metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­chlorido{2-morpholino-N-[1-(2-pyrid­yl)ethyl­­idene]ethanamine-κ3N,N′,N′′}manganese(II)

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: khaledi@siswa.um.edu.my

(Received 29 November 2010; accepted 1 December 2010; online 4 December 2010)

In the title compound, [MnCl2(C13H19N3O)], the MnII ion is penta­coordinated in a distorted square-pyramidal geometry. The coordination environment is defined by the N,N′,N′′-tridentate Schiff base ligand and one Cl atom in the basal positions and one Cl atom in the apical position. In the crystal, inter­molecular C—H⋯Cl hydrogen bonds link the mol­ecules into a three-dimensional network. An intra­molecular C—H⋯Cl hydrogen bond is also observed.

Related literature

For the crystal structure of the analogous CdII complex, see: Ikmal Hisham et al. (2010[Ikmal Hisham, N., Suleiman Gwaram, N., Khaledi, H. & Mohd Ali, H. (2010). Acta Cryst. E66, m1471.]). For the crystal structure of [MnCl2(C24H25N3)], a structurally similar MnII complex, see: Schmiege et al. (2007[Schmiege, B. M., Carney, M. J., Small, B. L., Gerlach, D. L. & Halfen, J. A. (2007). Dalton Trans. pp. 2547-2562.]).

[Scheme 1]

Experimental

Crystal data
  • [MnCl2(C13H19N3O)]

  • Mr = 359.15

  • Monoclinic, P 21 /n

  • a = 9.6117 (6) Å

  • b = 13.8507 (8) Å

  • c = 12.1330 (7) Å

  • β = 106.738 (1)°

  • V = 1546.82 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.20 mm−1

  • T = 100 K

  • 0.40 × 0.35 × 0.25 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.646, Tmax = 0.754

  • 15613 measured reflections

  • 3543 independent reflections

  • 3370 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.020

  • wR(F2) = 0.053

  • S = 1.11

  • 3543 reflections

  • 182 parameters

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯Cl1i 0.95 2.71 3.6257 (13) 163
C7—H7C⋯Cl2ii 0.98 2.75 3.6202 (13) 149
C8—H8A⋯Cl2iii 0.99 2.83 3.7207 (14) 151
C12—H12B⋯Cl1 0.99 2.77 3.5904 (14) 141
Symmetry codes: (i) -x+1, -y, -z+1; (ii) -x, -y, -z+1; (iii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97 and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The title compound is isostructure to the recently reported CdII complex (Ikmal Hisham et al., 2010). The MnII ion is five-coordinated by the Schiff base 2-morpholino-N-[1-(2-pyridyl)ethylidene]ethanamine and two Cl atoms in a distorted square-pyramidal environment (τ = 0.22). The Mn—Cl and Mn—N bond lengths in the present structure is similar to those in [MnCl2(C24H25N3)], the structurally closest MnII complex (Schmiege et al., 2007). In the crystal structure, intermolecular C—H···Cl hydrogen bonds link the adjacent molecules into a three-dimensional network. An intramolecular C—H···Cl hydrogen bonding has also been observed.

Related literature top

For the crystal structure of the analogous CdII complex, see: Ikmal Hisham et al. (2010). For the crystal structure of [MnCl2(C24H25N3)], a structurally similar MnII complex, see: Schmiege et al. (2007).

Experimental top

A mixture of 2-acetylpyridine (0.2 g, 1.65 mmol) and 4-(2-aminoethyl)morpholine (0.21 g, 1.65 mmol in ethanol (20 ml) was refluxed for 2 hr followed by addition of a solution of manganese(II) chloride (0.206 g, 1.65 mmol) in a minimum amount of water. The resulting solution was refluxed for 30 min, then set aside at room temperature. The crystals of the manganese(II) complex were obtained after a few days.

Refinement top

The hydrogen atoms were placed at calculated positions (C—H 0.95–0.99 Å) and were treated as riding on their parent atoms with Uiso(H) set to 1.2 or 1.5Ueq(C).

Structure description top

The title compound is isostructure to the recently reported CdII complex (Ikmal Hisham et al., 2010). The MnII ion is five-coordinated by the Schiff base 2-morpholino-N-[1-(2-pyridyl)ethylidene]ethanamine and two Cl atoms in a distorted square-pyramidal environment (τ = 0.22). The Mn—Cl and Mn—N bond lengths in the present structure is similar to those in [MnCl2(C24H25N3)], the structurally closest MnII complex (Schmiege et al., 2007). In the crystal structure, intermolecular C—H···Cl hydrogen bonds link the adjacent molecules into a three-dimensional network. An intramolecular C—H···Cl hydrogen bonding has also been observed.

For the crystal structure of the analogous CdII complex, see: Ikmal Hisham et al. (2010). For the crystal structure of [MnCl2(C24H25N3)], a structurally similar MnII complex, see: Schmiege et al. (2007).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot of the title compound at the 50% probability level. Hydrogen atoms are drawn as spheres of arbitrary radii.
Dichlorido{2-morpholino-N-[1-(2-pyridyl)ethylidene]ethanamine-κ3N,N',N''}manganese(II) top
Crystal data top
[MnCl2(C13H19N3O)]F(000) = 740
Mr = 359.15Dx = 1.542 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 9925 reflections
a = 9.6117 (6) Åθ = 2.2–31.4°
b = 13.8507 (8) ŵ = 1.20 mm1
c = 12.1330 (7) ÅT = 100 K
β = 106.738 (1)°Block, orange
V = 1546.82 (16) Å30.40 × 0.35 × 0.25 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
3543 independent reflections
Radiation source: fine-focus sealed tube3370 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
φ and ω scansθmax = 27.5°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1212
Tmin = 0.646, Tmax = 0.754k = 1617
15613 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.020Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.053H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0202P)2 + 0.8164P]
where P = (Fo2 + 2Fc2)/3
3543 reflections(Δ/σ)max = 0.001
182 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
[MnCl2(C13H19N3O)]V = 1546.82 (16) Å3
Mr = 359.15Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.6117 (6) ŵ = 1.20 mm1
b = 13.8507 (8) ÅT = 100 K
c = 12.1330 (7) Å0.40 × 0.35 × 0.25 mm
β = 106.738 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
3543 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3370 reflections with I > 2σ(I)
Tmin = 0.646, Tmax = 0.754Rint = 0.019
15613 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0200 restraints
wR(F2) = 0.053H-atom parameters constrained
S = 1.11Δρmax = 0.33 e Å3
3543 reflectionsΔρmin = 0.23 e Å3
182 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.227997 (19)0.094201 (13)0.662679 (15)0.01293 (6)
Cl10.46326 (3)0.14018 (2)0.77456 (2)0.01695 (7)
Cl20.04111 (3)0.21023 (2)0.63296 (3)0.01823 (7)
O10.18363 (10)0.06033 (8)1.01401 (8)0.0220 (2)
N10.26463 (11)0.11770 (8)0.48657 (9)0.0147 (2)
N20.24422 (11)0.04625 (8)0.58539 (9)0.0152 (2)
N30.15480 (11)0.01520 (8)0.78545 (8)0.0144 (2)
C10.25654 (14)0.20208 (9)0.43212 (11)0.0176 (2)
H10.22510.25730.46470.021*
C20.29241 (14)0.21242 (10)0.32937 (11)0.0195 (3)
H20.28540.27350.29260.023*
C30.33834 (14)0.13223 (10)0.28210 (11)0.0198 (3)
H30.36490.13750.21270.024*
C40.34524 (13)0.04350 (10)0.33739 (11)0.0172 (2)
H40.37600.01270.30610.021*
C50.30645 (12)0.03845 (9)0.43907 (10)0.0141 (2)
C60.29694 (13)0.05409 (9)0.50011 (10)0.0143 (2)
C70.34077 (14)0.14781 (9)0.45884 (11)0.0178 (2)
H7A0.39630.18600.52490.027*
H7B0.40100.13520.40760.027*
H7C0.25370.18370.41690.027*
C80.21498 (15)0.13062 (9)0.64771 (11)0.0184 (3)
H8A0.30550.15300.70430.022*
H8B0.17560.18410.59350.022*
C90.10472 (15)0.09964 (9)0.70858 (11)0.0187 (3)
H9A0.01230.08310.65030.022*
H9B0.08560.15440.75470.022*
C100.02951 (13)0.01896 (10)0.82360 (11)0.0182 (3)
H10A0.01320.03620.85440.022*
H10B0.04610.04550.75680.022*
C110.07601 (15)0.09582 (10)0.91531 (11)0.0209 (3)
H11A0.11540.15190.88350.025*
H11B0.00960.11790.93820.025*
C120.30849 (14)0.03123 (10)0.98074 (11)0.0201 (3)
H12A0.38380.00671.04900.024*
H12B0.34900.08780.95070.024*
C130.27076 (14)0.04662 (10)0.88940 (11)0.0182 (2)
H13A0.35890.06380.86700.022*
H13B0.23800.10510.92170.022*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.01418 (10)0.01214 (10)0.01314 (9)0.00041 (7)0.00499 (7)0.00097 (6)
Cl10.01485 (13)0.01773 (15)0.01853 (14)0.00194 (11)0.00523 (11)0.00213 (11)
Cl20.01707 (14)0.01822 (15)0.01954 (14)0.00326 (11)0.00548 (11)0.00012 (11)
O10.0215 (5)0.0319 (5)0.0142 (4)0.0012 (4)0.0078 (4)0.0010 (4)
N10.0148 (5)0.0144 (5)0.0146 (5)0.0003 (4)0.0039 (4)0.0008 (4)
N20.0172 (5)0.0137 (5)0.0144 (5)0.0015 (4)0.0042 (4)0.0005 (4)
N30.0146 (5)0.0154 (5)0.0136 (5)0.0011 (4)0.0045 (4)0.0010 (4)
C10.0190 (6)0.0155 (6)0.0177 (6)0.0002 (5)0.0043 (5)0.0003 (5)
C20.0216 (6)0.0184 (6)0.0172 (6)0.0021 (5)0.0035 (5)0.0030 (5)
C30.0205 (6)0.0252 (7)0.0139 (5)0.0032 (5)0.0055 (5)0.0001 (5)
C40.0160 (6)0.0193 (6)0.0165 (6)0.0009 (5)0.0049 (5)0.0031 (5)
C50.0116 (5)0.0152 (6)0.0141 (5)0.0004 (4)0.0016 (4)0.0016 (4)
C60.0117 (5)0.0148 (6)0.0147 (5)0.0009 (4)0.0011 (4)0.0023 (4)
C70.0185 (6)0.0150 (6)0.0206 (6)0.0007 (5)0.0067 (5)0.0030 (5)
C80.0265 (6)0.0123 (6)0.0172 (6)0.0025 (5)0.0078 (5)0.0002 (5)
C90.0222 (6)0.0161 (6)0.0184 (6)0.0064 (5)0.0068 (5)0.0016 (5)
C100.0143 (6)0.0237 (7)0.0179 (6)0.0007 (5)0.0067 (5)0.0016 (5)
C110.0215 (6)0.0248 (7)0.0185 (6)0.0045 (5)0.0090 (5)0.0002 (5)
C120.0177 (6)0.0277 (7)0.0151 (6)0.0004 (5)0.0050 (5)0.0006 (5)
C130.0185 (6)0.0195 (6)0.0159 (6)0.0022 (5)0.0039 (5)0.0030 (5)
Geometric parameters (Å, º) top
Mn1—N22.1845 (11)C4—H40.9500
Mn1—N12.2867 (10)C5—C61.4963 (17)
Mn1—Cl22.3593 (4)C6—C71.4949 (17)
Mn1—Cl12.3651 (4)C7—H7A0.9800
Mn1—N32.3694 (10)C7—H7B0.9800
O1—C111.4255 (16)C7—H7C0.9800
O1—C121.4300 (15)C8—C91.5178 (18)
N1—C11.3337 (17)C8—H8A0.9900
N1—C51.3535 (16)C8—H8B0.9900
N2—C61.2811 (16)C9—H9A0.9900
N2—C81.4624 (16)C9—H9B0.9900
N3—C101.4864 (15)C10—C111.5116 (18)
N3—C91.4869 (16)C10—H10A0.9900
N3—C131.4875 (16)C10—H10B0.9900
C1—C21.3932 (17)C11—H11A0.9900
C1—H10.9500C11—H11B0.9900
C2—C31.3796 (19)C12—C131.5135 (18)
C2—H20.9500C12—H12A0.9900
C3—C41.3925 (19)C12—H12B0.9900
C3—H30.9500C13—H13A0.9900
C4—C51.3896 (17)C13—H13B0.9900
N2—Mn1—N171.12 (4)C6—C7—H7B109.5
N2—Mn1—Cl2133.34 (3)H7A—C7—H7B109.5
N1—Mn1—Cl294.33 (3)C6—C7—H7C109.5
N2—Mn1—Cl1108.15 (3)H7A—C7—H7C109.5
N1—Mn1—Cl196.83 (3)H7B—C7—H7C109.5
Cl2—Mn1—Cl1117.667 (13)N2—C8—C9106.90 (10)
N2—Mn1—N376.77 (4)N2—C8—H8A110.3
N1—Mn1—N3146.31 (4)C9—C8—H8A110.3
Cl2—Mn1—N3100.42 (3)N2—C8—H8B110.3
Cl1—Mn1—N3102.67 (3)C9—C8—H8B110.3
C11—O1—C12108.96 (9)H8A—C8—H8B108.6
C1—N1—C5118.81 (11)N3—C9—C8112.48 (10)
C1—N1—Mn1125.80 (8)N3—C9—H9A109.1
C5—N1—Mn1115.27 (8)C8—C9—H9A109.1
C6—N2—C8121.97 (11)N3—C9—H9B109.1
C6—N2—Mn1121.06 (9)C8—C9—H9B109.1
C8—N2—Mn1116.20 (8)H9A—C9—H9B107.8
C10—N3—C9107.50 (10)N3—C10—C11111.04 (10)
C10—N3—C13107.79 (9)N3—C10—H10A109.4
C9—N3—C13109.27 (10)C11—C10—H10A109.4
C10—N3—Mn1113.96 (8)N3—C10—H10B109.4
C9—N3—Mn1102.11 (7)C11—C10—H10B109.4
C13—N3—Mn1115.75 (7)H10A—C10—H10B108.0
N1—C1—C2122.63 (12)O1—C11—C10111.39 (11)
N1—C1—H1118.7O1—C11—H11A109.3
C2—C1—H1118.7C10—C11—H11A109.3
C3—C2—C1118.72 (12)O1—C11—H11B109.3
C3—C2—H2120.6C10—C11—H11B109.3
C1—C2—H2120.6H11A—C11—H11B108.0
C2—C3—C4119.13 (12)O1—C12—C13111.34 (11)
C2—C3—H3120.4O1—C12—H12A109.4
C4—C3—H3120.4C13—C12—H12A109.4
C5—C4—C3118.98 (12)O1—C12—H12B109.4
C5—C4—H4120.5C13—C12—H12B109.4
C3—C4—H4120.5H12A—C12—H12B108.0
N1—C5—C4121.71 (11)N3—C13—C12112.05 (11)
N1—C5—C6114.59 (10)N3—C13—H13A109.2
C4—C5—C6123.57 (11)C12—C13—H13A109.2
N2—C6—C7124.01 (12)N3—C13—H13B109.2
N2—C6—C5114.95 (11)C12—C13—H13B109.2
C7—C6—C5120.98 (11)H13A—C13—H13B107.9
C6—C7—H7A109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···Cl1i0.952.713.6257 (13)163
C7—H7C···Cl2ii0.982.753.6202 (13)149
C8—H8A···Cl2iii0.992.833.7207 (14)151
C12—H12B···Cl10.992.773.5904 (14)141
Symmetry codes: (i) x+1, y, z+1; (ii) x, y, z+1; (iii) x+1/2, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formula[MnCl2(C13H19N3O)]
Mr359.15
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)9.6117 (6), 13.8507 (8), 12.1330 (7)
β (°) 106.738 (1)
V3)1546.82 (16)
Z4
Radiation typeMo Kα
µ (mm1)1.20
Crystal size (mm)0.40 × 0.35 × 0.25
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.646, 0.754
No. of measured, independent and
observed [I > 2σ(I)] reflections
15613, 3543, 3370
Rint0.019
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.020, 0.053, 1.11
No. of reflections3543
No. of parameters182
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.23

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···Cl1i0.952.713.6257 (13)162.6
C7—H7C···Cl2ii0.982.753.6202 (13)148.7
C8—H8A···Cl2iii0.992.833.7207 (14)150.7
C12—H12B···Cl10.992.773.5904 (14)141.0
Symmetry codes: (i) x+1, y, z+1; (ii) x, y, z+1; (iii) x+1/2, y1/2, z+3/2.
 

Acknowledgements

The authors thank University of Malaya for funding this study (UMRG grant RG024/09BIO).

References

First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationIkmal Hisham, N., Suleiman Gwaram, N., Khaledi, H. & Mohd Ali, H. (2010). Acta Cryst. E66, m1471.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSchmiege, B. M., Carney, M. J., Small, B. L., Gerlach, D. L. & Halfen, J. A. (2007). Dalton Trans. pp. 2547–2562.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds