organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

6-Meth­­oxy-4-methyl-2H-chromen-2-one

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bSchool of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, People's Republic of China
*Correspondence e-mail: hkfun@usm.my

(Received 8 December 2010; accepted 9 December 2010; online 15 December 2010)

The whole mol­ecule of the title coumarin derivative, C11H10O3, is approximately planar, with a maximum deviation of 0.116 (3) Å from the least-squares plane defined by all non-H atoms. In the crystal, adjacent mol­ecules are linked into chains along [011] via inter­molecular C—H⋯O hydrogen bonds.

Related literature

For general background to and applications of the title coumarin derivative, see: Grimm & Girard (2006[Grimm, E. L. & Girard, Y. (2006). Bioorg. Med. Chem. Lett. 16, 2528-2531.]); Maresca et al. (2010[Maresca, A., Scozzafava, A. & Supuran, C. T. (2010). Bioorg. Med. Chem. Lett. 20, 7255-7258.]); Parvez & Hadda (2010[Parvez, A. & Hadda, T. B. (2010). Eur. J. Med. Chem. 18, 4370-4378.]); Raj & Wenge (1998[Raj, H. G. & Wenge, J. (1998). Bioorg. Med. Chem. Lett. 6, 833-839.]); Yao & Deng (2000[Yao, M.-L. & Deng, M.-Z. (2000). Heteroat. Chem. 11, 380-382.]). For related coumarin structures, see: Asad et al. (2010[Asad, M., Oo, C.-W., Osman, H., Goh, J. H. & Fun, H.-K. (2010). Acta Cryst. E66, o3129-o3130.]); Saidi et al. (2007[Saidi, N., Mukhtar, M. R., Awang, K., Hadi, A. H. A. & Ng, S. W. (2007). Acta Cryst. E63, o3692-o3693.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C11H10O3

  • Mr = 190.19

  • Triclinic, [P \overline 1]

  • a = 7.2554 (2) Å

  • b = 8.0880 (2) Å

  • c = 8.5450 (2) Å

  • α = 112.988 (1)°

  • β = 90.234 (1)°

  • γ = 93.873 (1)°

  • V = 460.31 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.40 × 0.35 × 0.06 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.962, Tmax = 0.994

  • 10271 measured reflections

  • 2793 independent reflections

  • 1675 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.066

  • wR(F2) = 0.218

  • S = 1.09

  • 2793 reflections

  • 129 parameters

  • H-atom parameters constrained

  • Δρmax = 0.70 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8A⋯O2i 0.93 2.56 3.471 (2) 165
Symmetry code: (i) x, y-1, z-1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Coumarin is the mother-nuclear structure of many natural products and the importance of coumarin and its analogous compounds which exhibit useful pharmaceutical activities are well-known. Some substituted coumarin and their derivatives have been reported as food constituents, anti-oxidants, stabilizers, immunomodulatory substances, inhibitors of some enzymes, fluorescent markers in analysis, lasers, and in clinical use (Parvez & Hadda, 2010; Maresca et al., 2010; Grimm & Girard, 2006). In addition, 4-substituted coumarins have shown many pharmaceutical activities such as anti-bacterial, anti-fungal, anthelmintic, insecticidal, hypnotic and other biological activities, and most precisely 4-methyl-coumarins have been correlated to several beneficial pharmacological effects too (Yao & Deng, 2000; Raj & Wenge, 1998). In view of the importance of the coumarin derivatives, the crystal structure of the title compound is reported in this paper.

The title coumarin derivative (Fig. 1) has an approximately planar molecular structure, with the methoxy-O atom (C10) deviating -0.116 (3) Å from the least-squares plane defined by all non-hydrogen atoms. All bond lengths (Allen et al., 1987) and angles are within normal ranges and are comparable to those related coumarin structures (Asad et al., 2010; Saidi et al., 2007). In the crystal packing (Fig. 2), adjacent molecules are linked into one-dimensional chains propagating along the [011] direction via intermolecular C8—H8A···O2 hydrogen bonds.

Related literature top

For general background to and applications of the title coumarin derivative, see: Grimm & Girard (2006); Maresca et al. (2010); Parvez & Hadda (2010); Raj & Wenge (1998); Yao & Deng (2000). For related coumarin structures, see: Asad et al. (2010); Saidi et al. (2007). For bond-length data, see: Allen et al. (1987).

Experimental top

The title compound was obtained in the photoreaction of 4-(chloromethyl)-6-methoxy-2H-chromen-2-one in visible light. The compound was purified by flash column chromatography. Good quality single crystals suitable for X-ray analysis were obtained from slow evaporation of a 1:1 solution of acetone and petroleum ether.

Refinement top

All hydrogen atoms were placed in their calculated positions, with C—H = 0.93 or 0.96 Å, and refined using a riding model, with Uiso(H) = 1.2 or 1.5Ueq(C). The rotating group model was applied to the methyl groups.

Structure description top

Coumarin is the mother-nuclear structure of many natural products and the importance of coumarin and its analogous compounds which exhibit useful pharmaceutical activities are well-known. Some substituted coumarin and their derivatives have been reported as food constituents, anti-oxidants, stabilizers, immunomodulatory substances, inhibitors of some enzymes, fluorescent markers in analysis, lasers, and in clinical use (Parvez & Hadda, 2010; Maresca et al., 2010; Grimm & Girard, 2006). In addition, 4-substituted coumarins have shown many pharmaceutical activities such as anti-bacterial, anti-fungal, anthelmintic, insecticidal, hypnotic and other biological activities, and most precisely 4-methyl-coumarins have been correlated to several beneficial pharmacological effects too (Yao & Deng, 2000; Raj & Wenge, 1998). In view of the importance of the coumarin derivatives, the crystal structure of the title compound is reported in this paper.

The title coumarin derivative (Fig. 1) has an approximately planar molecular structure, with the methoxy-O atom (C10) deviating -0.116 (3) Å from the least-squares plane defined by all non-hydrogen atoms. All bond lengths (Allen et al., 1987) and angles are within normal ranges and are comparable to those related coumarin structures (Asad et al., 2010; Saidi et al., 2007). In the crystal packing (Fig. 2), adjacent molecules are linked into one-dimensional chains propagating along the [011] direction via intermolecular C8—H8A···O2 hydrogen bonds.

For general background to and applications of the title coumarin derivative, see: Grimm & Girard (2006); Maresca et al. (2010); Parvez & Hadda (2010); Raj & Wenge (1998); Yao & Deng (2000). For related coumarin structures, see: Asad et al. (2010); Saidi et al. (2007). For bond-length data, see: Allen et al. (1987).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title coumarin derivative, showing the atomic numbering scheme. Displacement ellipsoids for non-hydrogen atoms are drawn at the 50 % probability level.
[Figure 2] Fig. 2. The crystal structure of the title compound, viewed along the a axis, showing one-dimensional chains propagating along the [011] direction. Intermolecular hydrogen bonds are shown as dashed lines.
6-Methoxy-4-methyl-2H-chromen-2-one top
Crystal data top
C11H10O3Z = 2
Mr = 190.19F(000) = 200
Triclinic, P1Dx = 1.372 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.2554 (2) ÅCell parameters from 3241 reflections
b = 8.0880 (2) Åθ = 2.6–30.0°
c = 8.5450 (2) ŵ = 0.10 mm1
α = 112.988 (1)°T = 293 K
β = 90.234 (1)°Plate, yellow
γ = 93.873 (1)°0.40 × 0.35 × 0.06 mm
V = 460.31 (2) Å3
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2793 independent reflections
Radiation source: fine-focus sealed tube1675 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
φ and ω scansθmax = 30.6°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1010
Tmin = 0.962, Tmax = 0.994k = 1111
10271 measured reflectionsl = 1112
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.066Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.218H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0991P)2 + 0.086P]
where P = (Fo2 + 2Fc2)/3
2793 reflections(Δ/σ)max < 0.001
129 parametersΔρmax = 0.70 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C11H10O3γ = 93.873 (1)°
Mr = 190.19V = 460.31 (2) Å3
Triclinic, P1Z = 2
a = 7.2554 (2) ÅMo Kα radiation
b = 8.0880 (2) ŵ = 0.10 mm1
c = 8.5450 (2) ÅT = 293 K
α = 112.988 (1)°0.40 × 0.35 × 0.06 mm
β = 90.234 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2793 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
1675 reflections with I > 2σ(I)
Tmin = 0.962, Tmax = 0.994Rint = 0.021
10271 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0660 restraints
wR(F2) = 0.218H-atom parameters constrained
S = 1.09Δρmax = 0.70 e Å3
2793 reflectionsΔρmin = 0.20 e Å3
129 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.19469 (16)0.53037 (17)0.87871 (16)0.0508 (4)
O20.6197 (2)1.09931 (18)1.34611 (17)0.0638 (4)
O30.1468 (2)0.2933 (2)0.63843 (19)0.0679 (5)
C10.3087 (2)0.6718 (2)0.9894 (2)0.0417 (4)
C20.2327 (3)0.7819 (3)1.1396 (2)0.0512 (5)
H2A0.11010.76031.16170.061*
C30.3402 (3)0.9229 (3)1.2551 (2)0.0527 (5)
H3A0.29010.99741.35590.063*
C40.5250 (3)0.9555 (2)1.2222 (2)0.0472 (4)
C50.5999 (2)0.8469 (2)1.0726 (2)0.0438 (4)
H5A0.72250.86961.05100.053*
C60.4917 (2)0.7016 (2)0.9521 (2)0.0384 (4)
C70.5603 (2)0.5807 (2)0.7919 (2)0.0414 (4)
C80.4450 (2)0.4441 (2)0.6875 (2)0.0463 (4)
H8A0.48950.36630.58510.056*
C90.2564 (3)0.4127 (2)0.7264 (2)0.0475 (4)
C100.8119 (3)1.1270 (3)1.3272 (3)0.0695 (6)
H10C0.86241.22871.42420.104*
H10D0.83171.14951.22600.104*
H10A0.87181.02171.31870.104*
C110.7558 (3)0.6091 (3)0.7459 (3)0.0573 (5)
H11D0.78240.51190.64190.086*
H11A0.83870.61280.83520.086*
H11B0.77130.72090.73110.086*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0352 (6)0.0577 (8)0.0514 (8)0.0001 (5)0.0021 (5)0.0132 (6)
O20.0694 (10)0.0531 (8)0.0488 (8)0.0036 (7)0.0011 (7)0.0017 (6)
O30.0523 (8)0.0717 (9)0.0622 (9)0.0130 (7)0.0092 (7)0.0103 (8)
C10.0368 (8)0.0467 (9)0.0413 (9)0.0056 (7)0.0016 (7)0.0164 (7)
C20.0411 (9)0.0600 (11)0.0516 (11)0.0141 (8)0.0130 (8)0.0193 (9)
C30.0579 (11)0.0553 (11)0.0413 (10)0.0187 (9)0.0120 (8)0.0125 (8)
C40.0541 (11)0.0434 (9)0.0394 (9)0.0087 (8)0.0003 (8)0.0104 (7)
C50.0400 (9)0.0467 (9)0.0416 (9)0.0039 (7)0.0031 (7)0.0139 (7)
C60.0362 (8)0.0418 (8)0.0367 (8)0.0073 (6)0.0023 (6)0.0141 (7)
C70.0384 (9)0.0457 (9)0.0387 (9)0.0068 (7)0.0042 (7)0.0145 (7)
C80.0461 (10)0.0480 (9)0.0388 (9)0.0059 (7)0.0031 (7)0.0102 (7)
C90.0429 (9)0.0511 (10)0.0440 (10)0.0006 (8)0.0033 (7)0.0144 (8)
C100.0654 (14)0.0596 (12)0.0646 (14)0.0073 (10)0.0111 (11)0.0060 (10)
C110.0466 (10)0.0633 (12)0.0508 (11)0.0045 (9)0.0119 (8)0.0100 (9)
Geometric parameters (Å, º) top
O1—C91.377 (2)C5—H5A0.9300
O1—C11.381 (2)C6—C71.450 (2)
O2—C41.367 (2)C7—C81.348 (2)
O2—C101.417 (3)C7—C111.500 (2)
O3—C91.206 (2)C8—C91.438 (3)
C1—C21.387 (2)C8—H8A0.9300
C1—C61.394 (2)C10—H10C0.9600
C2—C31.370 (3)C10—H10D0.9600
C2—H2A0.9300C10—H10A0.9600
C3—C41.400 (3)C11—H11D0.9600
C3—H3A0.9300C11—H11A0.9600
C4—C51.376 (2)C11—H11B0.9600
C5—C61.407 (2)
C9—O1—C1121.54 (14)C8—C7—C11121.52 (15)
C4—O2—C10117.77 (15)C6—C7—C11119.97 (15)
O1—C1—C2116.85 (15)C7—C8—C9123.28 (16)
O1—C1—C6121.51 (15)C7—C8—H8A118.4
C2—C1—C6121.65 (16)C9—C8—H8A118.4
C3—C2—C1119.36 (17)O3—C9—O1116.69 (17)
C3—C2—H2A120.3O3—C9—C8126.37 (18)
C1—C2—H2A120.3O1—C9—C8116.95 (15)
C2—C3—C4120.41 (16)O2—C10—H10C109.5
C2—C3—H3A119.8O2—C10—H10D109.5
C4—C3—H3A119.8H10C—C10—H10D109.5
O2—C4—C5124.24 (17)O2—C10—H10A109.5
O2—C4—C3115.58 (16)H10C—C10—H10A109.5
C5—C4—C3120.18 (17)H10D—C10—H10A109.5
C4—C5—C6120.30 (16)C7—C11—H11D109.5
C4—C5—H5A119.8C7—C11—H11A109.5
C6—C5—H5A119.8H11D—C11—H11A109.5
C1—C6—C5118.10 (15)C7—C11—H11B109.5
C1—C6—C7118.22 (15)H11D—C11—H11B109.5
C5—C6—C7123.68 (15)H11A—C11—H11B109.5
C8—C7—C6118.51 (15)
C9—O1—C1—C2179.81 (14)C2—C1—C6—C7179.76 (15)
C9—O1—C1—C60.2 (3)C4—C5—C6—C10.1 (3)
O1—C1—C2—C3179.14 (15)C4—C5—C6—C7179.79 (14)
C6—C1—C2—C30.4 (3)C1—C6—C7—C80.8 (2)
C1—C2—C3—C40.1 (3)C5—C6—C7—C8178.89 (15)
C10—O2—C4—C56.8 (3)C1—C6—C7—C11179.31 (16)
C10—O2—C4—C3173.65 (17)C5—C6—C7—C111.0 (3)
C2—C3—C4—O2179.84 (16)C6—C7—C8—C90.4 (3)
C2—C3—C4—C50.6 (3)C11—C7—C8—C9179.67 (17)
O2—C4—C5—C6179.97 (15)C1—O1—C9—O3179.91 (15)
C3—C4—C5—C60.4 (3)C1—O1—C9—C80.2 (3)
O1—C1—C6—C5178.98 (14)C7—C8—C9—O3179.99 (18)
C2—C1—C6—C50.6 (3)C7—C8—C9—O10.1 (3)
O1—C1—C6—C70.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8A···O2i0.932.563.471 (2)165
Symmetry code: (i) x, y1, z1.

Experimental details

Crystal data
Chemical formulaC11H10O3
Mr190.19
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.2554 (2), 8.0880 (2), 8.5450 (2)
α, β, γ (°)112.988 (1), 90.234 (1), 93.873 (1)
V3)460.31 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.40 × 0.35 × 0.06
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.962, 0.994
No. of measured, independent and
observed [I > 2σ(I)] reflections
10271, 2793, 1675
Rint0.021
(sin θ/λ)max1)0.716
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.066, 0.218, 1.09
No. of reflections2793
No. of parameters129
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.70, 0.20

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8A···O2i0.932.563.471 (2)165
Symmetry code: (i) x, y1, z1.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Thomson Reuters ResearcherID: C-7576-2009.

Acknowledgements

HKF and JHG thank Universiti Sains Malaysia (USM) for a Research University Grant (No. 1001/PFIZIK/811160). Financial support from the Fok Ying Tung Education Foundation (114012) is also acknowledged.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationAsad, M., Oo, C.-W., Osman, H., Goh, J. H. & Fun, H.-K. (2010). Acta Cryst. E66, o3129–o3130.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGrimm, E. L. & Girard, Y. (2006). Bioorg. Med. Chem. Lett. 16, 2528–2531.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMaresca, A., Scozzafava, A. & Supuran, C. T. (2010). Bioorg. Med. Chem. Lett. 20, 7255–7258.  Web of Science CrossRef CAS PubMed Google Scholar
First citationParvez, A. & Hadda, T. B. (2010). Eur. J. Med. Chem. 18, 4370–4378.  Web of Science CrossRef Google Scholar
First citationRaj, H. G. & Wenge, J. (1998). Bioorg. Med. Chem. Lett. 6, 833–839.  CrossRef CAS Google Scholar
First citationSaidi, N., Mukhtar, M. R., Awang, K., Hadi, A. H. A. & Ng, S. W. (2007). Acta Cryst. E63, o3692–o3693.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYao, M.-L. & Deng, M.-Z. (2000). Heteroat. Chem. 11, 380–382.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds