metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[μ3-hydroxido-μ-(pyridine-2,4,6-tri­carboxyl­ato)-dilead(II)]

aCollege of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, People's Republic of China
*Correspondence e-mail: vzyh@hotmail.com

(Received 6 November 2010; accepted 25 November 2010; online 4 December 2010)

The asymmetric unit of the title coordination polymer, [Pb2(C8H2NO6)(OH)]n, contains two crystallographically independent PbII ions, one pyridine-2,4,6-tricarboxyl­ate (ptc) trianion and one hydroxide anion. One of the PbII atoms is coordinated by one pyridine N and four carboxyl­ate O atoms from the ptc trianion and a hydroxide O atom in a distorted octa­hedral geometry. The other PbII atom is five-coordinated by three carboxyl­ate O atoms and two hydroxide O atoms in a distorted tetra­gonal–pyramidal geometry. Four neighbouring PbII atoms are bridged through two μ3-hydroxide ligands, forming the centrosymmetric Pb4(OH)2 core. The three-dimensional structure is further achieved through bridging carboxyl­ate groups. There are also O—H⋯O hydrogen bonds between the hydroxide ligand and the carboxyl­ate group.

Related literature

For general background to pyridine-2,4,6-tricarb­oxy­lic acid complexes and their derivatives, see: Das et al. (2009[Das, M. C., Ghosh, S. K., Sanudo, E. C. & Bharadwaj, P. K. (2009). Dalton Trans. pp. 1644-1658.]); Ding et al. (2009[Ding, B., Liu, Y. Y., Wu, X., Zhao, X. J., Du, G., Yang, E. C. & Wang, X. G. (2009). Cryst. Growth Des. 9, 4176-4180.]); Ghosh et al. (2006[Ghosh, S. K., El Fallah, M. S., Ribas, J. & Bharadwaj, P. K. (2006). Inorg. Chim. Acta, 359, 468-474.]); O'Keeffe et al. (2008[O'Keeffe, M., Peskov, M. A., Ramsden, S. J. & Yaghi, O. M. (2008). Acc. Chem. Res. 41, 1782-1789.]); Shi et al. (2010[Shi, C. Y., Ge, C. H. & Liu, Q. T. (2010). Chin. J. Inorg. Chem. 26, 1323-1332.]); Xu et al. (2010[Xu, Z.-L., Ma, X.-Y., Ma, S. & Wang, X.-Y. (2010). Acta Cryst. C66, m245-m248.]); Yigit et al. (2005[Yigit, M. V., Biyikli, K., Moulton, B. & MacDonald, J. C. (2005). Cryst. Growth Des. 6, 63-69.]); Zhang et al. (2009[Zhang, J. P., Huang, X. C. & Chen, X. M. (2009). Chem. Soc. Rev. 38, 2385-2396.]); Zhao et al. (2009[Zhao, L., Dong, Y.-R. & Xie, H.-Z. (2009). Acta Cryst. E65, m450-m451.]). For our previous work on metal complexes, see: Zhou et al. (2007[Zhou, Y. H., Fu, H., Zhao, W. X., Chen, W. L., Su, C. Y., Sun, H., Ji, L. N. & Mao, Z. W. (2007). Inorg. Chem. 46, 734-739.]); Wu et al. (2007[Wu, Z.-H., Zhou, Y.-H. & Cai, J.-H. (2007). Acta Cryst. E63, m2223-m2224.]).

[Scheme 1]

Experimental

Crystal data
  • [Pb2(C8H2NO6)(OH)]

  • Mr = 639.49

  • Monoclinic, P 21 /c

  • a = 7.5391 (9) Å

  • b = 14.1845 (17) Å

  • c = 10.3084 (12) Å

  • β = 100.468 (1)°

  • V = 1084.0 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 31.05 mm−1

  • T = 291 K

  • 0.38 × 0.26 × 0.25 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.030, Tmax = 0.047

  • 7870 measured reflections

  • 2014 independent reflections

  • 1903 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.069

  • S = 1.08

  • 2014 reflections

  • 157 parameters

  • H-atom parameters constrained

  • Δρmax = 1.64 e Å−3

  • Δρmin = −2.07 e Å−3

Table 1
Selected bond lengths (Å)

Pb1—O5i 2.422 (6)
Pb1—O1 2.489 (6)
Pb1—N1 2.554 (6)
Pb1—O7ii 2.627 (5)
Pb1—O3iii 2.697 (6)
Pb1—O6 2.716 (6)
Pb2—O1 2.600 (6)
Pb2—O2iv 2.836 (7)
Pb2—O4v 2.541 (6)
Pb2—O7 2.318 (5)
Pb2—O7ii 2.393 (5)
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) -x, -y+2, -z; (iii) -x+1, -y+2, -z+1; (iv) -x+1, -y+2, -z; (v) x-1, y, z-1.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O7—H7⋯O6vi 0.83 2.58 2.989 (8) 112
O7—H7⋯O4iii 0.83 2.49 2.884 (8) 110
Symmetry codes: (iii) -x+1, -y+2, -z+1; (vi) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Until recently, the construction of coordination polymers has been an active area because of the properties of catalysis and molecular magnetism (Shi et al., 2010; O'Keeffe et al., 2008; Zhang et al., 2009). Pyridine-2,4,6-tricarboxylic acid (H3ptc) is an effective ligand for coordinating to metal cations to generate diverse interesting coordination polymer architectures (Zhao et al., 2009; Yigit et al., 2005). However, the coordination polymers containing H3ptc ligands are seldom high-dimensional complexes (Das et al., 2009; Ghosh et al., 2006). Because of the relatively large ionic radius of the Pb(II) cation, the lead complex should form some interesting frameworks (Ding et al., 2009). Herein, we report the lead polymeric complex [Pb2(C8H2NO6)(OH)]n, (I), which is an unique homometallic three-dimensional framework compound.

The asymmetric unit of (I) consists of two Pb(II) cations, one ptc trianion and one coordinated hydroxyl anion. As shown in Fig. 1, atom Pb1 is six-coordinated by two carboxylate O and one N atoms from a ligand ptc and one hydroxide anion O in a distorted square-planar geometry, and two carboxylate O atoms from the other two ligand ptc in the axial positions (Table 1). The PbNO5 octahedron is distorted, with the O—Pb1—O(N) bond angles ranging from 64.0 (2) to 147.70 (19)°. Whereas atom Pb2 is five-coordinated by three carboxylate O atoms from two ptc and two µ3-hydroxide O atoms in a distorted tetragonal pyramid geometry. The Pb—O and Pb—N distances (Table 1) are comparable with those observed for [Pb2(bdc)2(piphen)2]n (bdc is benzene-1,4-dicarboxylate and piphen is 6-(4-pyridyl)-5H- imidazolo[4,5-f][1,10]phenanthroline; Xu et al., 2010). Each ptc molecule employs its three carboxylate groups and one N atom to chelate and bridge six Pb(II) cations. Two neighbouring Pb2 atoms are bis-bridged by two hydroxide O atoms (O7 and O7ii) to form a centrosymmetric [Pb2(OH)2]2+ core which is linked by two Pb1 atoms through Pb1—O7ii and Pb1ii—O7 bonds to form [Pb12Pb22(OH)2]6+ unit (Fig. 2). The bonds of Pb2—O4iv, Pb2—O1, Pb2ii—O1ii and Pb2ii—O4iii bonds surrounding the [Pb2(OH)2]2+ unit are contributed to forming a two-dimensional structure which is further tightened by the atoms of Pb1i, Pb1iii, Pb1iv, Pb1v, Pb1vi and Pb1vii with joining neighbouring ptc ligands. Also, the two adjacent pyridine rings of ptc ligands are involved in ππ stacking interactions with offset face-to-face mode [centroid-to-centroid distance 3.5486 (4) Å] (Fig. 2). Furthermore, the two-dimensional structure are linked through Pb1—O5i and Pb1ii—O5v bonds to generate a three-dimensional stereo structure. There are some hydrogen bonds O—H···O in (I) between the hydroxide H atom and carboxylic O4iii with an O···O distance of 2.884 (8) Å (Table 2). Hydrogen bonds are helpful to enhance the stability of the molecular structure. A remarkable feature of this structure is the arrangement of [Pb12Pb22(OH)2]6+ units with infinite helices extending along the crystallographic b axis with intervening ptc ligands (Fig. 3). The helical structure is a comprehensive result of metal-ligand interactions and the ππ stacking interactions of pyridine rings of ptc ligands.

Related literature top

For general background to pyridine-2,4,6-tricarboxylic acid complexes and their derivatives, see: Das et al. (2009); Ding et al. (2009); Ghosh et al. (2006); O'Keeffe et al. (2008); Shi et al. (2010); Xu et al. (2010); Yigit et al. (2005); Zhang et al. (2009); Zhao et al. (2009). For our previous work on metal complexes, see: Zhou et al. (2007); Wu et al. (2007).

Experimental top

A solution of pyridine-2,4,6-tricarboxylic acid (208 mg, 1.0 mmol) and KOH (224 mg, 4.0 mmol) in anhydrous methanol (10 ml) was added slowly to a solution of Pb(CH3COO)2 (672 mg, 2.0 mmol) in anhydrous methanol (10 ml). The resulting mixture was stirred for about 1 h at room temperature, sealed in a 25 ml Teflon-lined stainless steel autoclave and heated at 393 K for five days under autogenous pressure. The reaction system was cooled gradually to room temperature and colorless block-shaped crystals suitable for X-ray diffraction were collected.

Refinement top

H atoms were positioned geometrically (C—H = 0.93 Å and O—H = 0.83 Å) and included in the refinement in the riding-model approximation, with Uiso(H) =1.2Ueq(C) and 1.5Ueq(O). The highest peak and the deepest hole in the difference Fourier map are located 0.78 and 0.97 Å, respectively, from atom Pb2.

Structure description top

Until recently, the construction of coordination polymers has been an active area because of the properties of catalysis and molecular magnetism (Shi et al., 2010; O'Keeffe et al., 2008; Zhang et al., 2009). Pyridine-2,4,6-tricarboxylic acid (H3ptc) is an effective ligand for coordinating to metal cations to generate diverse interesting coordination polymer architectures (Zhao et al., 2009; Yigit et al., 2005). However, the coordination polymers containing H3ptc ligands are seldom high-dimensional complexes (Das et al., 2009; Ghosh et al., 2006). Because of the relatively large ionic radius of the Pb(II) cation, the lead complex should form some interesting frameworks (Ding et al., 2009). Herein, we report the lead polymeric complex [Pb2(C8H2NO6)(OH)]n, (I), which is an unique homometallic three-dimensional framework compound.

The asymmetric unit of (I) consists of two Pb(II) cations, one ptc trianion and one coordinated hydroxyl anion. As shown in Fig. 1, atom Pb1 is six-coordinated by two carboxylate O and one N atoms from a ligand ptc and one hydroxide anion O in a distorted square-planar geometry, and two carboxylate O atoms from the other two ligand ptc in the axial positions (Table 1). The PbNO5 octahedron is distorted, with the O—Pb1—O(N) bond angles ranging from 64.0 (2) to 147.70 (19)°. Whereas atom Pb2 is five-coordinated by three carboxylate O atoms from two ptc and two µ3-hydroxide O atoms in a distorted tetragonal pyramid geometry. The Pb—O and Pb—N distances (Table 1) are comparable with those observed for [Pb2(bdc)2(piphen)2]n (bdc is benzene-1,4-dicarboxylate and piphen is 6-(4-pyridyl)-5H- imidazolo[4,5-f][1,10]phenanthroline; Xu et al., 2010). Each ptc molecule employs its three carboxylate groups and one N atom to chelate and bridge six Pb(II) cations. Two neighbouring Pb2 atoms are bis-bridged by two hydroxide O atoms (O7 and O7ii) to form a centrosymmetric [Pb2(OH)2]2+ core which is linked by two Pb1 atoms through Pb1—O7ii and Pb1ii—O7 bonds to form [Pb12Pb22(OH)2]6+ unit (Fig. 2). The bonds of Pb2—O4iv, Pb2—O1, Pb2ii—O1ii and Pb2ii—O4iii bonds surrounding the [Pb2(OH)2]2+ unit are contributed to forming a two-dimensional structure which is further tightened by the atoms of Pb1i, Pb1iii, Pb1iv, Pb1v, Pb1vi and Pb1vii with joining neighbouring ptc ligands. Also, the two adjacent pyridine rings of ptc ligands are involved in ππ stacking interactions with offset face-to-face mode [centroid-to-centroid distance 3.5486 (4) Å] (Fig. 2). Furthermore, the two-dimensional structure are linked through Pb1—O5i and Pb1ii—O5v bonds to generate a three-dimensional stereo structure. There are some hydrogen bonds O—H···O in (I) between the hydroxide H atom and carboxylic O4iii with an O···O distance of 2.884 (8) Å (Table 2). Hydrogen bonds are helpful to enhance the stability of the molecular structure. A remarkable feature of this structure is the arrangement of [Pb12Pb22(OH)2]6+ units with infinite helices extending along the crystallographic b axis with intervening ptc ligands (Fig. 3). The helical structure is a comprehensive result of metal-ligand interactions and the ππ stacking interactions of pyridine rings of ptc ligands.

For general background to pyridine-2,4,6-tricarboxylic acid complexes and their derivatives, see: Das et al. (2009); Ding et al. (2009); Ghosh et al. (2006); O'Keeffe et al. (2008); Shi et al. (2010); Xu et al. (2010); Yigit et al. (2005); Zhang et al. (2009); Zhao et al. (2009). For our previous work on metal complexes, see: Zhou et al. (2007); Wu et al. (2007).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the local coordination of the PbII atoms in the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are shown as small spheres of arbitrary radii. [Symmetry codes: (i) x, -y + 3/2, z - 1/2; (ii) -x, -y + 2, -z; (iii) -x + 1, -y + 2, -z + 1; (iv) -x + 1, -y + 2, -z; (v) x - 1, y, z - 1.]
[Figure 2] Fig. 2. A view of the [Pb12Pb22(OH)2]6+ unit, surrounded by four Pb1 atoms. [Symmetry codes: (i) x, -y + 3/2, z - 1/2; (ii) -x, -y + 2, -z; (iii) -x + 1, -y + 2, -z + 1; (iv) -x + 1, -y + 2, -z; (v) x - 1, y, z - 1.]
[Figure 3] Fig. 3. A packing diagram of the title compound viewed along the b axis.
Poly[µ3-hydroxido-µ-(pyridine-2,4,6-tricarboxylato)-dilead(II)] top
Crystal data top
[Pb2(C8H2NO6)(OH)]F(000) = 1112
Mr = 639.49Dx = 3.918 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5542 reflections
a = 7.5391 (9) Åθ = 2.5–28.2°
b = 14.1845 (17) ŵ = 31.05 mm1
c = 10.3084 (12) ÅT = 291 K
β = 100.468 (1)°Block, white
V = 1084.0 (2) Å30.38 × 0.26 × 0.25 mm
Z = 4
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2014 independent reflections
Radiation source: fine-focus sealed tube1903 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
φ and ω scansθmax = 25.5°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 99
Tmin = 0.030, Tmax = 0.047k = 1717
7870 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.069H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0382P)2 + 7.726P]
where P = (Fo2 + 2Fc2)/3
2014 reflections(Δ/σ)max = 0.001
157 parametersΔρmax = 1.64 e Å3
0 restraintsΔρmin = 2.07 e Å3
Crystal data top
[Pb2(C8H2NO6)(OH)]V = 1084.0 (2) Å3
Mr = 639.49Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.5391 (9) ŵ = 31.05 mm1
b = 14.1845 (17) ÅT = 291 K
c = 10.3084 (12) Å0.38 × 0.26 × 0.25 mm
β = 100.468 (1)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2014 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1903 reflections with I > 2σ(I)
Tmin = 0.030, Tmax = 0.047Rint = 0.036
7870 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0280 restraints
wR(F2) = 0.069H-atom parameters constrained
S = 1.08Δρmax = 1.64 e Å3
2014 reflectionsΔρmin = 2.07 e Å3
157 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)

are estimated using the full covariance matrix. The cell e.s.d.'s are taken

into account individually in the estimation of e.s.d.'s in distances, angles

and torsion angles; correlations between e.s.d.'s in cell parameters are only

used when they are defined by crystal symmetry. An approximate (isotropic)

treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pb10.06507 (4)0.84421 (2)0.28447 (3)0.01366 (11)
Pb20.18306 (4)0.93099 (2)0.06649 (3)0.01411 (11)
O10.2977 (9)0.9297 (5)0.1872 (6)0.0289 (11)
O20.5925 (8)0.9461 (5)0.1816 (6)0.0289 (11)
O30.9877 (8)0.9721 (4)0.6667 (6)0.0225 (13)
O40.9167 (8)0.8519 (4)0.7875 (6)0.0250 (14)
O50.2690 (8)0.7768 (4)0.7342 (6)0.0213 (12)
O60.1106 (8)0.7676 (4)0.5298 (5)0.0229 (13)
O70.0597 (7)1.0796 (4)0.0536 (5)0.0152 (11)
H70.11171.12850.02320.023*
N10.3717 (8)0.8650 (4)0.4344 (6)0.0105 (12)
C10.5100 (10)0.9033 (5)0.3862 (7)0.0112 (14)
C20.6798 (11)0.9170 (5)0.4616 (8)0.0162 (16)
H20.77200.94380.42490.019*
C30.7094 (10)0.8896 (5)0.5943 (8)0.0140 (15)
C40.5682 (11)0.8484 (5)0.6457 (8)0.0175 (17)
H40.58470.82880.73310.021*
C50.4032 (10)0.8379 (5)0.5626 (8)0.0116 (15)
C60.4651 (11)0.9281 (5)0.2410 (8)0.0150 (16)
C70.8872 (11)0.9068 (6)0.6901 (8)0.0163 (16)
C80.2459 (11)0.7909 (5)0.6105 (7)0.0147 (16)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pb10.01119 (17)0.01504 (17)0.01652 (18)0.00022 (11)0.00723 (12)0.00207 (10)
Pb20.01304 (18)0.01647 (18)0.01407 (17)0.00281 (11)0.00580 (12)0.00070 (10)
O10.018 (2)0.048 (3)0.021 (2)0.010 (2)0.0067 (19)0.010 (2)
O20.018 (2)0.048 (3)0.021 (2)0.010 (2)0.0067 (19)0.010 (2)
O30.013 (3)0.022 (3)0.032 (3)0.007 (3)0.004 (3)0.010 (3)
O40.019 (3)0.037 (4)0.019 (3)0.003 (3)0.002 (2)0.002 (3)
O50.023 (3)0.025 (3)0.018 (3)0.003 (3)0.010 (2)0.003 (2)
O60.021 (3)0.030 (3)0.019 (3)0.017 (3)0.006 (3)0.002 (2)
O70.014 (3)0.013 (3)0.021 (3)0.002 (2)0.008 (2)0.001 (2)
N10.010 (3)0.008 (3)0.016 (3)0.002 (2)0.006 (3)0.001 (2)
C10.012 (4)0.009 (3)0.014 (4)0.001 (3)0.008 (3)0.001 (3)
C20.016 (4)0.012 (4)0.023 (4)0.001 (3)0.008 (3)0.002 (3)
C30.011 (4)0.008 (3)0.024 (4)0.003 (3)0.005 (3)0.004 (3)
C40.017 (4)0.019 (4)0.016 (4)0.002 (3)0.002 (3)0.001 (3)
C50.011 (4)0.009 (4)0.016 (4)0.000 (3)0.003 (3)0.003 (3)
C60.012 (4)0.019 (4)0.015 (4)0.005 (3)0.005 (3)0.003 (3)
C70.017 (4)0.017 (4)0.016 (4)0.009 (3)0.005 (3)0.002 (3)
C80.023 (4)0.008 (3)0.015 (4)0.000 (3)0.009 (3)0.001 (3)
Geometric parameters (Å, º) top
Pb1—O5i2.422 (6)O5—C81.272 (9)
Pb1—O12.489 (6)O5—Pb1vii2.422 (6)
Pb1—N12.554 (6)O6—C81.238 (10)
Pb1—O7ii2.627 (5)O7—Pb2ii2.393 (5)
Pb1—O3iii2.697 (6)O7—Pb1ii2.627 (5)
Pb1—O62.716 (6)O7—H70.8286
Pb2—O12.600 (6)N1—C11.348 (10)
Pb2—O2iv2.836 (7)N1—C51.355 (10)
Pb2—O4v2.541 (6)C1—C21.385 (11)
Pb2—O72.318 (5)C1—C61.515 (10)
Pb2—O7ii2.393 (5)C2—C31.401 (11)
O1—C61.283 (10)C2—H20.9300
O2—C61.256 (10)C3—C41.400 (12)
O3—C71.247 (11)C3—C71.533 (11)
O3—Pb1iii2.698 (6)C4—C51.384 (11)
O4—C71.258 (10)C4—H40.9300
O4—Pb2vi2.541 (6)C5—C81.519 (11)
O5i—Pb1—O174.8 (2)Pb2—O7—H7127.9
O5i—Pb1—N170.8 (2)Pb2ii—O7—H7102.2
O1—Pb1—N164.0 (2)Pb1ii—O7—H793.8
O5i—Pb1—O7ii103.54 (18)C1—N1—C5117.6 (6)
O1—Pb1—O7ii66.24 (19)C1—N1—Pb1119.9 (5)
N1—Pb1—O7ii129.54 (18)C5—N1—Pb1122.5 (5)
O5i—Pb1—O3iii147.70 (19)N1—C1—C2123.2 (7)
O1—Pb1—O3iii75.1 (2)N1—C1—C6114.1 (6)
N1—Pb1—O3iii85.62 (18)C2—C1—C6122.6 (7)
O7ii—Pb1—O3iii74.41 (17)C1—C2—C3118.4 (7)
O5i—Pb1—O686.45 (19)C1—C2—H2120.8
O1—Pb1—O6126.23 (19)C3—C2—H2120.8
N1—Pb1—O662.30 (18)C4—C3—C2119.2 (7)
O7ii—Pb1—O6166.35 (17)C4—C3—C7117.3 (7)
O3iii—Pb1—O6102.15 (18)C2—C3—C7123.4 (7)
O7—Pb2—O7ii71.0 (2)C5—C4—C3118.1 (7)
O7—Pb2—O4v98.8 (2)C5—C4—H4121.0
O7ii—Pb2—O4v71.47 (19)C3—C4—H4121.0
O7—Pb2—O190.7 (2)N1—C5—C4123.5 (7)
O7ii—Pb2—O167.99 (19)N1—C5—C8115.6 (7)
O4v—Pb2—O1132.45 (19)C4—C5—C8120.9 (7)
C6—O1—Pb1121.8 (5)O2—C6—O1124.4 (7)
C6—O1—Pb2123.8 (5)O2—C6—C1118.4 (7)
Pb1—O1—Pb2106.2 (2)O1—C6—C1117.2 (7)
C7—O3—Pb1iii124.4 (5)O3—C7—O4126.0 (8)
C7—O4—Pb2vi101.9 (5)O3—C7—C3119.0 (7)
C8—O5—Pb1vii110.5 (5)O4—C7—C3115.0 (7)
C8—O6—Pb1117.9 (5)O6—C8—O5125.3 (7)
Pb2—O7—Pb2ii108.9 (2)O6—C8—C5119.7 (7)
Pb2—O7—Pb1ii113.8 (2)O5—C8—C5115.0 (7)
Pb2ii—O7—Pb1ii108.2 (2)
O5i—Pb1—O1—C661.3 (6)C5—N1—C1—C6177.8 (6)
N1—Pb1—O1—C614.5 (6)Pb1—N1—C1—C61.6 (8)
O7ii—Pb1—O1—C6173.9 (7)N1—C1—C2—C30.1 (11)
O3iii—Pb1—O1—C6106.9 (6)C6—C1—C2—C3178.4 (7)
O6—Pb1—O1—C612.5 (7)C1—C2—C3—C40.8 (11)
O5i—Pb1—O1—Pb288.2 (3)C1—C2—C3—C7175.9 (7)
N1—Pb1—O1—Pb2163.9 (3)C2—C3—C4—C50.9 (11)
O7ii—Pb1—O1—Pb224.43 (19)C7—C3—C4—C5175.9 (7)
O3iii—Pb1—O1—Pb2103.7 (3)C1—N1—C5—C40.6 (11)
O6—Pb1—O1—Pb2162.02 (19)Pb1—N1—C5—C4180.0 (6)
O7—Pb2—O1—C6115.5 (6)C1—N1—C5—C8177.3 (6)
O7ii—Pb2—O1—C6175.3 (7)Pb1—N1—C5—C82.1 (8)
O4v—Pb2—O1—C6141.8 (6)C3—C4—C5—N10.2 (11)
O7—Pb2—O1—Pb195.8 (3)C3—C4—C5—C8178.0 (7)
O7ii—Pb2—O1—Pb126.6 (2)Pb1—O1—C6—O2159.2 (7)
O4v—Pb2—O1—Pb16.8 (4)Pb2—O1—C6—O215.2 (11)
O5i—Pb1—O6—C882.5 (6)Pb1—O1—C6—C121.2 (9)
O1—Pb1—O6—C814.3 (7)Pb2—O1—C6—C1165.2 (5)
N1—Pb1—O6—C812.3 (5)N1—C1—C6—O2165.9 (7)
O7ii—Pb1—O6—C8139.9 (7)C2—C1—C6—O212.7 (12)
O3iii—Pb1—O6—C866.1 (6)N1—C1—C6—O114.5 (10)
O7ii—Pb2—O7—Pb2ii0.001 (1)C2—C1—C6—O1167.0 (7)
O4v—Pb2—O7—Pb2ii66.8 (2)Pb1iii—O3—C7—O4100.9 (9)
O1—Pb2—O7—Pb2ii66.4 (2)Pb1iii—O3—C7—C378.7 (8)
O7ii—Pb2—O7—Pb1ii120.9 (3)Pb2vi—O4—C7—O311.2 (9)
O4v—Pb2—O7—Pb1ii54.0 (2)Pb2vi—O4—C7—C3168.5 (5)
O1—Pb2—O7—Pb1ii172.7 (2)C4—C3—C7—O3152.7 (7)
O5i—Pb1—N1—C176.4 (5)C2—C3—C7—O324.0 (11)
O1—Pb1—N1—C15.6 (5)C4—C3—C7—O427.0 (10)
O7ii—Pb1—N1—C115.5 (6)C2—C3—C7—O4156.3 (7)
O3iii—Pb1—N1—C181.2 (5)Pb1—O6—C8—O5165.4 (6)
O6—Pb1—N1—C1172.7 (6)Pb1—O6—C8—C516.6 (9)
O5i—Pb1—N1—C5103.0 (5)Pb1vii—O5—C8—O618.5 (10)
O1—Pb1—N1—C5175.0 (6)Pb1vii—O5—C8—C5159.6 (5)
O7ii—Pb1—N1—C5165.1 (5)N1—C5—C8—O610.3 (10)
O3iii—Pb1—N1—C599.5 (5)C4—C5—C8—O6167.6 (7)
O6—Pb1—N1—C56.7 (5)N1—C5—C8—O5171.5 (6)
C5—N1—C1—C20.7 (11)C4—C5—C8—O510.6 (11)
Pb1—N1—C1—C2179.8 (6)
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x, y+2, z; (iii) x+1, y+2, z+1; (iv) x+1, y+2, z; (v) x1, y, z1; (vi) x+1, y, z+1; (vii) x, y+3/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7···O6viii0.832.582.989 (8)112
O7—H7···O4iii0.832.492.884 (8)110
Symmetry codes: (iii) x+1, y+2, z+1; (viii) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Pb2(C8H2NO6)(OH)]
Mr639.49
Crystal system, space groupMonoclinic, P21/c
Temperature (K)291
a, b, c (Å)7.5391 (9), 14.1845 (17), 10.3084 (12)
β (°) 100.468 (1)
V3)1084.0 (2)
Z4
Radiation typeMo Kα
µ (mm1)31.05
Crystal size (mm)0.38 × 0.26 × 0.25
Data collection
DiffractometerBruker SMART APEX CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.030, 0.047
No. of measured, independent and
observed [I > 2σ(I)] reflections
7870, 2014, 1903
Rint0.036
(sin θ/λ)max1)0.605
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.069, 1.08
No. of reflections2014
No. of parameters157
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.64, 2.07

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Pb1—O5i2.422 (6)Pb2—O12.600 (6)
Pb1—O12.489 (6)Pb2—O2iv2.836 (7)
Pb1—N12.554 (6)Pb2—O4v2.541 (6)
Pb1—O7ii2.627 (5)Pb2—O72.318 (5)
Pb1—O3iii2.697 (6)Pb2—O7ii2.393 (5)
Pb1—O62.716 (6)
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x, y+2, z; (iii) x+1, y+2, z+1; (iv) x+1, y+2, z; (v) x1, y, z1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7···O6vi0.832.582.989 (8)111.6
O7—H7···O4iii0.832.492.884 (8)110.1
Symmetry codes: (iii) x+1, y+2, z+1; (vi) x, y+1/2, z+1/2.
 

Acknowledgements

We are grateful to the Natural Science Foundation of Anhui province (No. 090416234) for funding this study. We also thank the Doctoral Startup Foundation of Anhui Normal University.

References

First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDas, M. C., Ghosh, S. K., Sanudo, E. C. & Bharadwaj, P. K. (2009). Dalton Trans. pp. 1644–1658.  Web of Science CSD CrossRef Google Scholar
First citationDing, B., Liu, Y. Y., Wu, X., Zhao, X. J., Du, G., Yang, E. C. & Wang, X. G. (2009). Cryst. Growth Des. 9, 4176–4180.  Web of Science CSD CrossRef CAS Google Scholar
First citationGhosh, S. K., El Fallah, M. S., Ribas, J. & Bharadwaj, P. K. (2006). Inorg. Chim. Acta, 359, 468–474.  Web of Science CSD CrossRef CAS Google Scholar
First citationO'Keeffe, M., Peskov, M. A., Ramsden, S. J. & Yaghi, O. M. (2008). Acc. Chem. Res. 41, 1782–1789.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShi, C. Y., Ge, C. H. & Liu, Q. T. (2010). Chin. J. Inorg. Chem. 26, 1323–1332.  CAS Google Scholar
First citationWu, Z.-H., Zhou, Y.-H. & Cai, J.-H. (2007). Acta Cryst. E63, m2223–m2224.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationXu, Z.-L., Ma, X.-Y., Ma, S. & Wang, X.-Y. (2010). Acta Cryst. C66, m245–m248.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYigit, M. V., Biyikli, K., Moulton, B. & MacDonald, J. C. (2005). Cryst. Growth Des. 6, 63–69.  Web of Science CSD CrossRef Google Scholar
First citationZhang, J. P., Huang, X. C. & Chen, X. M. (2009). Chem. Soc. Rev. 38, 2385–2396.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZhao, L., Dong, Y.-R. & Xie, H.-Z. (2009). Acta Cryst. E65, m450–m451.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhou, Y. H., Fu, H., Zhao, W. X., Chen, W. L., Su, C. Y., Sun, H., Ji, L. N. & Mao, Z. W. (2007). Inorg. Chem. 46, 734–739.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds