030*
C70.48929 (17)0.29590 (14)0.65196 (13)0.0289 (3)
H70.36780.35910.59500.035*
C80.65620 (17)0.25428 (14)0.59510 (12)0.0251 (2)
H80.64610.28860.50060.030*
C90.65021 (15)0.26120 (11)0.25517 (10)0.0159 (2)
C100.55128 (16)0.42815 (11)0.19755 (11)0.0185 (2)
H10A0.61860.45950.24670.022*
H10B0.41420.44880.21430.022*
C110.55403 (16)0.51991 (11)0.04279 (10)0.0180 (2)
H11A0.49140.62500.01330.022*
H11B0.69100.50300.02600.022*
O10.82344 (11)0.21203 (8)0.23165 (8)0.02091 (18)
O20.55463 (12)0.17812 (8)0.32638 (8)0.02243 (18)
O1W0.98182 (13)0.70284 (10)0.00316 (8)0.0287 (2)
H111.04940.73250.06190.034*
H120.85520.75800.04620.034*
O2W0.40159 (15)0.11820 (11)0.13910 (10)0.0353 (2)
H210.42000.02160.18210.042*
H220.45040.12200.21380.042*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0182 (5)0.0161 (5)0.0150 (5)0.0064 (4)0.0028 (4)0.0069 (4)
C20.0126 (4)0.0157 (5)0.0168 (5)0.0042 (4)0.0033 (4)0.0070 (4)
N10.0214 (4)0.0130 (4)0.0193 (4)0.0042 (3)0.0081 (4)0.0049 (3)
N20.0208 (5)0.0142 (4)0.0214 (4)0.0042 (3)0.0091 (4)0.0050 (4)
N30.0211 (4)0.0142 (4)0.0158 (4)0.0063 (3)0.0057 (3)0.0065 (3)
N40.0296 (5)0.0158 (4)0.0166 (4)0.0101 (4)0.0067 (4)0.0071 (4)
N50.0246 (5)0.0182 (4)0.0151 (4)0.0103 (4)0.0043 (3)0.0073 (3)
C30.0197 (5)0.0140 (5)0.0186 (5)0.0077 (4)0.0064 (4)0.0080 (4)
C40.0222 (5)0.0234 (5)0.0182 (5)0.0051 (4)0.0024 (4)0.0075 (4)
C50.0303 (6)0.0293 (6)0.0185 (5)0.0092 (5)0.0081 (4)0.0124 (5)
C60.0229 (5)0.0248 (6)0.0299 (6)0.0083 (4)0.0110 (5)0.0166 (5)
C70.0195 (6)0.0327 (6)0.0277 (6)0.0031 (5)0.0016 (5)0.0133 (5)
C80.0236 (6)0.0303 (6)0.0171 (5)0.0069 (5)0.0026 (4)0.0099 (5)
C90.0177 (5)0.0159 (5)0.0121 (4)0.0055 (4)0.0011 (4)0.0055 (4)
C100.0194 (5)0.0152 (5)0.0176 (5)0.0041 (4)0.0027 (4)0.0068 (4)
C110.0199 (5)0.0132 (5)0.0171 (5)0.0053 (4)0.0013 (4)0.0047 (4)
O10.0181 (4)0.0159 (4)0.0228 (4)0.0045 (3)0.0060 (3)0.0061 (3)
O20.0218 (4)0.0176 (4)0.0228 (4)0.0080 (3)0.0078 (3)0.0056 (3)
O1W0.0340 (5)0.0277 (4)0.0182 (4)0.0116 (4)0.0084 (3)0.0063 (3)
O2W0.0436 (5)0.0304 (5)0.0366 (5)0.0187 (4)0.0049 (4)0.0164 (4)
Geometric parameters (Å, º) top
C1—N21.3347 (13)C5—H50.9300
C1—N31.3397 (13)C6—C71.3877 (17)
C1—N11.3469 (13)C6—H60.9300
C2—N41.3303 (13)C7—C81.3897 (16)
C2—N51.3370 (13)C7—H70.9300
C2—N31.3445 (13)C8—H80.9300
N1—C31.4233 (13)C9—O21.2622 (13)
N1—H5A0.9432C9—O11.2623 (13)
N2—H2A0.9353C9—C101.5198 (14)
N2—H2B0.8755C10—C111.5299 (14)
N4—H4A0.8999C10—H10A0.9700
N4—H4B0.9233C10—H10B0.9700
N5—H10.8934C11—C11i1.527 (2)
N5—H5B0.9158C11—H11A0.9700
C3—C41.3874 (15)C11—H11B0.9700
C3—C81.3888 (15)O1W—H110.8499
C4—C51.3911 (16)O1W—H120.9225
C4—H40.9300O2W—H210.8864
C5—C61.3824 (17)O2W—H220.9334
N2—C1—N3124.93 (9)C4—C5—H5119.9
N2—C1—N1116.20 (9)C5—C6—C7119.57 (10)
N3—C1—N1118.73 (9)C5—C6—H6120.2
N4—C2—N5117.95 (9)C7—C6—H6120.2
N4—C2—N3117.89 (9)C6—C7—C8120.50 (11)
N5—C2—N3124.12 (9)C6—C7—H7119.8
C1—N1—C3125.27 (9)C8—C7—H7119.8
C1—N1—H5A118.6C3—C8—C7119.77 (10)
C3—N1—H5A116.1C3—C8—H8120.1
C1—N2—H2A116.5C7—C8—H8120.1
C1—N2—H2B118.5O2—C9—O1123.20 (9)
H2A—N2—H2B120.5O2—C9—C10117.75 (9)
C1—N3—C2121.23 (9)O1—C9—C10119.03 (9)
C2—N4—H4A120.7C9—C10—C11113.44 (8)
C2—N4—H4B123.1C9—C10—H10A108.9
H4A—N4—H4B115.8C11—C10—H10A108.9
C2—N5—H1121.2C9—C10—H10B108.9
C2—N5—H5B114.6C11—C10—H10B108.9
H1—N5—H5B119.8H10A—C10—H10B107.7
C4—C3—C8119.78 (10)C11i—C11—C10112.27 (11)
C4—C3—N1118.26 (10)C11i—C11—H11A109.2
C8—C3—N1121.87 (10)C10—C11—H11A109.2
C3—C4—C5120.12 (11)C11i—C11—H11B109.2
C3—C4—H4119.9C10—C11—H11B109.2
C5—C4—H4119.9H11A—C11—H11B107.9
C6—C5—C4120.25 (11)H11—O1W—H1299.6
C6—C5—H5119.9H21—O2W—H2297.8
Symmetry code: (i) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H1···O10.892.122.982 (1)163
N2—H2A···O2ii0.941.922.837 (1)168
N2—H2B···O2iii0.882.072.855 (1)149
N4—H4A···N3iv0.902.143.041 (1)178
N4—H4B···O1W0.922.232.998 (1)141
N1—H5A···O1ii0.941.952.882 (1)171
N5—H5B···O1W0.922.032.897 (1)158
O1W—H11···O1v0.851.992.825 (1)168
O1W—H12···O2Wi0.921.862.781 (1)174
O2W—H22···O20.931.892.797 (1)165
Symmetry codes: (i) x+1, y+1, z; (ii) x+2, y, z+1; (iii) x+1, y, z; (iv) x+2, y+1, z+1; (v) x+2, y+1, z.

Experimental details

Crystal data
Chemical formula2C8H12N5+·C6H8O42·4H2O
Mr572.64
Crystal system, space groupTriclinic, P1
Temperature (K)150
a, b, c (Å)7.1560 (1), 10.8670 (2), 11.1410 (2)
α, β, γ (°)61.5590 (9), 88.682 (1), 71.702 (1)
V3)714.93 (2)
Z1
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.4 × 0.4 × 0.3
Data collection
DiffractometerNonius KappaCCD area-detector
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
20455, 3260, 2953
Rint0.025
(sin θ/λ)max1)0.648
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.093, 1.06
No. of reflections3260
No. of parameters181
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.25

Computer programs: COLLECT (Hooft, 1998) and DENZO (Otwinowski & Minor, 1997), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H1···O10.892.122.982 (1)163
N2—H2A···O2i0.941.922.837 (1)168
N2—H2B···O2ii0.882.072.855 (1)149
N4—H4A···N3iii0.902.143.041 (1)178
N4—H4B···O1W0.922.232.998 (1)141
N1—H5A···O1i0.941.952.882 (1)171
N5—H5B···O1W0.922.032.897 (1)158
O1W—H11···O1iv0.851.992.825 (1)168
O1W—H12···O2Wv0.921.862.781 (1)174
O2W—H22···O20.931.892.797 (1)165
Symmetry codes: (i) x+2, y, z+1; (ii) x+1, y, z; (iii) x+2, y+1, z+1; (iv) x+2, y+1, z; (v) x+1, y+1, z.
 

Acknowledgements

This work was supported financially by the Czech Science Foundation (grant No. 203/09/0878) and is part of Long-term Research Plan of the Ministry of Education of the Czech Republic (No. MSM 0021620857).

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationClement, B. & Girreser, U. (1999). Magn. Reson. Chem. 37, 662–666.  CrossRef CAS Google Scholar
First citationHooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationMarchi, A., Marvelli, L., Cattabriga, M., Rossi, R., Neves, M., Bertolasi, V. & Ferretti, V. (1999). J. Chem. Soc. Dalton Trans. pp. 1937–1943.  Web of Science CSD CrossRef Google Scholar
First citationMartin, A. & Pinkerton, A. A. (1996). Acta Cryst. C52, 1048–1052.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMartin, A., Pinkerton, A. A. & Schiemann, A. (1996). Acta Cryst. C52, 966–970.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMatulková, I., Němec, I., Císařová, I., Němec, P. & Mička, Z. (2008). J. Mol. Struct. 886, 103–120.  Google Scholar
First citationMatulková, I., Němec, I., Císařová, I., Němec, P. & Vaněk, P. (2010). J. Mol. Struct. 966, 23–32.  Google Scholar
First citationMorain, P., Abraham, C., Portevin, B. & De Nanteuil, G. (1994). Mol. Pharmacol. 46, 732–742.  CAS PubMed Web of Science Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPinkerton, A. A. & Schwarzenbach, D. (1978). J. Chem. Soc. Dalton Trans. pp. 989–996.  CSD CrossRef Web of Science Google Scholar
First citationRoss, S. A., Gulve, E. A. & Wang, M. (2004). Chem. Rev. 104, 1255–1282.  Web of Science CrossRef PubMed CAS Google Scholar
First citationShapiro, S. L., Parrino, V. A. & Freedman, L. (1959b). J. Am. Chem. Soc. 81, 2220–2225.  CrossRef CAS Web of Science Google Scholar
First citationShapiro, S. L., Parrino, V. A., Rogow, E. & Freedman, L. (1959a). J. Am. Chem. Soc. 81, 3725–3728.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSirtori, C. R. & Pasik, C. (1994). Pharmacol. Res. 30, 187–228.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThompson, K. H., McNeill, J. H. & Orvig, C. (1999). Chem. Rev. 99, 2561–2571.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWatkins, W. M., Chulay, J. D., Sixsmith, D. G., Spencer, H. C. & Howells, R. E. (1987). J. Pharm. Pharmacol. 39, 261–265.  CrossRef CAS PubMed Google Scholar
First citationWoo, L. C. Y., Yuen, V. G., Thompson, K. H., McNeill, J. H. & Orvig, C. (1999). J. Inorg. Biochem., 76, 251–257.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds