metal-organic compounds
Dichlorido(η6-p-cymene)(4-fluoroaniline-κN)ruthenium(II)
aDepartment of Chemistry, University of South Alabama, Mobile, AL 36688-0002, USA
*Correspondence e-mail: nhoffman@jaguar1.usouthal.edu
The title compound, [RuCl2(C10H14)(C6H6FN)], a pseudo-octahedral d6 complex, has the expected piano-stool geometry around the Ru(II) atom. The fluoroaniline ring forms a dihedral angle of 19.3 (2)° with the p-cymene ring. In the crystal, two molecules form an inversion dimer via a pair of N—H⋯Cl hydrogen bonds. Weak intermolecular C—H⋯Cl interactions involving the p-cymene ring consolidate the crystal packing.
Related literature
For applications of (η6-p-cymene)Ru(II) dihalides in organic synthesis, see: Boutadla et al. (2010). For studies of (η6-arene)Ru(II) dihalides in bioinorganic chemistry, see: den Heeten et al. (2010). For anti-tumor medical applications of (η6-arene)Ru(II) systems, see: Hanif et al. (2010). For conversion of [(η6-p-cymene)RuCl2]2 with two molar equivalents of neutral unidentate nitrogen ligands into monomeric pseudo-octahedral piano-stool complexes of general formula (η6-p-cymene)Ru(N-ligand)Cl2, see: Burrell & Steedman (1997); Govindaswamy & Kollipara (2006); Begley et al. (1991). For crystal structures of Ni-triad complexes of 4-fluoroaniline, see: Randell et al. (2006); Fawcett et al. (2005); Padmanabhan et al. (1985). For applications of 19F-NMR reporter moieties in monitoring ligand-substitution equilibria, see: Hoffman et al. (2009); Carter et al. (2004).
Experimental
Crystal data
|
Refinement
|
Data collection: CAD-4-PC (Enraf–Nonius, 1993); cell CAD-4-PC; data reduction: XCAD-4PC (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: publCIF (Westrip, 2010).
Supporting information
https://doi.org/10.1107/S1600536810051962/is2638sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810051962/is2638Isup2.hkl
All solvents in synthesis were Fisher reagent-grade. To a stirred solution of 0.100 mmol [(η6-p-cymene)RuCl2]2 (Strem Chemicals) in 10 ml benzene in a 100-ml roundbottom flask was added 0.200 mmol neat 4-fluoroaniline (Sigma-Aldrich). Dripped slowly into the resulting dark-orange solution with stirring were 2.0 ml methyl tert-butyl ether and then 50 ml heptane. The yellow-orange crystals afforded were filtered and washed with two 5-ml portions of hexanes and air-dried (88% yield).
NMR analysis of this product in CDCl3 (Cambridge Laboratories) showed the following signals. 1H δ 0.21, 6H (d, 3JH—H=6.9 Hz); δ 2.11, 3H (s); δ 2.82, 1H (sept, 3JH—H=6.9 Hz); δ 4.90, 2H (s); δ 4.97, 2H (d, 3JH—H=6.1 Hz); δ 5.05, 2H (d, 3JH—H=6.0 Hz); δ 7.09, 2H (d of d; 3JF—H ~3JH—H ~ 8.5 Hz); δ 7.40, 2H (d of d; 3JH—H=8.5 Hz, 4JF—H=4.5 Hz). 13C{1H} δ 18.60(s), δ 22.06(s), δ 30.60(s), δ 79.65(s), δ 81.50(s), δ 95.91(s), δ 103.59(s), δ 116.32 (d, 1JC—F=22.5 Hz), δ 121.66 (d, 2JC—F=8.1 Hz), δ 141.30 (d, 3JC—F=1.7 Hz). 19F δ -115.71 (t of t, 3JF—H=8.5 Hz; 4JF—H=4.5 Hz); triplets overlap to form apparent "septuplet."
Suitable single crystals were grown from vapor diffusion of 30 ml heptane into a benzene solution of the 4-fluoroaniline complex (25 mg in 5 ml) over six days at room temperature. Traces of remaining liquid were removed by disposable glass pipet from the resulting red crystals which were washed twice with 5.0 ml hexanes and air-dried overnight in the dark.
Hydrogen atoms were placed in calculated positions and allowed to ride during subsequent
with Uiso(H) = 1.2Ueq(C) and C—H distances of 0.93 Å for the aromatic H atoms, Uiso(H) = 1.5Ueq(C) and C—H distances of 0.96 Å for the methyl H atoms, Uiso(H) = 1.2Ueq(C) and a C—H distance of 0.98 Å for the methine H atom, and Uiso(H) = 1.2Ueq(N) and N—H distances of 0.90 Å for the amine H atoms.The (η6-p-cymene)ruthenium(II)-dihalide motif has been used extensively for promotion of organic reactions (Boutadla et al., 2010), bioinorganic studies (den Heeten et al., 2010), and anti-tumor medical trials (Hanif et al., 2010). Treating the commercially available dimer, di-µ-chloridobis-[chlorido(p-cymene)ruthenium(II)], with two molar equivalents of many neutral unidentate ligands (L) generates two moles of (η6-p-cymene)Ru(L)Cl2. The structures of several with aniline ligands (2,6-diisopropylphenyl, Burrell & Steedman, 1997; 4-chloro, Govindaswamy & Kollipara, 2006; 4-methyl, Begley, 1991) have been crystallographically determined. Structures of 4-fluoroaniline complexes have been reported for other late d-transition metals [palladium(II), Randell et al., 2006; Padmanabhan et al., 1985; nickel(II), Fawcett et al., 2005].
Our interest in studying relative binding affinities of soft metal centers for ligands of moderate and weak donor power using 19F and 31P NMR spectroscopy (Hoffman et al., 2009; Carter et al., 2004) to monitor ligand-substitution equilibria led us to prepare the title complex. Single crystals were grown from vapor diffusion of heptane into a benzene solution of the 4-fluoroaniline complex. The nitrogen atom in the 4-fluoroaniline ligand is essentially coplanar with its aromatic ring, whose plane is oriented slightly down and away from the plane of the p-cymene ring. Structural parameters were similar to those reported for the other (η6-p-cymene)Ru(4—X—C6H4NH2)Cl2 piano-stool complexes above. The Ru—Cl, Ru—N, and Ru—C distances are quite ordinary. Somewhat greater differences exist between structural parameters of interest in the 4-fluoroaniline complexes of the divalent Pd and Ni moieties, likely because of their dissimilar combinations of dn configurations, coordination geometry, and ligand sets.
Our standard ligand-substitution reaction to determine relative affinities of neutral ligands (L) of moderate and weak donor power for (η6-p-cymene)RuCl2 employs the equilibrium below (eq. 1), where P* is the very sterically hindered triaryl phosphite, P(O-2,4-But2-C6H3)3. Equilibrium constants are measured for different L employing
(η6-p-cymene)Ru(L)Cl2 + P* = (η6-p-cymene)Ru(P*)Cl2 + L (1)
(i) the integrals of the respective 31P resonances for free P* and Cl2CymRu-P* and also (ii) the integrals of respective 1H resonances (for either free P*/Ru—P* or Cl2CymRu-L/Cl2CymRu-P*). For L = 4-fluoroaniline, the 31P-NMR spectrum of the η6-p-cymene)Ru(4—F—C6H4NH2)Cl2 and P* in CDCl3 displayed just the two signals expected for free P* and Ru—P* (Fig. 2). However, the 19F NMR spectrum (Fig. 3) showed three resonances, a quick indication that our standard Cl2CymRu-L experimental design was invalid for use with anilines.
afforded by mixing equimolar amounts of (For applications of (η6-p-cymene)Ru(II) dihalides in organic synthesis, see: Boutadla et al. (2010). For studies of (η6-arene)Ru(II) dihalides in bioinorganic chemistry, see: den Heeten et al. (2010). For anti-tumor medical applications of (η6-arene)Ru(II) systems, see: Hanif et al. (2010). For conversion of [(η6-p-cymene)RuCl2]2 with two molar equivalents of neutral unidentate nitrogen ligands into monomeric pseudo-octahedral piano-stool complexes of general formula (η6-p-cymene)Ru(N-ligand)Cl2, see: Burrell & Steedman (1997); Govindaswamy & Kollipara (2006); Begley et al. (1991). For crystal structures of Ni-triad complexes of 4-fluoroaniline, see: Randell et al. (2006); Fawcett et al. (2005); Padmanabhan et al. (1985). For applications of 19F-NMR reporter moieties in monitoring ligand-substitution equilibria, see: Hoffman et al. (2009); Carter et al. (2004).
Data collection: CAD-4-PC (Enraf–Nonius, 1993); cell
CAD-4-PC (Enraf–Nonius, 1993); data reduction: XCAD-4PC (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: publCIF (Westrip, 2010).[RuCl2(C10H14)(C6H6FN)] | F(000) = 840 |
Mr = 417.30 | Dx = 1.675 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 25 reflections |
a = 8.6492 (9) Å | θ = 8.5–13.2° |
b = 12.2458 (13) Å | µ = 1.27 mm−1 |
c = 15.6471 (16) Å | T = 290 K |
β = 93.271 (8)° | Prism, red |
V = 1654.6 (3) Å3 | 0.26 × 0.25 × 0.20 mm |
Z = 4 |
Enraf–Nonius CAD-4 diffractometer | 2284 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.048 |
Graphite monochromator | θmax = 25.4°, θmin = 2.1° |
θ/2θ scans | h = 0→10 |
Absorption correction: ψ scan (North et al., 1968) | k = 0→14 |
Tmin = 0.635, Tmax = 0.779 | l = −18→18 |
3234 measured reflections | 3 standard reflections every 120 min |
3027 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.034 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.090 | H-atom parameters constrained |
S = 1.00 | w = 1/[σ2(Fo2) + (0.0435P)2] where P = (Fo2 + 2Fc2)/3 |
3027 reflections | (Δ/σ)max < 0.001 |
193 parameters | Δρmax = 0.57 e Å−3 |
0 restraints | Δρmin = −0.67 e Å−3 |
[RuCl2(C10H14)(C6H6FN)] | V = 1654.6 (3) Å3 |
Mr = 417.30 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 8.6492 (9) Å | µ = 1.27 mm−1 |
b = 12.2458 (13) Å | T = 290 K |
c = 15.6471 (16) Å | 0.26 × 0.25 × 0.20 mm |
β = 93.271 (8)° |
Enraf–Nonius CAD-4 diffractometer | 3027 independent reflections |
Absorption correction: ψ scan (North et al., 1968) | 2284 reflections with I > 2σ(I) |
Tmin = 0.635, Tmax = 0.779 | Rint = 0.048 |
3234 measured reflections | 3 standard reflections every 120 min |
R[F2 > 2σ(F2)] = 0.034 | 0 restraints |
wR(F2) = 0.090 | H-atom parameters constrained |
S = 1.00 | Δρmax = 0.57 e Å−3 |
3027 reflections | Δρmin = −0.67 e Å−3 |
193 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Ru1 | 0.22499 (3) | 0.59291 (3) | 0.611377 (18) | 0.02585 (12) | |
Cl1 | 0.24408 (14) | 0.39815 (9) | 0.63052 (7) | 0.0442 (3) | |
Cl2 | 0.29626 (13) | 0.56893 (9) | 0.46564 (6) | 0.0391 (3) | |
F1 | 0.8394 (4) | 0.9472 (3) | 0.6880 (2) | 0.0811 (10) | |
N1 | 0.4725 (4) | 0.5795 (3) | 0.6397 (2) | 0.0335 (8) | |
H1A | 0.4864 | 0.5382 | 0.6871 | 0.040* | |
H1B | 0.5116 | 0.5417 | 0.5966 | 0.040* | |
C1 | 0.0988 (5) | 0.6207 (3) | 0.7270 (2) | 0.0322 (9) | |
C2 | −0.0055 (5) | 0.5901 (4) | 0.6567 (3) | 0.0353 (9) | |
H2 | −0.0712 | 0.5309 | 0.6631 | 0.042* | |
C3 | −0.0120 (5) | 0.6456 (4) | 0.5792 (3) | 0.0381 (10) | |
H3 | −0.0833 | 0.6247 | 0.5356 | 0.046* | |
C4 | 0.0905 (5) | 0.7347 (3) | 0.5664 (3) | 0.0359 (10) | |
C5 | 0.1936 (5) | 0.7656 (3) | 0.6343 (3) | 0.0377 (10) | |
H5 | 0.2593 | 0.8247 | 0.6275 | 0.045* | |
C6 | 0.2000 (5) | 0.7087 (3) | 0.7133 (2) | 0.0337 (9) | |
H6 | 0.2719 | 0.7295 | 0.7568 | 0.040* | |
C7 | 0.1003 (5) | 0.5586 (4) | 0.8103 (2) | 0.0375 (10) | |
H7 | 0.0686 | 0.4832 | 0.7979 | 0.045* | |
C8 | −0.0172 (6) | 0.6100 (5) | 0.8675 (3) | 0.0607 (15) | |
H8A | −0.0165 | 0.5711 | 0.9208 | 0.091* | |
H8B | −0.1187 | 0.6062 | 0.8395 | 0.091* | |
H8C | 0.0098 | 0.6850 | 0.8783 | 0.091* | |
C9 | 0.2608 (6) | 0.5567 (5) | 0.8572 (3) | 0.0513 (13) | |
H9A | 0.3347 | 0.5265 | 0.8203 | 0.077* | |
H9B | 0.2572 | 0.5127 | 0.9078 | 0.077* | |
H9C | 0.2908 | 0.6298 | 0.8729 | 0.077* | |
C10 | 0.0887 (6) | 0.7916 (4) | 0.4821 (3) | 0.0530 (13) | |
H10A | 0.0348 | 0.8598 | 0.4858 | 0.079* | |
H10B | 0.0372 | 0.7466 | 0.4390 | 0.079* | |
H10C | 0.1932 | 0.8050 | 0.4671 | 0.079* | |
C11 | 0.5666 (4) | 0.6756 (3) | 0.6529 (2) | 0.0312 (9) | |
C12 | 0.6131 (5) | 0.7101 (4) | 0.7343 (3) | 0.0406 (10) | |
H12 | 0.5832 | 0.6705 | 0.7813 | 0.049* | |
C13 | 0.7024 (6) | 0.8016 (4) | 0.7471 (3) | 0.0510 (13) | |
H13 | 0.7326 | 0.8251 | 0.8021 | 0.061* | |
C14 | 0.7458 (5) | 0.8573 (4) | 0.6771 (4) | 0.0508 (12) | |
C15 | 0.7011 (5) | 0.8263 (4) | 0.5954 (3) | 0.0539 (13) | |
H15 | 0.7319 | 0.8665 | 0.5489 | 0.065* | |
C16 | 0.6102 (5) | 0.7351 (4) | 0.5829 (3) | 0.0424 (11) | |
H16 | 0.5781 | 0.7133 | 0.5278 | 0.051* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ru1 | 0.02827 (18) | 0.02503 (18) | 0.02404 (17) | 0.00145 (14) | −0.00045 (12) | −0.00363 (13) |
Cl1 | 0.0591 (7) | 0.0273 (5) | 0.0457 (6) | 0.0016 (5) | −0.0001 (5) | 0.0026 (4) |
Cl2 | 0.0435 (6) | 0.0486 (7) | 0.0252 (5) | 0.0095 (5) | 0.0027 (4) | −0.0046 (4) |
F1 | 0.074 (2) | 0.057 (2) | 0.111 (3) | −0.0266 (18) | −0.011 (2) | 0.001 (2) |
N1 | 0.0335 (18) | 0.035 (2) | 0.0319 (17) | 0.0073 (16) | 0.0001 (14) | −0.0108 (15) |
C1 | 0.032 (2) | 0.034 (2) | 0.031 (2) | 0.0024 (17) | 0.0060 (17) | −0.0075 (17) |
C2 | 0.028 (2) | 0.040 (2) | 0.037 (2) | 0.0000 (19) | 0.0018 (16) | −0.0040 (19) |
C3 | 0.029 (2) | 0.045 (3) | 0.040 (2) | 0.013 (2) | −0.0053 (18) | −0.006 (2) |
C4 | 0.036 (2) | 0.034 (2) | 0.038 (2) | 0.0137 (19) | 0.0031 (18) | 0.0016 (18) |
C5 | 0.046 (2) | 0.026 (2) | 0.041 (2) | 0.0058 (19) | 0.0048 (19) | −0.0049 (18) |
C6 | 0.034 (2) | 0.035 (2) | 0.032 (2) | 0.0024 (18) | −0.0010 (17) | −0.0111 (18) |
C7 | 0.046 (3) | 0.039 (2) | 0.028 (2) | −0.007 (2) | 0.0020 (18) | −0.0046 (18) |
C8 | 0.062 (3) | 0.082 (4) | 0.039 (3) | 0.008 (3) | 0.013 (2) | −0.003 (3) |
C9 | 0.059 (3) | 0.057 (3) | 0.037 (2) | −0.002 (3) | −0.007 (2) | 0.007 (2) |
C10 | 0.064 (3) | 0.049 (3) | 0.046 (3) | 0.015 (3) | 0.001 (2) | 0.012 (2) |
C11 | 0.026 (2) | 0.036 (2) | 0.032 (2) | 0.0046 (18) | 0.0015 (16) | −0.0056 (17) |
C12 | 0.042 (2) | 0.046 (3) | 0.034 (2) | −0.001 (2) | −0.0034 (18) | −0.003 (2) |
C13 | 0.051 (3) | 0.056 (3) | 0.044 (3) | −0.002 (3) | −0.008 (2) | −0.017 (2) |
C14 | 0.035 (2) | 0.042 (3) | 0.074 (4) | 0.003 (2) | −0.006 (2) | −0.007 (3) |
C15 | 0.044 (3) | 0.055 (3) | 0.063 (3) | −0.003 (2) | 0.013 (2) | 0.015 (3) |
C16 | 0.041 (2) | 0.052 (3) | 0.034 (2) | 0.003 (2) | 0.0025 (18) | −0.004 (2) |
Ru1—C2 | 2.154 (4) | C6—H6 | 0.9300 |
Ru1—C6 | 2.154 (4) | C7—C8 | 1.528 (6) |
Ru1—C5 | 2.165 (4) | C7—C9 | 1.533 (6) |
Ru1—N1 | 2.167 (3) | C7—H7 | 0.9800 |
Ru1—C3 | 2.180 (4) | C8—H8A | 0.9600 |
Ru1—C4 | 2.184 (4) | C8—H8B | 0.9600 |
Ru1—C1 | 2.192 (4) | C8—H8C | 0.9600 |
Ru1—Cl1 | 2.4082 (11) | C9—H9A | 0.9600 |
Ru1—Cl2 | 2.4138 (10) | C9—H9B | 0.9600 |
F1—C14 | 1.372 (6) | C9—H9C | 0.9600 |
N1—C11 | 1.439 (5) | C10—H10A | 0.9600 |
N1—H1A | 0.9000 | C10—H10B | 0.9600 |
N1—H1B | 0.9000 | C10—H10C | 0.9600 |
C1—C6 | 1.412 (6) | C11—C12 | 1.381 (5) |
C1—C2 | 1.433 (6) | C11—C16 | 1.384 (6) |
C1—C7 | 1.508 (6) | C12—C13 | 1.369 (6) |
C2—C3 | 1.388 (6) | C12—H12 | 0.9300 |
C2—H2 | 0.9300 | C13—C14 | 1.361 (7) |
C3—C4 | 1.427 (6) | C13—H13 | 0.9300 |
C3—H3 | 0.9300 | C14—C15 | 1.367 (7) |
C4—C5 | 1.401 (6) | C15—C16 | 1.374 (7) |
C4—C10 | 1.491 (6) | C15—H15 | 0.9300 |
C5—C6 | 1.418 (6) | C16—H16 | 0.9300 |
C5—H5 | 0.9300 | ||
C2—Ru1—C6 | 68.48 (15) | C5—C4—C3 | 118.3 (4) |
C2—Ru1—C5 | 80.44 (17) | C5—C4—C10 | 121.3 (4) |
C6—Ru1—C5 | 38.32 (16) | C3—C4—C10 | 120.4 (4) |
C2—Ru1—N1 | 148.59 (14) | C5—C4—Ru1 | 70.5 (2) |
C6—Ru1—N1 | 92.17 (14) | C3—C4—Ru1 | 70.8 (2) |
C5—Ru1—N1 | 99.88 (15) | C10—C4—Ru1 | 129.4 (3) |
C2—Ru1—C3 | 37.34 (16) | C4—C5—C6 | 121.4 (4) |
C6—Ru1—C3 | 80.99 (16) | C4—C5—Ru1 | 72.0 (2) |
C5—Ru1—C3 | 67.91 (17) | C6—C5—Ru1 | 70.4 (2) |
N1—Ru1—C3 | 166.94 (15) | C4—C5—H5 | 119.3 |
C2—Ru1—C4 | 68.45 (16) | C6—C5—H5 | 119.3 |
C6—Ru1—C4 | 69.00 (15) | Ru1—C5—H5 | 131.2 |
C5—Ru1—C4 | 37.57 (16) | C1—C6—C5 | 120.9 (4) |
N1—Ru1—C4 | 128.89 (15) | C1—C6—Ru1 | 72.5 (2) |
C3—Ru1—C4 | 38.16 (16) | C5—C6—Ru1 | 71.2 (2) |
C2—Ru1—C1 | 38.48 (15) | C1—C6—H6 | 119.5 |
C6—Ru1—C1 | 37.91 (15) | C5—C6—H6 | 119.5 |
C5—Ru1—C1 | 68.81 (16) | Ru1—C6—H6 | 129.1 |
N1—Ru1—C1 | 112.05 (14) | C1—C7—C8 | 109.0 (4) |
C3—Ru1—C1 | 68.83 (15) | C1—C7—C9 | 112.6 (4) |
C4—Ru1—C1 | 82.05 (15) | C8—C7—C9 | 109.9 (4) |
C2—Ru1—Cl1 | 90.08 (12) | C1—C7—H7 | 108.4 |
C6—Ru1—Cl1 | 124.65 (12) | C8—C7—H7 | 108.4 |
C5—Ru1—Cl1 | 162.78 (12) | C9—C7—H7 | 108.4 |
N1—Ru1—Cl1 | 80.78 (9) | C7—C8—H8A | 109.5 |
C3—Ru1—Cl1 | 112.26 (13) | C7—C8—H8B | 109.5 |
C4—Ru1—Cl1 | 149.19 (12) | H8A—C8—H8B | 109.5 |
C1—Ru1—Cl1 | 94.86 (11) | C7—C8—H8C | 109.5 |
C2—Ru1—Cl2 | 126.86 (11) | H8A—C8—H8C | 109.5 |
C6—Ru1—Cl2 | 145.24 (12) | H8B—C8—H8C | 109.5 |
C5—Ru1—Cl2 | 108.47 (12) | C7—C9—H9A | 109.5 |
N1—Ru1—Cl2 | 83.19 (9) | C7—C9—H9B | 109.5 |
C3—Ru1—Cl2 | 96.05 (11) | H9A—C9—H9B | 109.5 |
C4—Ru1—Cl2 | 87.26 (11) | C7—C9—H9C | 109.5 |
C1—Ru1—Cl2 | 164.70 (11) | H9A—C9—H9C | 109.5 |
Cl1—Ru1—Cl2 | 88.72 (4) | H9B—C9—H9C | 109.5 |
C11—N1—Ru1 | 120.8 (2) | C4—C10—H10A | 109.5 |
C11—N1—H1A | 107.1 | C4—C10—H10B | 109.5 |
Ru1—N1—H1A | 107.1 | H10A—C10—H10B | 109.5 |
C11—N1—H1B | 107.1 | C4—C10—H10C | 109.5 |
Ru1—N1—H1B | 107.1 | H10A—C10—H10C | 109.5 |
H1A—N1—H1B | 106.8 | H10B—C10—H10C | 109.5 |
C6—C1—C2 | 116.8 (4) | C12—C11—C16 | 119.4 (4) |
C6—C1—C7 | 122.7 (4) | C12—C11—N1 | 121.0 (4) |
C2—C1—C7 | 120.4 (4) | C16—C11—N1 | 119.6 (4) |
C6—C1—Ru1 | 69.6 (2) | C13—C12—C11 | 121.1 (4) |
C2—C1—Ru1 | 69.3 (2) | C13—C12—H12 | 119.4 |
C7—C1—Ru1 | 130.9 (3) | C11—C12—H12 | 119.4 |
C3—C2—C1 | 122.4 (4) | C14—C13—C12 | 118.1 (4) |
C3—C2—Ru1 | 72.4 (2) | C14—C13—H13 | 120.9 |
C1—C2—Ru1 | 72.2 (2) | C12—C13—H13 | 120.9 |
C3—C2—H2 | 118.8 | C13—C14—C15 | 122.5 (5) |
C1—C2—H2 | 118.8 | C13—C14—F1 | 119.3 (5) |
Ru1—C2—H2 | 129.1 | C15—C14—F1 | 118.2 (5) |
C2—C3—C4 | 120.2 (4) | C14—C15—C16 | 119.2 (5) |
C2—C3—Ru1 | 70.3 (2) | C14—C15—H15 | 120.4 |
C4—C3—Ru1 | 71.1 (2) | C16—C15—H15 | 120.4 |
C2—C3—H3 | 119.9 | C15—C16—C11 | 119.6 (4) |
C4—C3—H3 | 119.9 | C15—C16—H16 | 120.2 |
Ru1—C3—H3 | 131.6 | C11—C16—H16 | 120.2 |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1B···Cl2i | 0.90 | 2.39 | 3.225 (3) | 154 |
C6—H6···Cl1ii | 0.93 | 2.72 | 3.384 (4) | 129 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+1/2, y+1/2, −z+3/2. |
Experimental details
Crystal data | |
Chemical formula | [RuCl2(C10H14)(C6H6FN)] |
Mr | 417.30 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 290 |
a, b, c (Å) | 8.6492 (9), 12.2458 (13), 15.6471 (16) |
β (°) | 93.271 (8) |
V (Å3) | 1654.6 (3) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 1.27 |
Crystal size (mm) | 0.26 × 0.25 × 0.20 |
Data collection | |
Diffractometer | Enraf–Nonius CAD-4 |
Absorption correction | ψ scan (North et al., 1968) |
Tmin, Tmax | 0.635, 0.779 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 3234, 3027, 2284 |
Rint | 0.048 |
(sin θ/λ)max (Å−1) | 0.603 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.034, 0.090, 1.00 |
No. of reflections | 3027 |
No. of parameters | 193 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.57, −0.67 |
Computer programs: CAD-4-PC (Enraf–Nonius, 1993), XCAD-4PC (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009), publCIF (Westrip, 2010).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1B···Cl2i | 0.90 | 2.39 | 3.225 (3) | 154 |
C6—H6···Cl1ii | 0.93 | 2.72 | 3.384 (4) | 129 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+1/2, y+1/2, −z+3/2. |
Acknowledgements
The authors gratefully acknowledge the Department of Chemistry and the Univeristy Committee for Undergraduate Research at USA for their generous support and the Department of Energy and Oak Ridge National Laboratory for the diffractometer used in this study.
References
Begley, M. J., Harrison, S. & Wright, A. H. (1991). Acta Cryst. C47, 318–320. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Boutadla, Y., Davies, D. L., Al-Duaij, O., Fawcett, J., Jones, R. C. & Singh, K. (2010). Dalton Trans. pp. 10447–10457. Web of Science CSD CrossRef Google Scholar
Burrell, A. K. & Steedman, A. J. (1997). Organometallics, 16, 1203–1208. CSD CrossRef CAS Web of Science Google Scholar
Carter, E. B., Culver, S. L., Fox, P. A., Goode, R. D., Ntai, I., Tickell, M. D., Traylor, R. K., Hoffman, N. W. & Davis, J. H. Jr (2004). Chem. Commun. pp. 630–631. Web of Science CrossRef Google Scholar
Heeten, R. den, Munoz, B. K., Popa, G., Laan, W. & Kamer, P. C. J. (2010). Dalton Trans. pp. 8477–8483. Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Enraf–Nonius (1993). CAD-4-PC Software. Enraf–Nonius, Delft, The Netherlands. Google Scholar
Fawcett, J., Sicilia, F. & Solan, G. A. (2005). Acta Cryst. E61, m1256–m1257. Web of Science CSD CrossRef IUCr Journals Google Scholar
Govindaswamy, P. & Kollipara, M. R. (2006). J. Coord. Chem. 59, 131–136. Web of Science CSD CrossRef CAS Google Scholar
Hanif, M., Henke, H., Meier, S. M., Martic, S., Labib, M., Kandioller, W., Jakupec, M. A., Arion, V. B., Kraatz, H.-B., Keppler, B. K. & Hartinger, C. G. (2010). Inorg. Chem. 49, 7953–7963. Web of Science CSD CrossRef CAS PubMed Google Scholar
Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Google Scholar
Hoffman, N. W., Stenson, A. C., Sykora, R. E., Traylor, R. K., Wicker, B. F., Reilly, S., Dixon, D. A., Marshall, A. G., Kwan, M.-L. & Schroder, P. (2009). Abstracts, Central Regional Meeting, American Chemical Society, Cleveland, OH, USA, May 20–23, CRM-213. Google Scholar
North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359. CrossRef IUCr Journals Web of Science Google Scholar
Padmanabhan, V. M., Patel, R. P. & Ranganathan, T. N. (1985). Acta Cryst. C41, 1305–1307. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Randell, K., Stanford, M. J., Clarkson, G. J. & Rourke, J. P. (2006). J. Organomet. Chem. 691, 3411–3415. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The (η6-p-cymene)ruthenium(II)-dihalide motif has been used extensively for promotion of organic reactions (Boutadla et al., 2010), bioinorganic studies (den Heeten et al., 2010), and anti-tumor medical trials (Hanif et al., 2010). Treating the commercially available dimer, di-µ-chloridobis-[chlorido(p-cymene)ruthenium(II)], with two molar equivalents of many neutral unidentate ligands (L) generates two moles of (η6-p-cymene)Ru(L)Cl2. The structures of several with aniline ligands (2,6-diisopropylphenyl, Burrell & Steedman, 1997; 4-chloro, Govindaswamy & Kollipara, 2006; 4-methyl, Begley, 1991) have been crystallographically determined. Structures of 4-fluoroaniline complexes have been reported for other late d-transition metals [palladium(II), Randell et al., 2006; Padmanabhan et al., 1985; nickel(II), Fawcett et al., 2005].
Our interest in studying relative binding affinities of soft metal centers for ligands of moderate and weak donor power using 19F and 31P NMR spectroscopy (Hoffman et al., 2009; Carter et al., 2004) to monitor ligand-substitution equilibria led us to prepare the title complex. Single crystals were grown from vapor diffusion of heptane into a benzene solution of the 4-fluoroaniline complex. The nitrogen atom in the 4-fluoroaniline ligand is essentially coplanar with its aromatic ring, whose plane is oriented slightly down and away from the plane of the p-cymene ring. Structural parameters were similar to those reported for the other (η6-p-cymene)Ru(4—X—C6H4NH2)Cl2 piano-stool complexes above. The Ru—Cl, Ru—N, and Ru—C distances are quite ordinary. Somewhat greater differences exist between structural parameters of interest in the 4-fluoroaniline complexes of the divalent Pd and Ni moieties, likely because of their dissimilar combinations of dn configurations, coordination geometry, and ligand sets.
Our standard ligand-substitution reaction to determine relative affinities of neutral ligands (L) of moderate and weak donor power for (η6-p-cymene)RuCl2 employs the equilibrium below (eq. 1), where P* is the very sterically hindered triaryl phosphite, P(O-2,4-But2-C6H3)3. Equilibrium constants are measured for different L employing
(η6-p-cymene)Ru(L)Cl2 + P* = (η6-p-cymene)Ru(P*)Cl2 + L (1)
(i) the integrals of the respective 31P resonances for free P* and Cl2CymRu-P* and also (ii) the integrals of respective 1H resonances (for either free P*/Ru—P* or Cl2CymRu-L/Cl2CymRu-P*). For L = 4-fluoroaniline, the 31P-NMR spectrum of the equilibrium solution afforded by mixing equimolar amounts of (η6-p-cymene)Ru(4—F—C6H4NH2)Cl2 and P* in CDCl3 displayed just the two signals expected for free P* and Ru—P* (Fig. 2). However, the 19F NMR spectrum (Fig. 3) showed three resonances, a quick indication that our standard Cl2CymRu-L experimental design was invalid for use with anilines.