organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-[(4-Meth­­oxy­benz­yl)sulfan­yl]-2-methyl-1,3,4-thia­diazole

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bCrystal Materials Research Unit, Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, cDepartment of Chemistry, Manipal Institute of Technology, Manipal 576 104, India, dOrganic Chemistry Division, Department of Chemistry, National Institute of Technology-Karnataka, Surathkal, Mangalore 575 025, India, and eDepartment of Printing, Manipal Institute of Technology, Manipal 576 104, India
*Correspondence e-mail: hkfun@usm.my

(Received 7 December 2010; accepted 10 December 2010; online 18 December 2010)

The title mol­ecule, C11H12N2OS2, is twisted with a dihedral angle of 83.63 (12)° between the 1,3,4-thia­diazole and benzene rings. The meth­oxy group deviates slightly from the attached benzene ring, with a C—C—O—C torsion angle of 4.2 (4)°. In the crystal, mol­ecules are linked by weak C—H⋯N inter­actions and stacked along the c axis.

Related literature

For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For a related structure, see: Wang et al. (2010[Wang, H., Gao, Y. & Wang, W. (2010). Acta Cryst. E66, o3085.]). For background to and applications of thia­diazole derivatives, see: Bernard et al. (1985[Bernard, A. M., Cocco, M. T., Maccioni, A. & Plumitallo, A. (1985). Farmaco, 40, 259-271.]); Chandrakantha et al. (2010[Chandrakantha, B., Shetty, P., Nambiyar, V., Isloor, N. & Isloor, A. M. (2010). Eur. J. Med. Chem. 45, 1206-1210.]); El-Sabbagh et al. (2009)[El-Sabbagh, O. I., Baraka, M. M., Ibrahim, S. M., Pannecouque, C., Andrei, G., Snoeck, R., Balzarini, J. & Rashad, A. A. (2009). Eur. J. Med. Chem. 44, 3746-3753.]; Isloor et al. (2010[Isloor, A. M., Kalluraya, B. & Pai, K. S. (2010). Eur. J. Med. Chem. 45, 825-830.]); Kalluraya et al. (2004[Kalluraya, B., Jagadeesha, R. L. & Isloor, A. M. (2004). Indian J. Heterocycl. Chem. 13, 245-248.]). For the stability of the temperature controller, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C11H12N2OS2

  • Mr = 252.35

  • Monoclinic, P 21 /c

  • a = 14.7765 (4) Å

  • b = 8.6916 (3) Å

  • c = 9.7339 (3) Å

  • β = 96.477 (1)°

  • V = 1242.16 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.41 mm−1

  • T = 296 K

  • 0.25 × 0.19 × 0.03 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.907, Tmax = 0.987

  • 11429 measured reflections

  • 2828 independent reflections

  • 1660 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.118

  • S = 1.02

  • 2828 reflections

  • 147 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1B⋯N1i 0.96 2.59 3.532 (4) 164
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Thiadiazole are a class of heterocyclic compounds having a five membered ring. They occur in nature and are predominant among all types of pharmaceuticals, agrochemicals and veterinary products (El-Sabbagh et al., 2009). The amino and mercapto groups in thiadiazole are readily-accessible nucleophilic centers. 1,3,4-Thiadiazole exhibit a wide spectrum of biological activities (Bernard et al., 1985). Due to the presence of the –N—C—S moiety (Kalluraya et al., 2004), they are found to be used as antibacterial, antimicrobial and anti-inflammatory agents (Chandrakantha et al., 2010). Antibacterial and antifungal (Isloor et al., 2010) activities of the azoles are most widely studied and azoles are also used as antimicrobial agents. Herein we report the crystal structure of the title 1,3,4-thiadiazole derivative, (I).

The molecule of (I) (Fig. 1) is twisted with a dihedral angle between the 1,3,4-thiadiazole and benzene rings being 83.63 (12)°. Atoms C3, S2, C4 and C5 lie nearly on the same plane with r.m.s. 0.0517 (5) Å and the torsion angle C3–S2–C4–C5 = 172.25 (18)°. The mean plane through C3/S2/C4/C5 makes the dihedral angles of 9.02 (15) and 75.92 (16)° with the 1,3,4-thiadiazole and benzene rings, respectively. The methoxy group is slightly deviated with respect to the attached benzene ring with the torsion angle C11–O1–C8–C9 = 4.2 (4)°. The bond distances are of normal values (Allen et al., 1987) and are comparable with the related structure (Wang et al., 2010).

In the crystal packing (Fig. 2), the molecules are linked by C1—H1B···N1 weak interactions (Table 1) and stacked along the c axis. S···N [3.340 (2) Å] short contacts (symmetry codes: x, 1/2 - y, 1/2 + z and x, 1/2 - y, -1/2 + z) are presented in the crystal.

Related literature top

For bond-length data, see: Allen et al. (1987). For a related structure, see: Wang et al. (2010). For background to and applications of thiadiazole derivatives, see: Bernard et al. (1985); Chandrakantha et al. (2010); El-Sabbagh et al. (2009); Isloor et al. (2010); Kalluraya et al. (2004). For the stability of the temperature controller, see: Cosier & Glazer (1986).

Experimental top

The title compound was synthesized by adding 4-methoxybenzylbromide (3.02 g, 0.0151 mol) dropwise to a stirred solution of 5-methyl-1,3,4-thiadiazole-2-thiol (2.00 g, 0.0151 mol) and anhydrous potassiumcarbonate (4.16 g, 0.03 mol) in dry acetonitrile (50 ml) at room temperature and the reaction mixture was stirred at room temperature for 5 h. After the completion of reaction, the reaction mixture was filtered and the filtrate was concentrated. The crude product was recrystallized with hot ethanol to afford the title compound as yellow solid (2.00 g, yield 57%). Yellow plate-shaped single crystals of the title compound suitable for x-ray structure determination were recrystalized from ethanol by the slow evaporation of the solvent at room temperature after several days (m.p. 413–415 K).

Refinement top

All H atoms were positioned geometrically and allowed to ride on their parent atoms, with d(C—H) = 0.93 Å for aromatic, 0.97 Å for CH2 and 0.96 Å for CH3 atoms. The Uiso(H) values were constrained to be 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for the remaining H atoms. A rotating group model was used for the methyl groups.

Structure description top

Thiadiazole are a class of heterocyclic compounds having a five membered ring. They occur in nature and are predominant among all types of pharmaceuticals, agrochemicals and veterinary products (El-Sabbagh et al., 2009). The amino and mercapto groups in thiadiazole are readily-accessible nucleophilic centers. 1,3,4-Thiadiazole exhibit a wide spectrum of biological activities (Bernard et al., 1985). Due to the presence of the –N—C—S moiety (Kalluraya et al., 2004), they are found to be used as antibacterial, antimicrobial and anti-inflammatory agents (Chandrakantha et al., 2010). Antibacterial and antifungal (Isloor et al., 2010) activities of the azoles are most widely studied and azoles are also used as antimicrobial agents. Herein we report the crystal structure of the title 1,3,4-thiadiazole derivative, (I).

The molecule of (I) (Fig. 1) is twisted with a dihedral angle between the 1,3,4-thiadiazole and benzene rings being 83.63 (12)°. Atoms C3, S2, C4 and C5 lie nearly on the same plane with r.m.s. 0.0517 (5) Å and the torsion angle C3–S2–C4–C5 = 172.25 (18)°. The mean plane through C3/S2/C4/C5 makes the dihedral angles of 9.02 (15) and 75.92 (16)° with the 1,3,4-thiadiazole and benzene rings, respectively. The methoxy group is slightly deviated with respect to the attached benzene ring with the torsion angle C11–O1–C8–C9 = 4.2 (4)°. The bond distances are of normal values (Allen et al., 1987) and are comparable with the related structure (Wang et al., 2010).

In the crystal packing (Fig. 2), the molecules are linked by C1—H1B···N1 weak interactions (Table 1) and stacked along the c axis. S···N [3.340 (2) Å] short contacts (symmetry codes: x, 1/2 - y, 1/2 + z and x, 1/2 - y, -1/2 + z) are presented in the crystal.

For bond-length data, see: Allen et al. (1987). For a related structure, see: Wang et al. (2010). For background to and applications of thiadiazole derivatives, see: Bernard et al. (1985); Chandrakantha et al. (2010); El-Sabbagh et al. (2009); Isloor et al. (2010); Kalluraya et al. (2004). For the stability of the temperature controller, see: Cosier & Glazer (1986).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 40% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed along the b axis. C—H···N weak interactions are shown as dashed lines.
5-[(4-Methoxybenzyl)sulfanyl]-2-methyl-1,3,4-thiadiazole top
Crystal data top
C11H12N2OS2F(000) = 528
Mr = 252.35Dx = 1.349 Mg m3
Monoclinic, P21/cMelting point = 413–415 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 14.7765 (4) ÅCell parameters from 2828 reflections
b = 8.6916 (3) Åθ = 2.7–27.5°
c = 9.7339 (3) ŵ = 0.41 mm1
β = 96.477 (1)°T = 296 K
V = 1242.16 (7) Å3Plate, yellow
Z = 40.25 × 0.19 × 0.03 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2828 independent reflections
Radiation source: sealed tube1660 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
φ and ω scansθmax = 27.5°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1919
Tmin = 0.907, Tmax = 0.987k = 1111
11429 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.118H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0454P)2 + 0.2899P]
where P = (Fo2 + 2Fc2)/3
2828 reflections(Δ/σ)max = 0.001
147 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C11H12N2OS2V = 1242.16 (7) Å3
Mr = 252.35Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.7765 (4) ŵ = 0.41 mm1
b = 8.6916 (3) ÅT = 296 K
c = 9.7339 (3) Å0.25 × 0.19 × 0.03 mm
β = 96.477 (1)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2828 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1660 reflections with I > 2σ(I)
Tmin = 0.907, Tmax = 0.987Rint = 0.040
11429 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.118H-atom parameters constrained
S = 1.02Δρmax = 0.23 e Å3
2828 reflectionsΔρmin = 0.19 e Å3
147 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.43447 (5)0.19481 (8)0.95596 (7)0.0631 (2)
S20.56474 (5)0.40517 (9)0.81756 (8)0.0805 (3)
O10.99330 (14)0.4254 (2)0.7932 (2)0.0899 (7)
N10.30610 (16)0.3239 (3)0.8041 (2)0.0770 (7)
N20.38487 (18)0.3952 (3)0.7726 (2)0.0795 (7)
C10.24763 (19)0.1218 (4)0.9455 (3)0.0849 (9)
H1A0.18930.16240.90980.127*
H1B0.25340.12341.04470.127*
H1C0.25290.01780.91410.127*
C20.32087 (18)0.2174 (3)0.8958 (2)0.0616 (7)
C30.45726 (18)0.3383 (3)0.8427 (2)0.0609 (7)
C40.63995 (18)0.2718 (3)0.9180 (3)0.0672 (7)
H4A0.63530.28481.01590.081*
H4B0.62390.16650.89250.081*
C50.73488 (17)0.3071 (3)0.8867 (2)0.0581 (7)
C60.7820 (2)0.4335 (3)0.9444 (3)0.0697 (8)
H6A0.75510.49561.00620.084*
C70.8673 (2)0.4688 (3)0.9122 (3)0.0738 (8)
H7A0.89770.55390.95280.089*
C80.90874 (18)0.3794 (3)0.8200 (3)0.0624 (7)
C90.86360 (19)0.2522 (3)0.7635 (3)0.0678 (7)
H9A0.89090.18920.70290.081*
C100.77752 (18)0.2183 (3)0.7970 (3)0.0653 (7)
H10A0.74750.13240.75730.078*
C111.0358 (2)0.3427 (5)0.6936 (4)0.1167 (14)
H11A1.09640.38130.69050.175*
H11B1.00140.35480.60460.175*
H11C1.03850.23560.71800.175*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0756 (5)0.0557 (4)0.0557 (4)0.0085 (3)0.0024 (3)0.0090 (3)
S20.0880 (6)0.0761 (6)0.0793 (5)0.0158 (4)0.0181 (4)0.0313 (4)
O10.0779 (14)0.0861 (16)0.1076 (16)0.0229 (11)0.0186 (12)0.0254 (12)
N10.0787 (17)0.0942 (19)0.0594 (14)0.0339 (14)0.0139 (12)0.0159 (14)
N20.0849 (17)0.0896 (18)0.0665 (15)0.0385 (15)0.0200 (13)0.0277 (14)
C10.079 (2)0.094 (2)0.079 (2)0.0025 (18)0.0034 (16)0.0020 (18)
C20.0744 (18)0.0651 (18)0.0449 (14)0.0152 (14)0.0056 (13)0.0067 (13)
C30.0806 (18)0.0570 (17)0.0466 (14)0.0229 (14)0.0137 (13)0.0045 (12)
C40.0779 (19)0.0640 (18)0.0595 (16)0.0065 (14)0.0061 (14)0.0151 (14)
C50.0708 (17)0.0520 (16)0.0507 (14)0.0007 (13)0.0035 (13)0.0073 (13)
C60.099 (2)0.0566 (18)0.0563 (16)0.0032 (16)0.0208 (15)0.0093 (14)
C70.099 (2)0.0593 (18)0.0631 (17)0.0209 (16)0.0091 (16)0.0141 (15)
C80.0659 (17)0.0571 (17)0.0626 (17)0.0049 (14)0.0002 (13)0.0044 (14)
C90.0701 (18)0.0569 (17)0.0758 (18)0.0007 (14)0.0062 (14)0.0168 (15)
C100.0701 (18)0.0512 (17)0.0726 (18)0.0057 (13)0.0011 (14)0.0122 (14)
C110.092 (2)0.105 (3)0.162 (4)0.014 (2)0.051 (3)0.037 (3)
Geometric parameters (Å, º) top
S1—C31.723 (3)C4—H4B0.9700
S1—C21.725 (3)C5—C101.371 (3)
S2—C31.734 (3)C5—C61.386 (4)
S2—C41.814 (3)C6—C71.367 (4)
O1—C81.365 (3)C6—H6A0.9300
O1—C111.410 (3)C7—C81.382 (4)
N1—C21.288 (3)C7—H7A0.9300
N1—N21.383 (3)C8—C91.373 (4)
N2—C31.300 (3)C9—C101.380 (3)
C1—C21.488 (4)C9—H9A0.9300
C1—H1A0.9600C10—H10A0.9300
C1—H1B0.9600C11—H11A0.9600
C1—H1C0.9600C11—H11B0.9600
C4—C51.500 (3)C11—H11C0.9600
C4—H4A0.9700
C3—S1—C287.33 (13)C10—C5—C4121.5 (2)
C3—S2—C4102.99 (12)C6—C5—C4121.2 (2)
C8—O1—C11118.1 (2)C7—C6—C5121.3 (2)
C2—N1—N2113.2 (2)C7—C6—H6A119.4
C3—N2—N1112.1 (2)C5—C6—H6A119.4
C2—C1—H1A109.5C6—C7—C8120.7 (3)
C2—C1—H1B109.5C6—C7—H7A119.7
H1A—C1—H1B109.5C8—C7—H7A119.7
C2—C1—H1C109.5O1—C8—C9125.0 (2)
H1A—C1—H1C109.5O1—C8—C7116.2 (2)
H1B—C1—H1C109.5C9—C8—C7118.8 (3)
N1—C2—C1123.7 (3)C8—C9—C10119.8 (3)
N1—C2—S1113.5 (2)C8—C9—H9A120.1
C1—C2—S1122.8 (2)C10—C9—H9A120.1
N2—C3—S1113.7 (2)C5—C10—C9122.2 (2)
N2—C3—S2120.7 (2)C5—C10—H10A118.9
S1—C3—S2125.53 (16)C9—C10—H10A118.9
C5—C4—S2106.83 (17)O1—C11—H11A109.5
C5—C4—H4A110.4O1—C11—H11B109.5
S2—C4—H4A110.4H11A—C11—H11B109.5
C5—C4—H4B110.4O1—C11—H11C109.5
S2—C4—H4B110.4H11A—C11—H11C109.5
H4A—C4—H4B108.6H11B—C11—H11C109.5
C10—C5—C6117.3 (2)
C2—N1—N2—C30.2 (3)S2—C4—C5—C676.6 (3)
N2—N1—C2—C1178.9 (2)C10—C5—C6—C70.5 (4)
N2—N1—C2—S10.9 (3)C4—C5—C6—C7177.7 (2)
C3—S1—C2—N11.3 (2)C5—C6—C7—C80.4 (4)
C3—S1—C2—C1178.5 (2)C11—O1—C8—C94.2 (4)
N1—N2—C3—S11.3 (3)C11—O1—C8—C7176.3 (3)
N1—N2—C3—S2178.12 (18)C6—C7—C8—O1179.1 (2)
C2—S1—C3—N21.5 (2)C6—C7—C8—C91.4 (4)
C2—S1—C3—S2177.88 (18)O1—C8—C9—C10179.1 (3)
C4—S2—C3—N2171.8 (2)C7—C8—C9—C101.5 (4)
C4—S2—C3—S17.5 (2)C6—C5—C10—C90.4 (4)
C3—S2—C4—C5172.25 (18)C4—C5—C10—C9177.8 (2)
S2—C4—C5—C10101.5 (3)C8—C9—C10—C50.6 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1B···N1i0.962.593.532 (4)164
Symmetry code: (i) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC11H12N2OS2
Mr252.35
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)14.7765 (4), 8.6916 (3), 9.7339 (3)
β (°) 96.477 (1)
V3)1242.16 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.41
Crystal size (mm)0.25 × 0.19 × 0.03
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.907, 0.987
No. of measured, independent and
observed [I > 2σ(I)] reflections
11429, 2828, 1660
Rint0.040
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.118, 1.02
No. of reflections2828
No. of parameters147
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.19

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1B···N1i0.962.593.532 (4)164
Symmetry code: (i) x, y+1/2, z+1/2.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Thomson Reuters ResearcherID: A-5085-2009.

Acknowledgements

AMI is thankful to the Director of the National Institute of Technology for providing research facilities and also thanks the Board for Research in Nuclear Sciences, Department of Atomic Energy, Government of India, for the Young Scientist award. SC thanks the Prince of Songkla University for generous support through the Crystal Materials Research Unit. The authors also thank Universiti Sains Malaysia for the Research University grant No. 1001/PFIZIK/811160.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBernard, A. M., Cocco, M. T., Maccioni, A. & Plumitallo, A. (1985). Farmaco, 40, 259–271.  CAS Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChandrakantha, B., Shetty, P., Nambiyar, V., Isloor, N. & Isloor, A. M. (2010). Eur. J. Med. Chem. 45, 1206–1210.  Web of Science CrossRef CAS PubMed Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationEl-Sabbagh, O. I., Baraka, M. M., Ibrahim, S. M., Pannecouque, C., Andrei, G., Snoeck, R., Balzarini, J. & Rashad, A. A. (2009). Eur. J. Med. Chem. 44, 3746–3753.  Web of Science PubMed CAS Google Scholar
First citationIsloor, A. M., Kalluraya, B. & Pai, K. S. (2010). Eur. J. Med. Chem. 45, 825–830.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKalluraya, B., Jagadeesha, R. L. & Isloor, A. M. (2004). Indian J. Heterocycl. Chem. 13, 245–248.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, H., Gao, Y. & Wang, W. (2010). Acta Cryst. E66, o3085.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds