metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

{2-Morpholino-N-[1-(2-pyrid­yl)ethyl­­idene]ethanamine-κ3N,N′,N′′}bis­­(thio­cyanato-κN)copper(II)

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: khaledi@siswa.um.edu.my

(Received 1 December 2010; accepted 4 December 2010; online 11 December 2010)

In the title compound, [Cu(NCS)2(C13H19N3O)], the CuII ion is five-coordinated by the N,N′,N′′-tridentate Schiff base and the N atoms of two isothio­cyanate ligands in a square-pyramidal geometry. In the crystal, C—H⋯N, C—H⋯O and C—H⋯S inter­actions link adjacent mol­ecules into layers parallel to the ac plane. A weak inter­molecular ππ inter­action occurs between the aromatic rings with a centroid–centroid distance of 3.9412 (9) Å.

Related literature

For related structures of Cu(II) complexes, see: Drew et al. (2009[Drew, M. G. B., Das, D., De, S. & Datta, D. (2009). Inorg. Chim. Acta, 362, 1501-1505.]); You et al. (2006[You, Z.-L., Wang, J. & Han, X. (2006). Acta Cryst. E62, m860-m861.]); Yue et al. (2005[Yue, G.-R., Xu, X.-J., Shi, Y.-Z. & Feng, L. (2005). Acta Cryst. E61, m693-m694.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(NCS)2(C13H19N3O)]

  • Mr = 413.01

  • Monoclinic, P 21 /c

  • a = 10.6912 (1) Å

  • b = 14.0350 (2) Å

  • c = 12.2530 (2) Å

  • β = 92.203 (1)°

  • V = 1837.22 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.43 mm−1

  • T = 100 K

  • 0.41 × 0.39 × 0.08 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.592, Tmax = 0.894

  • 16491 measured reflections

  • 4007 independent reflections

  • 3593 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.023

  • wR(F2) = 0.061

  • S = 1.08

  • 4007 reflections

  • 218 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯O1i 0.95 2.40 3.211 (2) 144
C7—H7B⋯O1i 0.98 2.33 3.248 (2) 155
C7—H7C⋯S2ii 0.98 2.83 3.7021 (18) 149
C8—H8B⋯N5ii 0.99 2.55 3.367 (2) 140
C13—H13A⋯N4 0.99 2.58 3.181 (2) 119
Symmetry codes: (i) x+1, y, z; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: SHELXL97 and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The title compound is a mixed-ligand copper(II) complex with isothiocyanate and the Schiff base 2-morpholino-N-[1-(2-pyridyl)ethylidene]ethanamine. The geometry of the complex is slightly distorted square-pyramidal (τ = 0.05) with the N,N',N"-tridentate Schiff base and one SCN ligand at the basal positions, while the apical position is occupied by a second SCN ligand. This arrangement has been observed in some other mixed-ligand copper(II) complexes (Drew et al., 2009; You et al., 2006; Yue et al., 2005). In the crystal structure, the C—H···N, C—H···O and C—H···S interactions within the range for normal hydrogen bonds link the adjacent molecules into layers parallel to the ac plane (Fig. 2). An intramolecular C—H···N hydrogen bonding is also observed. Moreover, the aromatic rings of each two molecules related by the symmetry -x + 2, -y, -z + 1, are arranged in an antiparallel manner with centroid-centroid separation of 3.9412 (9) Å, indicative of a weak ππ interaction.

Related literature top

For related structures of Cu(II) complexes, see: Drew et al. (2009); You et al. (2006); Yue et al. (2005).

Experimental top

A mixture of 2-acetylpyridine (0.20 g, 1.65 mmol) and 4-(2-aminoethyl)morpholine (0.21 g, 1.65 mmol) in ethanol (20 ml) was refluxed for 2 hr followed by addition of a solution of copper(II) acetate monohydrate (0.33 g, 1.65 mmol) and sodium thiocyanete (0.134 g, 1.65 mmol) in a minimum amount of ethanol. The resulting solution was refluxed for 30 min, then left at room temperature. The crystals of the title complex were obtained in a week.

Refinement top

The hydrogen atoms were placed at calculated positions (C—H 0.95–0.99 Å) and were treated as riding on their parent atoms with Uiso(H) set to 1.2 or 1.5Ueq(C). An additional rigid-bond type restraint (DELU in SHELXL97) was placed on the displacement parameters of S1 and C14; S2 and C15.

Structure description top

The title compound is a mixed-ligand copper(II) complex with isothiocyanate and the Schiff base 2-morpholino-N-[1-(2-pyridyl)ethylidene]ethanamine. The geometry of the complex is slightly distorted square-pyramidal (τ = 0.05) with the N,N',N"-tridentate Schiff base and one SCN ligand at the basal positions, while the apical position is occupied by a second SCN ligand. This arrangement has been observed in some other mixed-ligand copper(II) complexes (Drew et al., 2009; You et al., 2006; Yue et al., 2005). In the crystal structure, the C—H···N, C—H···O and C—H···S interactions within the range for normal hydrogen bonds link the adjacent molecules into layers parallel to the ac plane (Fig. 2). An intramolecular C—H···N hydrogen bonding is also observed. Moreover, the aromatic rings of each two molecules related by the symmetry -x + 2, -y, -z + 1, are arranged in an antiparallel manner with centroid-centroid separation of 3.9412 (9) Å, indicative of a weak ππ interaction.

For related structures of Cu(II) complexes, see: Drew et al. (2009); You et al. (2006); Yue et al. (2005).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot of the title compound at the 50% probability level. Hydrogen atoms are drawn as spheres of arbitrary radii.
[Figure 2] Fig. 2. The packing diagram of the title compound, viewed down the crystallographic a axis.
{2-Morpholino-N-[1-(2-pyridyl)ethylidene]ethanamine-κ3N,N',N''}bis(thiocyanato-κN)copper(II) top
Crystal data top
[Cu(NCS)2(C13H19N3O)]F(000) = 852
Mr = 413.01Dx = 1.493 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 7443 reflections
a = 10.6912 (1) Åθ = 2.2–30.7°
b = 14.0350 (2) ŵ = 1.43 mm1
c = 12.2530 (2) ÅT = 100 K
β = 92.203 (1)°Plate, blue
V = 1837.22 (4) Å30.41 × 0.39 × 0.08 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
4007 independent reflections
Radiation source: fine-focus sealed tube3593 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
φ and ω scansθmax = 27.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1313
Tmin = 0.592, Tmax = 0.894k = 1717
16491 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.061H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0264P)2 + 0.8835P]
where P = (Fo2 + 2Fc2)/3
4007 reflections(Δ/σ)max = 0.001
218 parametersΔρmax = 0.37 e Å3
2 restraintsΔρmin = 0.26 e Å3
Crystal data top
[Cu(NCS)2(C13H19N3O)]V = 1837.22 (4) Å3
Mr = 413.01Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.6912 (1) ŵ = 1.43 mm1
b = 14.0350 (2) ÅT = 100 K
c = 12.2530 (2) Å0.41 × 0.39 × 0.08 mm
β = 92.203 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
4007 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3593 reflections with I > 2σ(I)
Tmin = 0.592, Tmax = 0.894Rint = 0.024
16491 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0232 restraints
wR(F2) = 0.061H-atom parameters constrained
S = 1.08Δρmax = 0.37 e Å3
4007 reflectionsΔρmin = 0.26 e Å3
218 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.828576 (17)0.205404 (13)0.447661 (15)0.01426 (6)
S10.54717 (4)0.02085 (3)0.29655 (4)0.02655 (11)
S21.11219 (4)0.39163 (3)0.33440 (4)0.02849 (11)
O10.42152 (11)0.29240 (8)0.55167 (10)0.0219 (3)
N10.99124 (12)0.13295 (9)0.43945 (10)0.0152 (3)
N20.92988 (12)0.27488 (9)0.55693 (10)0.0153 (3)
N30.68518 (12)0.28625 (9)0.50715 (11)0.0155 (3)
N40.72317 (13)0.11286 (10)0.37153 (11)0.0194 (3)
N50.87234 (14)0.31121 (10)0.31479 (11)0.0212 (3)
C11.01523 (15)0.05728 (11)0.37750 (12)0.0176 (3)
H10.94860.02890.33550.021*
C21.13462 (16)0.01887 (12)0.37269 (13)0.0204 (3)
H21.14970.03450.32730.024*
C31.23136 (16)0.05957 (12)0.43502 (14)0.0216 (3)
H31.31380.03460.43280.026*
C41.20628 (15)0.13735 (12)0.50084 (13)0.0200 (3)
H41.27110.16590.54490.024*
C51.08541 (15)0.17262 (11)0.50118 (12)0.0163 (3)
C61.04657 (15)0.25572 (11)0.56749 (12)0.0166 (3)
C71.13919 (16)0.30782 (13)0.63899 (14)0.0233 (4)
H7A1.10330.36880.66120.035*
H7B1.21520.31960.59890.035*
H7C1.16000.26940.70400.035*
C80.86732 (15)0.35203 (11)0.61333 (13)0.0182 (3)
H8A0.92240.40870.61880.022*
H8B0.84710.33180.68800.022*
C90.74783 (15)0.37566 (11)0.54728 (13)0.0184 (3)
H9A0.69030.41170.59340.022*
H9B0.76810.41630.48430.022*
C100.62870 (15)0.23026 (11)0.59640 (13)0.0178 (3)
H10A0.69130.22300.65750.021*
H10B0.60700.16580.56880.021*
C110.51185 (15)0.27710 (12)0.63883 (13)0.0204 (3)
H11A0.47540.23590.69490.024*
H11B0.53440.33880.67340.024*
C120.47049 (16)0.35294 (12)0.47023 (14)0.0223 (3)
H12A0.49320.41540.50290.027*
H12B0.40590.36370.41150.027*
C130.58532 (15)0.30782 (12)0.42254 (13)0.0191 (3)
H13A0.56040.24810.38470.023*
H13B0.61930.35150.36760.023*
C140.65038 (15)0.05637 (11)0.34076 (12)0.0165 (3)
C150.97181 (16)0.34563 (11)0.32179 (13)0.0190 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.01509 (10)0.01341 (10)0.01417 (10)0.00117 (7)0.00099 (7)0.00142 (7)
S10.0282 (2)0.0203 (2)0.0307 (2)0.00934 (17)0.00451 (18)0.00294 (18)
S20.0273 (2)0.0211 (2)0.0369 (3)0.00521 (17)0.00168 (19)0.00639 (19)
O10.0166 (6)0.0241 (6)0.0251 (6)0.0018 (5)0.0010 (5)0.0008 (5)
N10.0182 (7)0.0140 (6)0.0135 (6)0.0012 (5)0.0005 (5)0.0014 (5)
N20.0179 (7)0.0143 (6)0.0137 (6)0.0018 (5)0.0007 (5)0.0003 (5)
N30.0163 (7)0.0152 (6)0.0150 (6)0.0016 (5)0.0008 (5)0.0012 (5)
N40.0196 (7)0.0183 (7)0.0200 (7)0.0007 (5)0.0014 (5)0.0012 (6)
N50.0269 (8)0.0199 (7)0.0167 (7)0.0000 (6)0.0007 (6)0.0027 (5)
C10.0235 (8)0.0150 (7)0.0141 (7)0.0014 (6)0.0007 (6)0.0014 (6)
C20.0271 (9)0.0164 (8)0.0178 (8)0.0031 (6)0.0014 (6)0.0001 (6)
C30.0210 (8)0.0202 (8)0.0236 (8)0.0032 (6)0.0017 (7)0.0033 (7)
C40.0182 (8)0.0205 (8)0.0212 (8)0.0008 (6)0.0016 (6)0.0011 (7)
C50.0186 (8)0.0162 (7)0.0142 (7)0.0019 (6)0.0007 (6)0.0013 (6)
C60.0197 (8)0.0168 (7)0.0134 (7)0.0025 (6)0.0013 (6)0.0003 (6)
C70.0183 (8)0.0284 (9)0.0231 (8)0.0039 (7)0.0007 (7)0.0088 (7)
C80.0192 (8)0.0170 (7)0.0184 (8)0.0017 (6)0.0010 (6)0.0053 (6)
C90.0191 (8)0.0140 (7)0.0223 (8)0.0018 (6)0.0023 (6)0.0015 (6)
C100.0194 (8)0.0162 (7)0.0178 (8)0.0020 (6)0.0001 (6)0.0018 (6)
C110.0187 (8)0.0229 (8)0.0196 (8)0.0028 (6)0.0013 (6)0.0002 (7)
C120.0212 (9)0.0201 (8)0.0255 (9)0.0018 (6)0.0015 (7)0.0036 (7)
C130.0199 (8)0.0207 (8)0.0164 (8)0.0011 (6)0.0026 (6)0.0019 (6)
C140.0191 (8)0.0150 (7)0.0154 (7)0.0008 (5)0.0001 (6)0.0005 (6)
C150.0276 (8)0.0142 (7)0.0154 (7)0.0016 (6)0.0013 (6)0.0029 (6)
Geometric parameters (Å, º) top
Cu1—N41.9356 (14)C3—H30.9500
Cu1—N21.9506 (13)C4—C51.384 (2)
Cu1—N12.0204 (13)C4—H40.9500
Cu1—N32.0627 (13)C5—C61.490 (2)
Cu1—N52.2657 (14)C6—C71.489 (2)
S1—C141.6247 (16)C7—H7A0.9800
S2—C151.6357 (18)C7—H7B0.9800
O1—C121.425 (2)C7—H7C0.9800
O1—C111.428 (2)C8—C91.522 (2)
N1—C11.336 (2)C8—H8A0.9900
N1—C51.355 (2)C8—H8B0.9900
N2—C61.278 (2)C9—H9A0.9900
N2—C81.460 (2)C9—H9B0.9900
N3—C131.4904 (19)C10—C111.521 (2)
N3—C101.493 (2)C10—H10A0.9900
N3—C91.4966 (19)C10—H10B0.9900
N4—C141.164 (2)C11—H11A0.9900
N5—C151.168 (2)C11—H11B0.9900
C1—C21.389 (2)C12—C131.518 (2)
C1—H10.9500C12—H12A0.9900
C2—C31.385 (2)C12—H12B0.9900
C2—H20.9500C13—H13A0.9900
C3—C41.390 (2)C13—H13B0.9900
N4—Cu1—N2164.55 (6)C6—C7—H7B109.5
N4—Cu1—N197.15 (5)H7A—C7—H7B109.5
N2—Cu1—N180.18 (5)C6—C7—H7C109.5
N4—Cu1—N396.46 (5)H7A—C7—H7C109.5
N2—Cu1—N383.28 (5)H7B—C7—H7C109.5
N1—Cu1—N3161.32 (5)N2—C8—C9107.46 (12)
N4—Cu1—N5103.06 (5)N2—C8—H8A110.2
N2—Cu1—N592.35 (5)C9—C8—H8A110.2
N1—Cu1—N595.29 (5)N2—C8—H8B110.2
N3—Cu1—N594.03 (5)C9—C8—H8B110.2
C12—O1—C11110.92 (12)H8A—C8—H8B108.5
C1—N1—C5119.27 (14)N3—C9—C8110.35 (12)
C1—N1—Cu1127.79 (11)N3—C9—H9A109.6
C5—N1—Cu1112.82 (10)C8—C9—H9A109.6
C6—N2—C8124.83 (13)N3—C9—H9B109.6
C6—N2—Cu1118.59 (11)C8—C9—H9B109.6
C8—N2—Cu1116.31 (10)H9A—C9—H9B108.1
C13—N3—C10108.51 (12)N3—C10—C11112.55 (13)
C13—N3—C9110.96 (12)N3—C10—H10A109.1
C10—N3—C9112.90 (12)C11—C10—H10A109.1
C13—N3—Cu1112.84 (10)N3—C10—H10B109.1
C10—N3—Cu1107.24 (9)C11—C10—H10B109.1
C9—N3—Cu1104.36 (9)H10A—C10—H10B107.8
C14—N4—Cu1169.48 (13)O1—C11—C10110.49 (13)
C15—N5—Cu1115.52 (12)O1—C11—H11A109.6
N1—C1—C2121.97 (15)C10—C11—H11A109.6
N1—C1—H1119.0O1—C11—H11B109.6
C2—C1—H1119.0C10—C11—H11B109.6
C3—C2—C1118.98 (15)H11A—C11—H11B108.1
C3—C2—H2120.5O1—C12—C13110.18 (13)
C1—C2—H2120.5O1—C12—H12A109.6
C2—C3—C4119.16 (15)C13—C12—H12A109.6
C2—C3—H3120.4O1—C12—H12B109.6
C4—C3—H3120.4C13—C12—H12B109.6
C5—C4—C3118.94 (15)H12A—C12—H12B108.1
C5—C4—H4120.5N3—C13—C12112.65 (13)
C3—C4—H4120.5N3—C13—H13A109.1
N1—C5—C4121.67 (15)C12—C13—H13A109.1
N1—C5—C6114.16 (13)N3—C13—H13B109.1
C4—C5—C6124.17 (14)C12—C13—H13B109.1
N2—C6—C7125.52 (15)H13A—C13—H13B107.8
N2—C6—C5113.64 (14)N4—C14—S1178.86 (15)
C7—C6—C5120.83 (14)N5—C15—S2178.35 (15)
C6—C7—H7A109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O1i0.952.403.211 (2)144
C7—H7B···O1i0.982.333.248 (2)155
C7—H7C···S2ii0.982.833.7021 (18)149
C8—H8B···N5ii0.992.553.367 (2)140
C13—H13A···N40.992.583.181 (2)119
Symmetry codes: (i) x+1, y, z; (ii) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Cu(NCS)2(C13H19N3O)]
Mr413.01
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)10.6912 (1), 14.0350 (2), 12.2530 (2)
β (°) 92.203 (1)
V3)1837.22 (4)
Z4
Radiation typeMo Kα
µ (mm1)1.43
Crystal size (mm)0.41 × 0.39 × 0.08
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.592, 0.894
No. of measured, independent and
observed [I > 2σ(I)] reflections
16491, 4007, 3593
Rint0.024
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.061, 1.08
No. of reflections4007
No. of parameters218
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.37, 0.26

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), X-SEED (Barbour, 2001), SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O1i0.952.403.211 (2)144
C7—H7B···O1i0.982.333.248 (2)155
C7—H7C···S2ii0.982.833.7021 (18)149
C8—H8B···N5ii0.992.553.367 (2)140
C13—H13A···N40.992.583.181 (2)119
Symmetry codes: (i) x+1, y, z; (ii) x, y+1/2, z+1/2.
 

Acknowledgements

The authors thank the University of Malaya for funding this study (UMRG grant RG024/09BIO).

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDrew, M. G. B., Das, D., De, S. & Datta, D. (2009). Inorg. Chim. Acta, 362, 1501–1505.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYou, Z.-L., Wang, J. & Han, X. (2006). Acta Cryst. E62, m860–m861.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYue, G.-R., Xu, X.-J., Shi, Y.-Z. & Feng, L. (2005). Acta Cryst. E61, m693–m694.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds