organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-4-[2-(4-Eth­­oxy­phen­yl)ethen­yl]-1-methyl­pyridinium 4-bromo­benzene­sulfonate methanol hemisolvate1

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bCrystal Materials Research Unit, Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand
*Correspondence e-mail: hkfun@usm.my

(Received 27 November 2010; accepted 5 December 2010; online 11 December 2010)

In the title compound, C16H18NO+·C6H4BrO3S·0.5CH3OH, the cation exists in the E configuration and the whole mol­ecule of the cation, except for the O atom of the eth­oxy group, is disordered with a site-occupancy ratio of 0.695 (5):0.305 (5). The cation is disordered in such a way that the ethenyl units of the major and minor components are related by 180° around the long mol­ecular axis. In the major component, the cation is almost planar, the dihedral angle between the pyridinium and benzene rings being 0.8 (3)°, whereas in the minor component, the dihedral angle between the two aromatic rings is 4.2 (6)°. In the crystal, the cations are stacked in an anti­parallel manner along the a axis, while the anions and methanol mol­ecules are linked through O—H⋯O hydrogen bonds and Br⋯O short contacts [3.0248 (13) Å] into a tape along the same direction. The three components are further linked by weak C—H⋯O, C—H⋯Br and C—H⋯π inter­actions.

Related literature

For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For background to non-linear optical materials research, see: Cheng, Tam, Marder et al. (1991[Cheng, L. T., Tam, W., Marder, S. R., Stiegman, A. E., Rikken, G. & Spangler, C. W. (1991). J. Phys. Chem. 95, 10643-10652.]); Cheng, Tam, Stevenson et al. (1991[Cheng, L. T., Tam, W., Stevenson, S. H., Meredith, G. R., Rikken, G. & Marder, S. R. (1991). J. Phys. Chem. 95, 10631-10643.]); Ogawa et al. (2008[Ogawa, J., Okada, S., Glavcheva, Z. & Nakanishi, H. (2008). J. Cryst. Growth, 310, 836-842.]); Ruanwas et al. (2010[Ruanwas, P., Kobkeatthawin, T., Chantrapromma, S., Fun, H.-K., Philip, R., Smijesh, N., Padaki, M. & Isloor, A. M. (2010). Synth. Met. 160, 819-824.]); Yang et al. (2007[Yang, Z., Wörle, M., Mutter, L., Jazbinsek, M. & Günter, P. (2007). Cryst. Growth Res. 7, 83-86.]). For related structures, see: Chantrapromma et al. (2006[Chantrapromma, S., Ruanwas, P., Fun, H.-K. & Patil, P. S. (2006). Acta Cryst. E62, o5494-o5496.]); Chantrapromma, Chanawanno & Fun (2009[Chantrapromma, S., Chanawanno, K. & Fun, H.-K. (2009). Acta Cryst. E65, o1144-o1145.]); Chantra­promma, Jansrisewangwong et al. (2009[Chantrapromma, S., Jansrisewangwong, P., Musor, R. & Fun, H.-K. (2009). Acta Cryst. E65, o217-o218.]); Fun et al. (2009[Fun, H.-K., Chanawanno, K. & Chantrapromma, S. (2009). Acta Cryst. E65, o1406-o1407.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • 2C16H18NO+·2C6H4BrO3S·CH4O

  • Mr = 984.79

  • Triclinic, [P \overline 1]

  • a = 9.9270 (4) Å

  • b = 9.9813 (4) Å

  • c = 11.5293 (4) Å

  • α = 75.703 (2)°

  • β = 76.965 (2)°

  • γ = 88.395 (2)°

  • V = 1078.00 (7) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 2.04 mm−1

  • T = 100 K

  • 0.58 × 0.41 × 0.17 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.383, Tmax = 0.721

  • 24757 measured reflections

  • 6214 independent reflections

  • 5389 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.086

  • S = 1.03

  • 6214 reflections

  • 354 parameters

  • 6 restraints

  • H-atom parameters constrained

  • Δρmax = 1.47 e Å−3

  • Δρmin = −0.54 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1, Cg2, Cg3, Cg4 and Cg5 are the centroids of the N1A/C1A–C5A, C8A–C13A, N1B/C1B–C5B, C8B–C13B and C17–C22 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5⋯O3i 0.82 1.92 2.657 (4) 149
C1A—H1AA⋯O2ii 0.93 2.42 3.334 (4) 168
C2A—H2AA⋯O2iii 0.93 2.38 3.237 (5) 153
C14A—H14A⋯O4iv 0.96 2.36 3.180 (6) 143
C14A—H14B⋯O4iii 0.96 2.41 3.343 (6) 163
C19—H19A⋯O5v 0.93 2.53 3.385 (4) 153
C21—H21A⋯O2vi 0.93 2.58 3.311 (2) 135
C23—H23C⋯Br1 0.96 2.77 3.724 (5) 173
C14A—H14CCg2ii 0.96 2.66 3.609 (6) 172
C14A—H14CCg4ii 0.96 2.63 3.572 (8) 167
C15A—H15ACg1vii 0.97 2.84 3.639 (8) 140
C15A—H15ACg3vii 0.97 2.84 3.611 (9) 137
C14B—H14DCg2ii 0.96 2.87 3.562 (15) 129
C14B—H14DCg4ii 0.96 2.80 3.564 (16) 137
C15B—H15CCg1vii 0.97 2.81 3.65 (3) 145
C15B—H15CCg3vii 0.97 2.81 3.62 (3) 141
C15B—H15DCg5viii 0.97 2.98 3.60 (2) 123
Symmetry codes: (i) x+1, y, z; (ii) -x, -y+1, -z+1; (iii) x, y+1, z; (iv) -x, -y+1, -z; (v) -x+1, -y+1, -z; (vi) -x, -y, -z+1; (vii) -x+1, -y+1, -z+1; (viii) -x+1, -y, -z+1.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Organic crystals with extensive conjugated π systems with large hyperpolarizability which exhibit NLO properties have been reported (Ogawa et al., 2008; Ruanwas et al., 2010; Yang et al., 2007). Styryl pyridinium derivatives are considered to be good conjugated π-systems (Cheng, Tam, Marder et al., 1991; Cheng, Tam, Stevenson et al., 1991). In our on-going research in searching for NLO materials (Chantrapromma et al., 2006; Chantrapromma, Chanawanno & Fun, 2009; Chantrapromma, Jansrisewangwong et al., 2009; Ruanwas et al., 2010), the title compound (I) was synthesized. Unfortunately (I) crystallizes in the triclinic centrosymmetric space group P-1 and did not exhibit second-order nonlinear optical properties.

The asymmetric unit of (I) consists of one C16H18NO+ cation, one C6H4BrO3S- anion and one-half of the CH3OH molecule. The whole molecule except the O atom of the ethoxy group (O1) of the cation is disordered over two sites with the major component A and the minor B components having refined site-occupancy ratio of 0.695 (5):0.305 (5) (Fig. 1). The cation exists in the E configuration with respect to the C6C7 double bond and the torsion angle C5–C6–C7–C8 = -179.6 (2)° for major component A and 179.5 (6)° for minor component B indicating that the orientation of the ethenyl moiety in major and minor components is related by 180° rotation. In the major component A, the cation is planar with the dihedral angle between the pyridinium and benzene rings being 0.8 (3)°, whereas in the minor component B, the dihedral angle between the two aromatic rings is 4.2 (6)°. The anion is inclined to the cation with the dihedral angle between the C17–C22 benzene ring of the anion and the mean plane of the conjugated π system (C1–C13/N1) [r.m.s = 0.013 (2) and 0.033 (2) Å for major and minor components, respectively] of the cation being 79.73 (12) and 79.2 (2)° for major and minor components, respectively. The ethoxy group is co-planar with the attached benzene ring as indicated by the torsion angle C11A–O1–C15A–C16A = 178.8 (8)° for major component and C11B–O1–C15B–C16B = -175 (2)° for minor component. The bond lengths in (I) are in normal ranges (Allen et al., 1987) and comparable to those in related structures (Chantrapromma et al., 2006; Chantrapromma, Chanawanno & Fun, 2009; Chantrapromma, Jansrisewangwong et al., 2009; Fun et al., 2009).

In the crystal packing (Fig. 2), the cations and anions are individually arranged into chains along the a axis. The methanol molecules are linked to the anions by C—H···Br weak interactions and O—H···O hydrogen bonds, respectively (Table 1). The cations, anions and methanol molecules are linked together by O—H···O hydrogen bonds and C—H···O weak interactions forming sheets parallel to the bc plane. The crystal structure is further stabilized by C—H···π interactions (Table 1). A Br···O short contact [3.0248 (13) Å; symmetry code: 1 + x, y, z] was observed.

Related literature top

For bond-length data, see: Allen et al. (1987). For background to non-linear optical materials research, see: Cheng, Tam, Marder et al. (1991); Cheng, Tam, Stevenson et al. (1991); Ogawa et al. (2008); Ruanwas et al. (2010); Yang et al. (2007). For related structures, see: Chantrapromma et al. (2006); Chantrapromma, Chanawanno & Fun (2009); Chantrapromma, Jansrisewangwong et al. (2009); Fun et al. (2009). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

(E)-4-(4-Ethoxystyryl)-1-methylpyridinium iodide (compound A) was prepared by mixing 1:1:1 molar ratio solutions of 1,4-dimethylpyridinium iodide (2.00 g, 8.5 mmol), 4-ethoxybenzaldehyde (1.27 g, 8.5 mmol) and piperidine (0.84 ml, 8.5 mmol) in hot methanol (50 ml). The resulting solution was refluxed for 3 h under a nitrogen atmosphere. The resultant solid was filtered off and washed with diethylether to give oranged-yellow solid of compound A (2.18 g, 69%), M.p. 491-492 K. Silver (I) 4-bromobenzenesulfonate (compound B) was synthesized according to our previously reported procedure (Chantrapromma et al., 2006). The title compound was synthesized by mixing a solution of compound A (0.20 g, 0.5 mmol) in hot methanol (25 ml) and a solution of compound B (0.17 g, 0.5 mmol) in hot methanol (50 ml). The mixture immediately yielded a grey precipitate of silver iodide. After stirring the mixture for 30 min, the precipitate of silver iodide was removed and the resulting solution was evaporated yielding a yellow solid of the title compound. Yellow plate-shaped single crystals of the title compound suitable for x-ray structure determination were recrystallized from methanol by slow evaporation of the solvent at room temperature over several days, M.p. 513-515 K.

Refinement top

All H atoms were positioned geometrically and allowed to ride on their parent atoms, with d(O—H) = 0.82 Å, d(C—H) = 0.93 Å for aromatic and CH, 0.97 Å for CH2 and 0.96 Å for CH3 atoms. The Uiso values were constrained to be 1.5Ueq of the carrier atoms for methyl H atoms and 1.2Ueq for the remaining H atoms. A rotating group model was used for the methyl groups. The highest residual electron density peak is located at 0.30 Å from H23B and the deepest hole is located at 0.68 Å from Br1. The whole cation, with the exception of the O1 atom of the ethoxy group, is disordered over two sites with a refined occupancy ratio of 0.695 (5):0.305 (5). All atoms of the minor component B were refined isotropically. Initially rigidity and similarity restraints were applied. After steady state has been reached, these restraints were removed and DFIX restraints were applied to O1—C11A, O1—C11B, O1—C15A and O1—C15B bond distances. The occupancy of the metahnol molecule was refined to 0.542 (7). In the final refinement, it was fixed to 0.5.

Structure description top

Organic crystals with extensive conjugated π systems with large hyperpolarizability which exhibit NLO properties have been reported (Ogawa et al., 2008; Ruanwas et al., 2010; Yang et al., 2007). Styryl pyridinium derivatives are considered to be good conjugated π-systems (Cheng, Tam, Marder et al., 1991; Cheng, Tam, Stevenson et al., 1991). In our on-going research in searching for NLO materials (Chantrapromma et al., 2006; Chantrapromma, Chanawanno & Fun, 2009; Chantrapromma, Jansrisewangwong et al., 2009; Ruanwas et al., 2010), the title compound (I) was synthesized. Unfortunately (I) crystallizes in the triclinic centrosymmetric space group P-1 and did not exhibit second-order nonlinear optical properties.

The asymmetric unit of (I) consists of one C16H18NO+ cation, one C6H4BrO3S- anion and one-half of the CH3OH molecule. The whole molecule except the O atom of the ethoxy group (O1) of the cation is disordered over two sites with the major component A and the minor B components having refined site-occupancy ratio of 0.695 (5):0.305 (5) (Fig. 1). The cation exists in the E configuration with respect to the C6C7 double bond and the torsion angle C5–C6–C7–C8 = -179.6 (2)° for major component A and 179.5 (6)° for minor component B indicating that the orientation of the ethenyl moiety in major and minor components is related by 180° rotation. In the major component A, the cation is planar with the dihedral angle between the pyridinium and benzene rings being 0.8 (3)°, whereas in the minor component B, the dihedral angle between the two aromatic rings is 4.2 (6)°. The anion is inclined to the cation with the dihedral angle between the C17–C22 benzene ring of the anion and the mean plane of the conjugated π system (C1–C13/N1) [r.m.s = 0.013 (2) and 0.033 (2) Å for major and minor components, respectively] of the cation being 79.73 (12) and 79.2 (2)° for major and minor components, respectively. The ethoxy group is co-planar with the attached benzene ring as indicated by the torsion angle C11A–O1–C15A–C16A = 178.8 (8)° for major component and C11B–O1–C15B–C16B = -175 (2)° for minor component. The bond lengths in (I) are in normal ranges (Allen et al., 1987) and comparable to those in related structures (Chantrapromma et al., 2006; Chantrapromma, Chanawanno & Fun, 2009; Chantrapromma, Jansrisewangwong et al., 2009; Fun et al., 2009).

In the crystal packing (Fig. 2), the cations and anions are individually arranged into chains along the a axis. The methanol molecules are linked to the anions by C—H···Br weak interactions and O—H···O hydrogen bonds, respectively (Table 1). The cations, anions and methanol molecules are linked together by O—H···O hydrogen bonds and C—H···O weak interactions forming sheets parallel to the bc plane. The crystal structure is further stabilized by C—H···π interactions (Table 1). A Br···O short contact [3.0248 (13) Å; symmetry code: 1 + x, y, z] was observed.

For bond-length data, see: Allen et al. (1987). For background to non-linear optical materials research, see: Cheng, Tam, Marder et al. (1991); Cheng, Tam, Stevenson et al. (1991); Ogawa et al. (2008); Ruanwas et al. (2010); Yang et al. (2007). For related structures, see: Chantrapromma et al. (2006); Chantrapromma, Chanawanno & Fun (2009); Chantrapromma, Jansrisewangwong et al. (2009); Fun et al. (2009). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with 50% probability displacement ellipsoids and the atom-numbering scheme. Open bonds show the minor component.
[Figure 2] Fig. 2. The crystal packing of the major component of the title compound viewed down the a axis. O—H···O hydrogen bonds and C—H···O weak interactions are shown as dashed lines.
(E)-4-[2-(4-Ethoxyphenyl)ethenyl]-1-methylpyridinium 4-bromobenzenesulfonate methanol hemisolvate top
Crystal data top
2C16H18NO+·2C6H4BrO3S·CH4OZ = 1
Mr = 984.79F(000) = 506
Triclinic, P1Dx = 1.517 Mg m3
Hall symbol: -P 1Melting point = 513–515 K
a = 9.9270 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.9813 (4) ÅCell parameters from 6214 reflections
c = 11.5293 (4) Åθ = 1.9–30.0°
α = 75.703 (2)°µ = 2.04 mm1
β = 76.965 (2)°T = 100 K
γ = 88.395 (2)°Plate, yellow
V = 1078.00 (7) Å30.58 × 0.41 × 0.17 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
6214 independent reflections
Radiation source: sealed tube5389 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
φ and ω scansθmax = 30.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1313
Tmin = 0.383, Tmax = 0.721k = 1414
24757 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.086H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0421P)2 + 0.6369P]
where P = (Fo2 + 2Fc2)/3
6214 reflections(Δ/σ)max = 0.002
354 parametersΔρmax = 1.47 e Å3
6 restraintsΔρmin = 0.54 e Å3
Crystal data top
2C16H18NO+·2C6H4BrO3S·CH4Oγ = 88.395 (2)°
Mr = 984.79V = 1078.00 (7) Å3
Triclinic, P1Z = 1
a = 9.9270 (4) ÅMo Kα radiation
b = 9.9813 (4) ŵ = 2.04 mm1
c = 11.5293 (4) ÅT = 100 K
α = 75.703 (2)°0.58 × 0.41 × 0.17 mm
β = 76.965 (2)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
6214 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
5389 reflections with I > 2σ(I)
Tmin = 0.383, Tmax = 0.721Rint = 0.030
24757 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0336 restraints
wR(F2) = 0.086H-atom parameters constrained
S = 1.03Δρmax = 1.47 e Å3
6214 reflectionsΔρmin = 0.54 e Å3
354 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Br10.611495 (18)0.152815 (19)0.312050 (17)0.02878 (6)
S10.01349 (4)0.19135 (4)0.23886 (4)0.02485 (9)
O10.57929 (15)0.21814 (14)0.88911 (12)0.0318 (3)
O20.09844 (13)0.10914 (14)0.35315 (12)0.0314 (3)
O30.04752 (16)0.33740 (14)0.21612 (16)0.0415 (4)
O40.00778 (15)0.13368 (18)0.13490 (14)0.0396 (3)
O50.8900 (4)0.4976 (3)0.0154 (3)0.0435 (7)0.50
H50.93710.44810.05780.065*0.50
N1A0.0147 (7)0.7395 (6)0.2448 (5)0.0267 (12)0.695 (5)
C1A0.0554 (4)0.7375 (4)0.4310 (3)0.0239 (6)0.695 (5)
H1AA0.05300.77770.49610.029*0.695 (5)
C2A0.0181 (6)0.7948 (5)0.3438 (4)0.0228 (8)0.695 (5)
H2AA0.07070.87200.35170.027*0.695 (5)
C3A0.0609 (9)0.6259 (8)0.2357 (7)0.0367 (15)0.695 (5)
H3AA0.06430.58850.16880.044*0.695 (5)
C4A0.1331 (4)0.5640 (3)0.3233 (4)0.0332 (8)0.695 (5)
H4AA0.18180.48450.31570.040*0.695 (5)
C5A0.1341 (3)0.6195 (3)0.4234 (3)0.0237 (6)0.695 (5)
C6A0.2090 (3)0.5626 (3)0.5195 (2)0.0270 (7)0.695 (5)
H6AA0.19870.60510.58410.032*0.695 (5)
C7A0.2907 (3)0.4544 (3)0.5214 (2)0.0261 (7)0.695 (5)
H7AA0.30080.41300.45610.031*0.695 (5)
C8A0.3662 (3)0.3946 (3)0.6161 (3)0.0243 (6)0.695 (5)
C9A0.4440 (3)0.2777 (4)0.6085 (3)0.0283 (7)0.695 (5)
H9AA0.44820.23970.54180.034*0.695 (5)
C10A0.5148 (6)0.2167 (6)0.6964 (5)0.0294 (10)0.695 (5)
H10A0.56430.13780.68840.035*0.695 (5)
C11A0.5143 (8)0.2692 (7)0.7955 (6)0.0287 (13)0.695 (5)
C12A0.4362 (6)0.3892 (5)0.8051 (5)0.0348 (11)0.695 (5)
H12A0.43330.42680.87180.042*0.695 (5)
C13A0.3649 (3)0.4505 (3)0.7172 (4)0.0302 (7)0.695 (5)
H13A0.31540.52950.72470.036*0.695 (5)
C14A0.0929 (6)0.8055 (6)0.1557 (5)0.0371 (11)0.695 (5)
H14A0.05790.77920.08000.056*0.695 (5)
H14B0.08410.90410.14140.056*0.695 (5)
H14C0.18850.77710.18640.056*0.695 (5)
C15A0.6589 (7)0.0983 (6)0.8757 (7)0.0231 (17)0.695 (5)
H15A0.72890.11970.79940.028*0.695 (5)
H15B0.59940.02360.87430.028*0.695 (5)
C16A0.7260 (12)0.0566 (17)0.9834 (10)0.034 (2)0.695 (5)
H16A0.78920.01600.97180.051*0.695 (5)
H16B0.65610.02431.05730.051*0.695 (5)
H16C0.77530.13490.98970.051*0.695 (5)
N1B0.0172 (14)0.7490 (16)0.2597 (13)0.020 (2)*0.305 (5)
C1B0.0848 (8)0.7018 (9)0.4259 (7)0.0201 (18)*0.305 (5)
H1BA0.09620.72360.49710.024*0.305 (5)
C2B0.0053 (12)0.7800 (14)0.3562 (12)0.024 (3)*0.305 (5)
H2BA0.03440.85820.37820.029*0.305 (5)
C3B0.0405 (19)0.638 (2)0.2234 (19)0.029 (3)*0.305 (5)
H3BA0.02070.61490.15560.035*0.305 (5)
C4B0.1273 (10)0.5607 (11)0.2859 (9)0.030 (2)*0.305 (5)
H4BA0.17200.48810.25740.036*0.305 (5)
C5B0.1499 (7)0.5881 (8)0.3903 (8)0.0212 (15)*0.305 (5)
C6B0.2386 (6)0.5015 (6)0.4641 (5)0.0226 (14)*0.305 (5)
H6BA0.28100.42820.43510.027*0.305 (5)
C7B0.2637 (6)0.5186 (6)0.5688 (5)0.0211 (14)*0.305 (5)
H7BA0.22130.59260.59660.025*0.305 (5)
C8B0.3503 (7)0.4341 (8)0.6447 (7)0.0210 (14)*0.305 (5)
C9B0.4213 (8)0.3225 (9)0.6190 (7)0.0241 (16)*0.305 (5)
H9BA0.41740.29640.54770.029*0.305 (5)
C10B0.5018 (16)0.2447 (14)0.6990 (15)0.035 (4)*0.305 (5)
H10B0.55120.16910.68080.042*0.305 (5)
C11B0.5034 (16)0.2863 (15)0.8051 (13)0.018 (3)*0.305 (5)
C12B0.4343 (11)0.3971 (12)0.8312 (10)0.021 (2)*0.305 (5)
H12B0.43990.42460.90140.026*0.305 (5)
C13B0.3546 (9)0.4703 (9)0.7531 (8)0.030 (2)*0.305 (5)
H13B0.30370.54420.77340.036*0.305 (5)
C14B0.1068 (15)0.8318 (13)0.1724 (13)0.028 (3)*0.305 (5)
H14D0.16810.76900.15670.042*0.305 (5)
H14E0.04750.87970.09630.042*0.305 (5)
H14F0.16010.89750.21060.042*0.305 (5)
C15B0.659 (3)0.098 (2)0.877 (3)0.054 (8)*0.305 (5)
H15C0.73380.12170.80460.065*0.305 (5)
H15D0.60040.02710.86730.065*0.305 (5)
C16B0.716 (3)0.044 (4)0.990 (3)0.047 (9)*0.305 (5)
H16D0.76100.04190.98520.071*0.305 (5)
H16E0.64260.02911.06190.071*0.305 (5)
H16F0.78250.11010.99370.071*0.305 (5)
C170.42651 (18)0.16977 (18)0.29296 (16)0.0244 (3)
C180.39864 (19)0.25307 (19)0.18576 (17)0.0288 (4)
H18A0.46970.30340.12490.035*
C190.26369 (19)0.26051 (19)0.17041 (17)0.0285 (4)
H19A0.24390.31610.09900.034*
C200.15803 (18)0.18491 (17)0.26178 (16)0.0233 (3)
C210.18730 (19)0.10245 (18)0.36949 (16)0.0252 (3)
H21A0.11630.05240.43070.030*
C220.32179 (19)0.09490 (18)0.38552 (16)0.0262 (3)
H22A0.34160.04040.45730.031*
C230.7489 (5)0.4042 (5)0.0126 (4)0.0433 (10)0.50
H23A0.77640.34700.04400.065*0.50
H23B0.64750.43350.02020.065*0.50
H23C0.71180.34690.09330.065*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.02518 (9)0.02959 (10)0.03098 (10)0.00350 (7)0.00640 (7)0.00585 (7)
S10.0239 (2)0.02263 (19)0.0257 (2)0.00041 (15)0.00211 (16)0.00470 (16)
O10.0433 (8)0.0253 (6)0.0284 (7)0.0050 (6)0.0099 (6)0.0086 (5)
O20.0247 (6)0.0336 (7)0.0307 (7)0.0064 (5)0.0021 (5)0.0010 (5)
O30.0341 (8)0.0242 (7)0.0566 (10)0.0035 (6)0.0008 (7)0.0009 (6)
O40.0318 (7)0.0584 (10)0.0357 (8)0.0039 (7)0.0091 (6)0.0239 (7)
O50.0519 (19)0.0435 (17)0.0314 (15)0.0016 (14)0.0150 (14)0.0030 (13)
N1A0.044 (2)0.0231 (18)0.0148 (18)0.0134 (11)0.0077 (13)0.0057 (12)
C1A0.0287 (14)0.0213 (14)0.0223 (14)0.0016 (13)0.0060 (11)0.0064 (11)
C2A0.0265 (19)0.0225 (17)0.0199 (17)0.0026 (14)0.0077 (14)0.0036 (12)
C3A0.060 (4)0.022 (2)0.032 (2)0.004 (2)0.011 (3)0.0119 (18)
C4A0.052 (2)0.0206 (13)0.0271 (18)0.0008 (11)0.0114 (16)0.0042 (13)
C5A0.0283 (13)0.0190 (12)0.0216 (14)0.0059 (10)0.0012 (10)0.0043 (11)
C6A0.0322 (14)0.0231 (12)0.0256 (13)0.0034 (10)0.0039 (10)0.0079 (10)
C7A0.0302 (13)0.0231 (12)0.0231 (12)0.0060 (10)0.0001 (10)0.0067 (10)
C8A0.0284 (13)0.0187 (13)0.0230 (13)0.0032 (11)0.0006 (10)0.0051 (11)
C9A0.0327 (15)0.0245 (15)0.0274 (14)0.0011 (12)0.0010 (11)0.0110 (12)
C10A0.0321 (19)0.026 (2)0.0288 (18)0.0007 (16)0.0019 (12)0.0084 (16)
C11A0.034 (2)0.018 (2)0.030 (2)0.0008 (14)0.0010 (16)0.0034 (15)
C12A0.054 (2)0.0253 (17)0.028 (2)0.0017 (12)0.0086 (18)0.0111 (16)
C13A0.0373 (16)0.0173 (13)0.0323 (19)0.0016 (10)0.0011 (14)0.0057 (13)
C14A0.045 (3)0.033 (3)0.030 (2)0.012 (2)0.0155 (19)0.0052 (18)
C15A0.0195 (18)0.0215 (19)0.026 (2)0.0024 (9)0.0013 (9)0.0062 (10)
C16A0.025 (2)0.040 (3)0.032 (3)0.002 (2)0.0059 (15)0.0003 (18)
C170.0246 (8)0.0231 (8)0.0259 (8)0.0016 (6)0.0043 (6)0.0078 (6)
C180.0267 (8)0.0268 (8)0.0277 (9)0.0070 (7)0.0015 (7)0.0005 (7)
C190.0298 (9)0.0262 (8)0.0255 (8)0.0041 (7)0.0046 (7)0.0001 (7)
C200.0234 (8)0.0204 (7)0.0255 (8)0.0028 (6)0.0018 (6)0.0074 (6)
C210.0264 (8)0.0243 (8)0.0226 (8)0.0034 (6)0.0000 (6)0.0060 (6)
C220.0294 (9)0.0249 (8)0.0231 (8)0.0024 (7)0.0040 (7)0.0050 (6)
C230.057 (3)0.033 (2)0.032 (2)0.0013 (19)0.0035 (19)0.0064 (17)
Geometric parameters (Å, º) top
Br1—C171.8962 (18)N1B—C3B1.35 (2)
S1—O41.4420 (15)N1B—C14B1.56 (2)
S1—O21.4575 (14)C1B—C2B1.349 (12)
S1—O31.4600 (14)C1B—C5B1.394 (10)
S1—C201.7780 (18)C1B—H1BA0.9300
O1—C11A1.366 (5)C2B—H2BA0.9300
O1—C11B1.394 (8)C3B—C4B1.351 (17)
O1—C15B1.434 (9)C3B—H3BA0.9300
O1—C15A1.436 (3)C4B—C5B1.364 (10)
O5—C231.716 (6)C4B—H4BA0.9300
O5—H50.8200C5B—C6B1.476 (9)
N1A—C3A1.355 (10)C6B—C7B1.336 (8)
N1A—C2A1.379 (6)C6B—H6BA0.9300
N1A—C14A1.445 (8)C7B—C8B1.467 (9)
C1A—C2A1.376 (6)C7B—H7BA0.9300
C1A—C5A1.405 (5)C8B—C9B1.360 (10)
C1A—H1AA0.9300C8B—C13B1.394 (10)
C2A—H2AA0.9300C9B—C10B1.427 (17)
C3A—C4A1.381 (8)C9B—H9BA0.9300
C3A—H3AA0.9300C10B—C11B1.39 (2)
C4A—C5A1.400 (5)C10B—H10B0.9300
C4A—H4AA0.9300C11B—C12B1.346 (17)
C5A—C6A1.463 (4)C12B—C13B1.391 (14)
C6A—C7A1.331 (4)C12B—H12B0.9300
C6A—H6AA0.9300C13B—H13B0.9300
C7A—C8A1.460 (4)C14B—H14D0.9600
C7A—H7AA0.9300C14B—H14E0.9600
C8A—C9A1.391 (4)C14B—H14F0.9600
C8A—C13A1.408 (5)C15B—C16B1.511 (10)
C9A—C10A1.373 (7)C15B—H15C0.9700
C9A—H9AA0.9300C15B—H15D0.9700
C10A—C11A1.368 (8)C16B—H16D0.9600
C10A—H10A0.9300C16B—H16E0.9600
C11A—C12A1.422 (8)C16B—H16F0.9600
C12A—C13A1.377 (6)C17—C221.388 (2)
C12A—H12A0.9300C17—C181.389 (3)
C13A—H13A0.9300C18—C191.388 (3)
C14A—H14A0.9600C18—H18A0.9300
C14A—H14B0.9600C19—C201.390 (2)
C14A—H14C0.9600C19—H19A0.9300
C15A—C16A1.503 (5)C20—C211.396 (2)
C15A—H15A0.9700C21—C221.386 (3)
C15A—H15B0.9700C21—H21A0.9300
C16A—H16A0.9600C22—H22A0.9300
C16A—H16B0.9600C23—H23A0.9600
C16A—H16C0.9600C23—H23B1.1586
N1B—C2B1.291 (17)C23—H23C0.9600
O4—S1—O2113.62 (9)C3B—C4B—H4BA119.7
O4—S1—O3113.59 (10)C5B—C4B—H4BA119.7
O2—S1—O3112.28 (9)C4B—C5B—C1B117.3 (8)
O4—S1—C20105.52 (8)C4B—C5B—C6B122.1 (8)
O2—S1—C20105.47 (8)C1B—C5B—C6B120.6 (8)
O3—S1—C20105.41 (9)C7B—C6B—C5B126.1 (6)
C11A—O1—C15B114.3 (11)C7B—C6B—H6BA116.9
C11B—O1—C15B124.0 (12)C5B—C6B—H6BA116.9
C11A—O1—C15A113.7 (4)C6B—C7B—C8B127.5 (6)
C11B—O1—C15A123.5 (7)C6B—C7B—H7BA116.2
C23—O5—H5109.5C8B—C7B—H7BA116.2
C3A—N1A—C2A118.7 (6)C9B—C8B—C13B118.8 (7)
C3A—N1A—C14A123.1 (6)C9B—C8B—C7B125.0 (7)
C2A—N1A—C14A118.2 (6)C13B—C8B—C7B116.2 (7)
C2A—C1A—C5A121.2 (3)C8B—C9B—C10B121.4 (9)
C2A—C1A—H1AA119.4C8B—C9B—H9BA119.3
C5A—C1A—H1AA119.4C10B—C9B—H9BA119.3
C1A—C2A—N1A120.9 (5)C11B—C10B—C9B117.4 (10)
C1A—C2A—H2AA119.5C11B—C10B—H10B121.3
N1A—C2A—H2AA119.5C9B—C10B—H10B121.3
N1A—C3A—C4A121.8 (7)C12B—C11B—C10B121.8 (9)
N1A—C3A—H3AA119.1C12B—C11B—O1116.1 (10)
C4A—C3A—H3AA119.1C10B—C11B—O1122.1 (11)
C3A—C4A—C5A120.9 (4)C11B—C12B—C13B120.0 (9)
C3A—C4A—H4AA119.6C11B—C12B—H12B120.0
C5A—C4A—H4AA119.6C13B—C12B—H12B120.0
C4A—C5A—C1A116.6 (3)C12B—C13B—C8B120.6 (8)
C4A—C5A—C6A124.8 (3)C12B—C13B—H13B119.7
C1A—C5A—C6A118.7 (3)C8B—C13B—H13B119.7
C7A—C6A—C5A124.9 (3)N1B—C14B—H14D109.5
C7A—C6A—H6AA117.6N1B—C14B—H14E109.5
C5A—C6A—H6AA117.6H14D—C14B—H14E109.5
C6A—C7A—C8A126.2 (3)N1B—C14B—H14F109.5
C6A—C7A—H7AA116.9H14D—C14B—H14F109.5
C8A—C7A—H7AA116.9H14E—C14B—H14F109.5
C9A—C8A—C13A117.2 (3)O1—C15B—C16B110 (2)
C9A—C8A—C7A120.0 (3)O1—C15B—H15C109.7
C13A—C8A—C7A122.8 (3)C16B—C15B—H15C109.7
C10A—C9A—C8A122.0 (4)O1—C15B—H15D109.7
C10A—C9A—H9AA119.0C16B—C15B—H15D109.7
C8A—C9A—H9AA119.0H15C—C15B—H15D108.2
C11A—C10A—C9A121.6 (5)C15B—C16B—H16D109.5
C11A—C10A—H10A119.2C15B—C16B—H16E109.5
C9A—C10A—H10A119.2H16D—C16B—H16E109.5
O1—C11A—C10A127.3 (5)C15B—C16B—H16F109.5
O1—C11A—C12A115.1 (5)H16D—C16B—H16F109.5
C10A—C11A—C12A117.5 (4)H16E—C16B—H16F109.5
C13A—C12A—C11A121.0 (4)C22—C17—C18121.26 (17)
C13A—C12A—H12A119.5C22—C17—Br1119.00 (13)
C11A—C12A—H12A119.5C18—C17—Br1119.71 (13)
C12A—C13A—C8A120.7 (3)C19—C18—C17119.35 (16)
C12A—C13A—H13A119.7C19—C18—H18A120.3
C8A—C13A—H13A119.7C17—C18—H18A120.3
O1—C15A—C16A107.4 (7)C18—C19—C20120.00 (17)
O1—C15A—H15A110.2C18—C19—H19A120.0
C16A—C15A—H15A110.2C20—C19—H19A120.0
O1—C15A—H15B110.2C19—C20—C21120.06 (16)
C16A—C15A—H15B110.2C19—C20—S1119.50 (14)
H15A—C15A—H15B108.5C21—C20—S1120.42 (13)
C2B—N1B—C3B121.0 (14)C22—C21—C20120.21 (16)
C2B—N1B—C14B126.1 (12)C22—C21—H21A119.9
C3B—N1B—C14B112.9 (13)C20—C21—H21A119.9
C2B—C1B—C5B119.4 (9)C21—C22—C17119.11 (16)
C2B—C1B—H1BA120.3C21—C22—H22A120.4
C5B—C1B—H1BA120.3C17—C22—H22A120.4
N1B—C2B—C1B121.7 (12)O5—C23—H23A109.3
N1B—C2B—H2BA119.1O5—C23—H23B133.8
C1B—C2B—H2BA119.1H23A—C23—H23B92.4
N1B—C3B—C4B119.7 (18)O5—C23—H23C109.5
N1B—C3B—H3BA120.1H23A—C23—H23C109.5
C4B—C3B—H3BA120.1H23B—C23—H23C100.1
C3B—C4B—C5B120.7 (13)
C5A—C1A—C2A—N1A1.2 (6)C2B—C1B—C5B—C4B0.9 (12)
C3A—N1A—C2A—C1A1.0 (9)C2B—C1B—C5B—C6B179.4 (8)
C14A—N1A—C2A—C1A179.3 (4)C4B—C5B—C6B—C7B178.3 (7)
C2A—N1A—C3A—C4A0.6 (11)C1B—C5B—C6B—C7B1.4 (10)
C14A—N1A—C3A—C4A179.2 (6)C5B—C6B—C7B—C8B179.5 (6)
N1A—C3A—C4A—C5A2.0 (10)C6B—C7B—C8B—C9B0.5 (11)
C3A—C4A—C5A—C1A1.6 (6)C6B—C7B—C8B—C13B177.2 (7)
C3A—C4A—C5A—C6A179.0 (5)C13B—C8B—C9B—C10B1.4 (13)
C2A—C1A—C5A—C4A0.1 (5)C7B—C8B—C9B—C10B179.1 (9)
C2A—C1A—C5A—C6A179.5 (3)C8B—C9B—C10B—C11B0.8 (19)
C4A—C5A—C6A—C7A3.1 (4)C9B—C10B—C11B—C12B1 (2)
C1A—C5A—C6A—C7A177.6 (3)C9B—C10B—C11B—O1179.6 (12)
C5A—C6A—C7A—C8A179.6 (2)C11A—O1—C11B—C12B176 (8)
C6A—C7A—C8A—C9A177.5 (3)C15B—O1—C11B—C12B179.7 (18)
C6A—C7A—C8A—C13A2.7 (4)C15A—O1—C11B—C12B180.0 (10)
C13A—C8A—C9A—C10A1.2 (5)C11A—O1—C11B—C10B2 (5)
C7A—C8A—C9A—C10A179.0 (3)C15B—O1—C11B—C10B2 (3)
C8A—C9A—C10A—C11A1.0 (7)C15A—O1—C11B—C10B2 (2)
C11B—O1—C11A—C10A175 (7)C10B—C11B—C12B—C13B2 (2)
C15B—O1—C11A—C10A1.7 (17)O1—C11B—C12B—C13B179.3 (11)
C15A—O1—C11A—C10A1.9 (10)C11B—C12B—C13B—C8B2.9 (17)
C11B—O1—C11A—C12A4 (6)C9B—C8B—C13B—C12B2.4 (13)
C15B—O1—C11A—C12A179.4 (15)C7B—C8B—C13B—C12B179.6 (8)
C15A—O1—C11A—C12A179.1 (6)C11A—O1—C15B—C16B176 (2)
C9A—C10A—C11A—O1179.6 (5)C11B—O1—C15B—C16B175 (2)
C9A—C10A—C11A—C12A0.6 (9)C15A—O1—C15B—C16B158 (100)
O1—C11A—C12A—C13A179.6 (5)C22—C17—C18—C190.6 (3)
C10A—C11A—C12A—C13A0.5 (9)Br1—C17—C18—C19177.40 (14)
C11A—C12A—C13A—C8A0.8 (7)C17—C18—C19—C200.1 (3)
C9A—C8A—C13A—C12A1.1 (5)C18—C19—C20—C210.6 (3)
C7A—C8A—C13A—C12A179.1 (3)C18—C19—C20—S1178.10 (14)
C11A—O1—C15A—C16A178.8 (8)O4—S1—C20—C1962.92 (17)
C11B—O1—C15A—C16A179.5 (11)O2—S1—C20—C19176.53 (14)
C15B—O1—C15A—C16A27 (100)O3—S1—C20—C1957.57 (17)
C3B—N1B—C2B—C1B1 (2)O4—S1—C20—C21115.77 (15)
C14B—N1B—C2B—C1B179.9 (12)O2—S1—C20—C214.79 (16)
C5B—C1B—C2B—N1B3.0 (18)O3—S1—C20—C21123.75 (15)
C2B—N1B—C3B—C4B2 (3)C19—C20—C21—C220.4 (3)
C14B—N1B—C3B—C4B176.3 (14)S1—C20—C21—C22178.28 (13)
N1B—C3B—C4B—C5B4 (2)C20—C21—C22—C170.3 (3)
C3B—C4B—C5B—C1B2.7 (16)C18—C17—C22—C210.8 (3)
C3B—C4B—C5B—C6B176.9 (12)Br1—C17—C22—C21177.23 (13)
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2, Cg3, Cg4 and Cg5 are the centroids of the N1A/C1A–C5A, C8A–C13A, N1B/C1B–C5B, C8B–C13B and C17–C22 rings, respectively.
D—H···AD—HH···AD···AD—H···A
O5—H5···O3i0.821.922.657 (4)149
C1A—H1AA···O2ii0.932.423.334 (4)168
C2A—H2AA···O2iii0.932.383.237 (5)153
C14A—H14A···O4iv0.962.363.180 (6)143
C14A—H14B···O4iii0.962.413.343 (6)163
C19—H19A···O5v0.932.533.385 (4)153
C21—H21A···O2vi0.932.583.311 (2)135
C23—H23C···Br10.962.773.724 (5)173
C14A—H14C···Cg2ii0.962.663.609 (6)172
C14A—H14C···Cg4ii0.962.633.572 (8)167
C15A—H15A···Cg1vii0.972.843.639 (8)140
C15A—H15A···Cg3vii0.972.843.611 (9)137
C14B—H14D···Cg2ii0.962.873.562 (15)129
C14B—H14D···Cg4ii0.962.803.564 (16)137
C15B—H15C···Cg1vii0.972.813.65 (3)145
C15B—H15C···Cg3vii0.972.813.62 (3)141
C15B—H15D···Cg5viii0.972.983.60 (2)123
Symmetry codes: (i) x+1, y, z; (ii) x, y+1, z+1; (iii) x, y+1, z; (iv) x, y+1, z; (v) x+1, y+1, z; (vi) x, y, z+1; (vii) x+1, y+1, z+1; (viii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formula2C16H18NO+·2C6H4BrO3S·CH4O
Mr984.79
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)9.9270 (4), 9.9813 (4), 11.5293 (4)
α, β, γ (°)75.703 (2), 76.965 (2), 88.395 (2)
V3)1078.00 (7)
Z1
Radiation typeMo Kα
µ (mm1)2.04
Crystal size (mm)0.58 × 0.41 × 0.17
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.383, 0.721
No. of measured, independent and
observed [I > 2σ(I)] reflections
24757, 6214, 5389
Rint0.030
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.086, 1.03
No. of reflections6214
No. of parameters354
No. of restraints6
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.47, 0.54

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1, Cg2, Cg3, Cg4 and Cg5 are the centroids of the N1A/C1A–C5A, C8A–C13A, N1B/C1B–C5B, C8B–C13B and C17–C22 rings, respectively.
D—H···AD—HH···AD···AD—H···A
O5—H5···O3i0.821.922.657 (4)149
C1A—H1AA···O2ii0.932.423.334 (4)168
C2A—H2AA···O2iii0.932.383.237 (5)153
C14A—H14A···O4iv0.962.363.180 (6)143
C14A—H14B···O4iii0.962.413.343 (6)163
C19—H19A···O5v0.932.533.385 (4)153
C21—H21A···O2vi0.932.583.311 (2)135
C23—H23C···Br10.962.773.724 (5)173
C14A—H14C···Cg2ii0.962.663.609 (6)172
C14A—H14C···Cg4ii0.962.633.572 (8)167
C15A—H15A···Cg1vii0.972.843.639 (8)140
C15A—H15A···Cg3vii0.972.843.611 (9)137
C14B—H14D···Cg2ii0.962.873.562 (15)129
C14B—H14D···Cg4ii0.962.803.564 (16)137
C15B—H15C···Cg1vii0.972.813.65 (3)145
C15B—H15C···Cg3vii0.972.813.62 (3)141
C15B—H15D···Cg5viii0.972.983.60 (2)123
Symmetry codes: (i) x+1, y, z; (ii) x, y+1, z+1; (iii) x, y+1, z; (iv) x, y+1, z; (v) x+1, y+1, z; (vi) x, y, z+1; (vii) x+1, y+1, z+1; (viii) x+1, y, z+1.
 

Footnotes

1This paper is dedicated to His Majesty King Bhumibol Adulyadej of Thailand (King Rama IX) on the occasion of his 83th Birthday Anniversary which fell on December 5th, 2010.

Thomson Reuters ResearcherID: A-3561-2009.

§Additional correspondence author, e-mail: suchada.c@psu.ac.th. Thomson Reuters ResearcherID: A-5085-2009.

Acknowledgements

The authors thank the Prince of Songkla University for a research grant. They also thank Universiti Sains Malaysia for the Research University grant No. 1001/PFIZIK/811160.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChantrapromma, S., Chanawanno, K. & Fun, H.-K. (2009). Acta Cryst. E65, o1144–o1145.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChantrapromma, S., Jansrisewangwong, P., Musor, R. & Fun, H.-K. (2009). Acta Cryst. E65, o217–o218.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChantrapromma, S., Ruanwas, P., Fun, H.-K. & Patil, P. S. (2006). Acta Cryst. E62, o5494–o5496.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCheng, L. T., Tam, W., Marder, S. R., Stiegman, A. E., Rikken, G. & Spangler, C. W. (1991). J. Phys. Chem. 95, 10643–10652.  CrossRef CAS Web of Science Google Scholar
First citationCheng, L. T., Tam, W., Stevenson, S. H., Meredith, G. R., Rikken, G. & Marder, S. R. (1991). J. Phys. Chem. 95, 10631–10643.  CrossRef CAS Web of Science Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFun, H.-K., Chanawanno, K. & Chantrapromma, S. (2009). Acta Cryst. E65, o1406–o1407.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOgawa, J., Okada, S., Glavcheva, Z. & Nakanishi, H. (2008). J. Cryst. Growth, 310, 836–842.  Web of Science CrossRef CAS Google Scholar
First citationRuanwas, P., Kobkeatthawin, T., Chantrapromma, S., Fun, H.-K., Philip, R., Smijesh, N., Padaki, M. & Isloor, A. M. (2010). Synth. Met. 160, 819–824.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, Z., Wörle, M., Mutter, L., Jazbinsek, M. & Günter, P. (2007). Cryst. Growth Res. 7, 83–86.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds