organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Methyl-5-[(3-methyl-4-nitro­benz­yl)sulfan­yl]-1,3,4-thia­diazole

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bCrystal Materials Research Unit, Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, cDepartment of Chemistry, Manipal Institute of Technology, Manipal 576 104, India, dOrganic Chemistry Division, Department of Chemistry, National Institute of Technology-Karnataka, Surathkal, Mangalore 575 025, India, and eDepartment of Printing, Manipal Institute of Technology, Manipal 576 104, India
*Correspondence e-mail: hkfun@usm.my

(Received 10 December 2010; accepted 14 December 2010; online 24 December 2010)

The mol­ecule of the title thia­diazole derivative, C11H11N3O2S2, has a butterfly-like structure and the whole mol­ecule is disordered with a site-occupancy ratio of 0.629 (4):0.371 (4). The mol­ecule is disordered in such a way that the 3-methyl-4-nitro­phenyl units of the major and minor components are approximately related by 180° rotation around the C—N bond axis. The dihedral angle between the 1,3,4-thia­diazole and benzene rings is 70.8 (4)° in the major component and 74.9 (6)° in the minor component. In the crystal, mol­ecules are arranged into screw chains along the c axis. These chains are stacked along the b axis. Weak inter­molecular C—H⋯O and C—H⋯π inter­actions and a short C⋯O contact [3.005 (7) Å] are present.

Related literature

For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For related structures, see: Fun et al. (2011[Fun, H.-K., Chantrapromma, S., Chandrakantha, B., Isloor, A. M. & Shetty, P. (2011). Acta Cryst. E67, o163.]); Wang et al. (2010[Wang, H., Gao, Y. & Wang, W. (2010). Acta Cryst. E66, o3085.]). For background to and applications of thia­diazole derivatives, see: Bernard et al. (1985[Bernard, A. M., Cocco, M. T., Maccioni, A. & Plumitallo, A. (1985). Farmaco, 40, 259-271.]); Chandrakantha et al. (2010[Chandrakantha, B., Shetty, P., Nambiyar, V., Isloor, N. & Isloor, A. M. (2010). Eur. J. Med. Chem. 45, 1206-1210.]); Isloor et al. (2010[Isloor, A. M., Kalluraya, B. & Pai, K. S. (2010). Eur. J. Med. Chem. 45, 825-830.]); Kalluraya et al. (2004[Kalluraya, B., Jagadeesha, R. L. & Isloor, A. M. (2004). Indian J. Het. Chem. 13, 245-248.]); Oruç et al. (2004[Oruç, E. E., Rollas, S., Kandemirli, F., Shvets, N. & Dimoglo, A. S. (2004). J. Med. Chem. 47, 6760-6767.]); Salimon et al. (2010[Salimon, J., Salih, N., Hameed, A., Ibraheem, H. & Yousif, E. (2010). J. Appl. Sci. Res. 6, 866-870.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C11H11N3O2S2

  • Mr = 281.37

  • Orthorhombic, P n a 21

  • a = 13.8210 (14) Å

  • b = 4.5720 (5) Å

  • c = 19.7929 (19) Å

  • V = 1250.7 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.42 mm−1

  • T = 100 K

  • 0.46 × 0.30 × 0.10 mm

Data collection
  • Bruker APEX DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.831, Tmax = 0.959

  • 10019 measured reflections

  • 3754 independent reflections

  • 3250 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.091

  • S = 1.10

  • 3754 reflections

  • 330 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.42 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1234 Friedel pairs

  • Flack parameter: 0.04 (6)

Table 1
Hydrogen-bond geometry (Å, °)

Cg1, Cg2 and Cg3 are the centroids of the S2/C9/N1/N2/C8, C1–C6 and C1A–C6A rings, respectively

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10B⋯O2i 0.96 2.58 3.534 (11) 171
C7—H7BCg2ii 0.97 2.65 3.417 (6) 134
C7—H7BCg3ii 0.97 2.65 3.489 (6) 145
C7A—H7DCg2ii 0.97 2.63 3.269 (10) 124
C7A—H7DCg3ii 0.97 2.50 3.258 (10) 135
C10A—H10FCg1iii 0.96 2.98 3.683 (18) 132
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) x, y+1, z; (iii) x, y-1, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Many classes of thiadiazole compounds have been intensely investigated with a number of them having found to be biologically and pharmacologically active. The 1,3,4-thiadiazole derivatives exhibit a wide spectrum of pharmacological and biological properties such as antituberculosis, anti-inflammatory, antifungal and antibacterial activities (Bernard et al., 1985; Chandrakantha et al., 2010; Isloor et al., 2010; Kalluraya et al., 2004; Oruç et al., 2004; Salimon et al., 2010). The title 1,3,4-thiadiazole derivative, (I), was synthesized in order to study its biological activity. Herein we report the crystal structure of (I).

The whole molecule of (I), C11H11N3O2S2, is disordered over two sites with the major component and minor A components having refined site-occupancy ratio of 0.629 (3)/0.371 (3) and has a butterfly-like structure with a torsion angle C8–S1–C7–C6 = -79.8 (5)° in major component [-79.6 (9)° in minor A component]. The molecule is disordered in such a way that the 3-methyl-4-nitrophenyl unit in the major and minor components is related by 180° rotation. The dihedral angle between the 1,3,4-thiadiazole and benzene rings is 70.8 (4)° in the major component [74.9 (6)° in the minor A component]. In both components the nitro group is slightly twisted with respect to the attached benzene ring with the torsion angles O2–N3–C3–C2 = 8.4 (4)° and O3–N3–C3–C2 = -172.5 (3)° in the major component [the corresponding values are -12.1 (7) and 168.7 (5)° in the minor A component]. The bond distances are of normal values (Allen et al., 1987) and are comparable with the related structures (Fun et al., 2011; Wang et al., 2010).

In the crystal packing (Fig. 2), the molecules are arranged into screw chains along the c axis. These chains are stacked along the b axis. The crystal is stabilized by C—H···O and C—H···π weak interactions (Table 1). A short C···O contact [3.005 (7) Å; symmetry code: 1/2 + x, -1/2 - y, z] is observed.

Related literature top

For bond-length data, see: Allen et al. (1987). For related structures, see: Fun et al. (2011); Wang et al. (2010). For background to and applications of thiadiazole derivatives, see: Bernard et al. (1985); Chandrakantha et al. (2010); Isloor et al. (2010); Kalluraya et al. (2004); Oruç et al. (2004); Salimon et al. (2010). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

The title compound was synthesized by adding 3-methyl-4-nitrobenzylbromide (3.47 g, 0.0151 mol) dropwise to a stirred solution of 5-methyl-1,3,4-thiadiazole-2-thiol (2.00 g, 0.0151 mol) and anhydrous potassium carbonate (4.16 g, 0.03 mol) in dry acetonitrile (50 ml) at room temperature and the reaction mixture was stirred at room temperature for 5 h. After the completion of reaction, the reaction mixture was filtered and the filtrate was concentrated. The crude product was recrystallized with hot ethanol to afford the title compound as yellow solid (2.20 g, 52% yield). Yellow plate-shaped single crystals of the title compound suitable for x-ray structure determination were recrystalized from ethanol by the slow evaporation of the solvent at room temperature after several days (M.p. 443–445 K).

Refinement top

All H atoms were positioned geometrically and allowed to ride on their parent atoms, with d(C—H) = 0.93 Å for aromatic, 0.97 Å for CH2 and 0.96 Å for CH3 atoms. The Uiso(H) values were constrained to be 1.5Ueq of the carrier atom for methyl H atoms and 1.2Ueq for the remaining H atoms. A rotating group model was used for the methyl groups. The highest residual electron density peak is located at 0.70 Å from C7 and the deepest hole is located at 1.22 Å from S1A. The whole molecule is disordered over two sites with occupancies 0.629 (3) and 0.371 (3). Initially rigidity and similarity restraints were applied. After a steady state was reached, all these restraints were removed before the final refinement.

Structure description top

Many classes of thiadiazole compounds have been intensely investigated with a number of them having found to be biologically and pharmacologically active. The 1,3,4-thiadiazole derivatives exhibit a wide spectrum of pharmacological and biological properties such as antituberculosis, anti-inflammatory, antifungal and antibacterial activities (Bernard et al., 1985; Chandrakantha et al., 2010; Isloor et al., 2010; Kalluraya et al., 2004; Oruç et al., 2004; Salimon et al., 2010). The title 1,3,4-thiadiazole derivative, (I), was synthesized in order to study its biological activity. Herein we report the crystal structure of (I).

The whole molecule of (I), C11H11N3O2S2, is disordered over two sites with the major component and minor A components having refined site-occupancy ratio of 0.629 (3)/0.371 (3) and has a butterfly-like structure with a torsion angle C8–S1–C7–C6 = -79.8 (5)° in major component [-79.6 (9)° in minor A component]. The molecule is disordered in such a way that the 3-methyl-4-nitrophenyl unit in the major and minor components is related by 180° rotation. The dihedral angle between the 1,3,4-thiadiazole and benzene rings is 70.8 (4)° in the major component [74.9 (6)° in the minor A component]. In both components the nitro group is slightly twisted with respect to the attached benzene ring with the torsion angles O2–N3–C3–C2 = 8.4 (4)° and O3–N3–C3–C2 = -172.5 (3)° in the major component [the corresponding values are -12.1 (7) and 168.7 (5)° in the minor A component]. The bond distances are of normal values (Allen et al., 1987) and are comparable with the related structures (Fun et al., 2011; Wang et al., 2010).

In the crystal packing (Fig. 2), the molecules are arranged into screw chains along the c axis. These chains are stacked along the b axis. The crystal is stabilized by C—H···O and C—H···π weak interactions (Table 1). A short C···O contact [3.005 (7) Å; symmetry code: 1/2 + x, -1/2 - y, z] is observed.

For bond-length data, see: Allen et al. (1987). For related structures, see: Fun et al. (2011); Wang et al. (2010). For background to and applications of thiadiazole derivatives, see: Bernard et al. (1985); Chandrakantha et al. (2010); Isloor et al. (2010); Kalluraya et al. (2004); Oruç et al. (2004); Salimon et al. (2010). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme. Open bond show the minor A component.
[Figure 2] Fig. 2. The crystal packing of the title compound viewd along the b axis, showing screw chains running along the c axis.
2-Methyl-5-[(3-methyl-4-nitrobenzyl)sulfanyl]-1,3,4-thiadiazole top
Crystal data top
C11H11N3O2S2Dx = 1.494 Mg m3
Mr = 281.37Melting point = 443–445 K
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 3.12 reflections
a = 13.8210 (14) Åθ = 30.0–2899°
b = 4.5720 (5) ŵ = 0.42 mm1
c = 19.7929 (19) ÅT = 100 K
V = 1250.7 (2) Å3Plate, yellow
Z = 40.46 × 0.30 × 0.10 mm
F(000) = 584
Data collection top
Bruker APEX DUO CCD area-detector
diffractometer
3754 independent reflections
Radiation source: sealed tube3250 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
φ and ω scansθmax = 33.7°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 2121
Tmin = 0.831, Tmax = 0.959k = 76
10019 measured reflectionsl = 3021
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031H-atom parameters constrained
wR(F2) = 0.091 w = 1/[σ2(Fo2) + (0.0501P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max = 0.001
3754 reflectionsΔρmax = 0.45 e Å3
330 parametersΔρmin = 0.42 e Å3
1 restraintAbsolute structure: Flack (1983), 1234 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.04 (6)
Crystal data top
C11H11N3O2S2V = 1250.7 (2) Å3
Mr = 281.37Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 13.8210 (14) ŵ = 0.42 mm1
b = 4.5720 (5) ÅT = 100 K
c = 19.7929 (19) Å0.46 × 0.30 × 0.10 mm
Data collection top
Bruker APEX DUO CCD area-detector
diffractometer
3754 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3250 reflections with I > 2σ(I)
Tmin = 0.831, Tmax = 0.959Rint = 0.026
10019 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.031H-atom parameters constrained
wR(F2) = 0.091Δρmax = 0.45 e Å3
S = 1.10Δρmin = 0.42 e Å3
3754 reflectionsAbsolute structure: Flack (1983), 1234 Friedel pairs
330 parametersAbsolute structure parameter: 0.04 (6)
1 restraint
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.03130 (17)0.3490 (8)0.96362 (19)0.0300 (3)0.629 (4)
S20.1578 (2)0.0159 (8)0.8790 (3)0.0328 (6)0.629 (4)
O20.0136 (2)0.4228 (6)1.29413 (14)0.0518 (8)0.629 (4)
O30.1559 (3)0.4789 (7)1.25002 (19)0.0478 (9)0.629 (4)
N10.2757 (4)0.0884 (15)0.9791 (3)0.0420 (11)0.629 (4)
N20.2002 (4)0.0921 (19)1.0023 (4)0.0346 (12)0.629 (4)
N30.0749 (2)0.3679 (6)1.25069 (13)0.0349 (6)0.629 (4)
C10.0766 (3)0.1353 (6)1.14831 (15)0.0289 (5)0.629 (4)
H1A0.14100.19471.14710.035*0.629 (4)
C20.0461 (3)0.0654 (6)1.19695 (14)0.0289 (5)0.629 (4)
H2A0.08970.13861.22850.035*0.629 (4)
C30.0489 (4)0.1543 (6)1.19794 (14)0.0262 (5)0.629 (4)
C40.1181 (3)0.0516 (6)1.15221 (16)0.0278 (5)0.629 (4)
C50.0843 (3)0.1537 (7)1.10453 (16)0.0266 (6)0.629 (4)
H5A0.12810.23011.07350.032*0.629 (4)
C60.0110 (3)0.2467 (7)1.10173 (18)0.0244 (5)0.629 (4)
C70.0414 (3)0.4654 (12)1.0497 (3)0.0319 (9)0.629 (4)
H7A0.10820.51851.05830.038*0.629 (4)
H7B0.00260.64041.05560.038*0.629 (4)
C80.1361 (6)0.136 (2)0.9548 (6)0.0258 (13)0.629 (4)
C90.2662 (7)0.157 (3)0.9161 (5)0.0336 (14)0.629 (4)
C100.3367 (8)0.341 (2)0.8795 (5)0.050 (2)0.629 (4)
H10A0.37400.45220.91130.075*0.629 (4)
H10B0.37910.21820.85350.075*0.629 (4)
H10C0.30290.47180.84980.075*0.629 (4)
S1A0.0080 (3)0.3638 (14)0.9625 (4)0.0331 (7)0.371 (4)
S2A0.1561 (5)0.0237 (15)0.8860 (6)0.0398 (14)0.371 (4)
O2A0.0852 (4)0.5184 (9)1.2745 (3)0.0507 (12)0.371 (4)
O3A0.2234 (4)0.4513 (11)1.2302 (3)0.0600 (14)0.371 (4)
N1A0.2532 (5)0.046 (2)0.9912 (4)0.0311 (14)0.371 (4)
N2A0.1738 (7)0.115 (3)1.0101 (6)0.0321 (15)0.371 (4)
N3A0.1378 (4)0.3973 (13)1.2341 (3)0.0327 (11)0.371 (4)
C1A0.0286 (4)0.1374 (9)1.1504 (2)0.0254 (8)0.371 (4)
H1B0.09100.21181.15410.031*0.371 (4)
C2A0.0029 (4)0.0698 (9)1.1981 (2)0.0196 (7)0.371 (4)
C3A0.0968 (4)0.1718 (9)1.1884 (2)0.0232 (8)0.371 (4)
C4A0.1560 (4)0.0847 (11)1.1368 (3)0.0292 (10)0.371 (4)
H4B0.21780.16281.13220.035*0.371 (4)
C5A0.1220 (5)0.1226 (12)1.0913 (3)0.0320 (11)0.371 (4)
H5B0.16130.18691.05620.038*0.371 (4)
C6A0.0289 (5)0.2336 (11)1.0987 (3)0.0238 (10)0.371 (4)
C7A0.0060 (7)0.479 (2)1.0507 (5)0.0379 (19)0.371 (4)
H7C0.07050.53891.06400.045*0.371 (4)
H7D0.03650.64631.05530.045*0.371 (4)
C8A0.1157 (10)0.166 (4)0.9600 (8)0.0220 (18)0.371 (4)
C9A0.2489 (11)0.138 (4)0.9296 (7)0.0294 (19)0.371 (4)
C10A0.3250 (10)0.317 (4)0.8965 (8)0.043 (3)0.371 (4)
H10D0.37360.36760.92910.065*0.371 (4)
H10E0.35390.20660.86060.065*0.371 (4)
H10F0.29660.49210.87860.065*0.371 (4)
C110.2234 (2)0.1340 (8)1.14972 (19)0.0438 (7)0.629 (4)
H11A0.22920.34161.14360.066*0.629 (4)
H11B0.25400.03491.11270.066*0.629 (4)
H11C0.25410.07831.19130.066*0.629 (4)
C11A0.0647 (3)0.1528 (12)1.2541 (2)0.0357 (11)0.371 (4)
H11D0.12350.04251.25000.053*0.371 (4)
H11E0.07900.35791.25130.053*0.371 (4)
H11F0.03480.11111.29680.053*0.371 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0368 (8)0.0311 (6)0.0220 (4)0.0045 (6)0.0004 (8)0.0056 (4)
S20.0371 (10)0.0316 (9)0.0298 (14)0.0018 (7)0.0078 (6)0.0015 (6)
O20.0612 (16)0.0623 (16)0.0319 (13)0.0179 (13)0.0060 (11)0.0219 (12)
O30.067 (2)0.0426 (16)0.0343 (17)0.0141 (14)0.0107 (15)0.0050 (11)
N10.032 (2)0.051 (2)0.043 (3)0.0138 (15)0.0031 (15)0.0084 (18)
N20.027 (2)0.050 (3)0.027 (2)0.003 (2)0.0033 (17)0.0076 (17)
N30.0559 (17)0.0290 (12)0.0197 (10)0.0099 (10)0.0105 (10)0.0022 (9)
C10.0360 (15)0.0260 (12)0.0248 (12)0.0017 (11)0.0003 (11)0.0036 (9)
C20.0373 (16)0.0297 (12)0.0197 (11)0.0073 (11)0.0029 (10)0.0019 (9)
C30.0370 (17)0.0252 (12)0.0163 (11)0.0075 (13)0.0031 (11)0.0012 (9)
C40.0294 (14)0.0300 (12)0.0241 (13)0.0047 (11)0.0033 (11)0.0032 (11)
C50.0340 (18)0.0252 (12)0.0206 (12)0.0064 (13)0.0037 (12)0.0014 (10)
C60.0324 (14)0.0178 (10)0.0230 (11)0.0012 (12)0.0007 (13)0.0038 (9)
C70.052 (2)0.0167 (14)0.0273 (16)0.0025 (17)0.005 (2)0.0016 (11)
C80.030 (3)0.019 (2)0.029 (3)0.0045 (17)0.0014 (19)0.0020 (18)
C90.027 (3)0.0321 (19)0.041 (4)0.0015 (19)0.0047 (19)0.011 (2)
C100.044 (3)0.038 (2)0.068 (6)0.0098 (17)0.011 (3)0.008 (3)
S1A0.050 (2)0.0273 (7)0.0214 (7)0.0055 (15)0.0021 (18)0.0007 (6)
S2A0.054 (2)0.042 (2)0.0236 (17)0.0138 (14)0.0082 (9)0.0056 (12)
O2A0.063 (3)0.037 (2)0.052 (3)0.0047 (17)0.016 (2)0.019 (2)
O3A0.042 (2)0.085 (3)0.053 (3)0.029 (2)0.008 (2)0.006 (2)
N1A0.028 (4)0.038 (3)0.027 (3)0.007 (3)0.006 (2)0.002 (2)
N2A0.035 (4)0.036 (3)0.025 (3)0.005 (4)0.004 (3)0.001 (2)
N3A0.032 (2)0.035 (3)0.031 (3)0.0079 (18)0.0141 (19)0.0017 (19)
C1A0.031 (2)0.0239 (18)0.0215 (19)0.0072 (17)0.0047 (17)0.0059 (14)
C2A0.0142 (18)0.0248 (19)0.0199 (17)0.0023 (16)0.0023 (14)0.0001 (13)
C3A0.0221 (19)0.0241 (18)0.023 (2)0.0049 (16)0.0023 (16)0.0002 (15)
C4A0.022 (2)0.031 (2)0.034 (3)0.0036 (17)0.0040 (18)0.0013 (18)
C5A0.039 (3)0.025 (2)0.032 (3)0.010 (2)0.005 (2)0.0006 (18)
C6A0.034 (3)0.0163 (17)0.021 (2)0.003 (2)0.005 (2)0.0015 (14)
C7A0.070 (5)0.020 (2)0.024 (2)0.014 (4)0.015 (4)0.0003 (17)
C8A0.039 (6)0.015 (3)0.012 (2)0.004 (3)0.002 (4)0.000 (2)
C9A0.030 (5)0.028 (4)0.030 (5)0.008 (4)0.003 (3)0.010 (3)
C10A0.030 (4)0.046 (6)0.053 (6)0.010 (4)0.000 (4)0.009 (4)
C110.0323 (13)0.062 (2)0.0372 (16)0.0044 (12)0.0038 (11)0.0024 (14)
C11A0.0303 (18)0.052 (3)0.025 (2)0.0046 (17)0.0020 (16)0.0000 (18)
Geometric parameters (Å, º) top
S1—C81.756 (7)S2A—C8A1.791 (17)
S1—C71.791 (8)O2A—N3A1.213 (9)
S2—C81.678 (12)O3A—N3A1.211 (7)
S2—C91.790 (12)N1A—C9A1.291 (16)
O2—N31.233 (4)N1A—N2A1.376 (11)
O3—N31.229 (5)N2A—C8A1.30 (2)
N1—C91.293 (11)N3A—C3A1.485 (7)
N1—N21.407 (7)C1A—C6A1.368 (8)
N2—C81.306 (14)C1A—C2A1.407 (6)
N3—C31.474 (4)C1A—H1B0.9300
C1—C61.390 (5)C2A—C3A1.391 (7)
C1—C21.396 (4)C2A—C11A1.498 (7)
C1—H1A0.9300C3A—C4A1.369 (7)
C2—C31.374 (6)C4A—C5A1.389 (8)
C2—H2A0.9300C4A—H4B0.9300
C3—C41.397 (5)C5A—C6A1.391 (8)
C4—C51.410 (4)C5A—H5B0.9300
C4—C111.504 (5)C6A—C7A1.546 (11)
C5—C61.385 (4)C7A—H7C0.9700
C5—H5A0.9300C7A—H7D0.9700
C6—C71.495 (7)C9A—C10A1.48 (2)
C7—H7A0.9700C10A—H10D0.9600
C7—H7B0.9700C10A—H10E0.9600
C9—C101.476 (13)C10A—H10F0.9600
C10—H10A0.9600C11—H11A0.9600
C10—H10B0.9600C11—H11B0.9600
C10—H10C0.9600C11—H11C0.9600
S1A—C8A1.742 (12)C11A—H11D0.9600
S1A—C7A1.822 (13)C11A—H11E0.9600
S2A—C9A1.63 (2)C11A—H11F0.9600
C8—S1—C7101.3 (5)O2A—N3A—C3A119.3 (5)
C8—S2—C986.1 (5)C6A—C1A—C2A122.5 (5)
C9—N1—N2112.4 (7)C6A—C1A—H1B118.7
C8—N2—N1111.0 (6)C2A—C1A—H1B118.7
O3—N3—O2123.3 (3)C3A—C2A—C1A115.0 (4)
O3—N3—C3119.2 (3)C3A—C2A—C11A126.8 (4)
O2—N3—C3117.5 (3)C1A—C2A—C11A118.2 (5)
C6—C1—C2120.1 (3)C4A—C3A—C2A124.3 (4)
C6—C1—H1A120.0C4A—C3A—N3A115.4 (5)
C2—C1—H1A120.0C2A—C3A—N3A120.3 (5)
C3—C2—C1119.6 (3)C3A—C4A—C5A118.7 (5)
C3—C2—H2A120.2C3A—C4A—H4B120.7
C1—C2—H2A120.2C5A—C4A—H4B120.7
C2—C3—C4123.0 (3)C4A—C5A—C6A119.6 (5)
C2—C3—N3116.0 (3)C4A—C5A—H5B120.2
C4—C3—N3121.0 (4)C6A—C5A—H5B120.2
C3—C4—C5115.5 (3)C1A—C6A—C5A119.9 (5)
C3—C4—C11126.8 (3)C1A—C6A—C7A120.8 (7)
C5—C4—C11117.7 (3)C5A—C6A—C7A119.2 (7)
C6—C5—C4123.1 (3)C6A—C7A—S1A112.6 (7)
C6—C5—H5A118.5C6A—C7A—H7C109.1
C4—C5—H5A118.5S1A—C7A—H7C109.1
C5—C6—C1118.8 (3)C6A—C7A—H7D109.1
C5—C6—C7120.0 (3)S1A—C7A—H7D109.1
C1—C6—C7121.2 (3)H7C—C7A—H7D107.8
C6—C7—S1115.7 (4)N2A—C8A—S1A126.9 (11)
C6—C7—H7A108.3N2A—C8A—S2A110.2 (9)
S1—C7—H7A108.3S1A—C8A—S2A122.8 (10)
C6—C7—H7B108.3N1A—C9A—C10A124.2 (16)
S1—C7—H7B108.3N1A—C9A—S2A115.5 (11)
H7A—C7—H7B107.4C10A—C9A—S2A120.1 (12)
N2—C8—S2117.3 (5)C9A—C10A—H10D109.5
N2—C8—S1124.9 (8)C9A—C10A—H10E109.5
S2—C8—S1117.7 (7)H10D—C10A—H10E109.5
N1—C9—C10123.1 (10)C9A—C10A—H10F109.5
N1—C9—S2113.1 (6)H10D—C10A—H10F109.5
C10—C9—S2123.8 (9)H10E—C10A—H10F109.5
C8A—S1A—C7A101.0 (7)C2A—C11A—H11D109.5
C9A—S2A—C8A88.2 (8)C2A—C11A—H11E109.5
C9A—N1A—N2A113.3 (10)H11D—C11A—H11E109.5
C8A—N2A—N1A112.5 (10)C2A—C11A—H11F109.5
O3A—N3A—O2A122.3 (6)H11D—C11A—H11F109.5
O3A—N3A—C3A118.4 (6)H11E—C11A—H11F109.5
C9—N1—N2—C82.8 (11)C9A—N1A—N2A—C8A6.5 (18)
C6—C1—C2—C30.7 (4)C6A—C1A—C2A—C3A0.6 (6)
C1—C2—C3—C40.3 (4)C6A—C1A—C2A—C11A178.0 (4)
C1—C2—C3—N3179.7 (2)C1A—C2A—C3A—C4A0.5 (6)
O3—N3—C3—C2172.5 (3)C11A—C2A—C3A—C4A178.9 (4)
O2—N3—C3—C28.4 (4)C1A—C2A—C3A—N3A178.3 (4)
O3—N3—C3—C47.4 (4)C11A—C2A—C3A—N3A3.3 (7)
O2—N3—C3—C4171.6 (3)O3A—N3A—C3A—C4A12.1 (7)
C2—C3—C4—C50.5 (4)O2A—N3A—C3A—C4A168.7 (5)
N3—C3—C4—C5179.6 (2)O3A—N3A—C3A—C2A169.9 (5)
C2—C3—C4—C11179.5 (3)O2A—N3A—C3A—C2A9.3 (7)
N3—C3—C4—C110.6 (4)C2A—C3A—C4A—C5A1.2 (7)
C3—C4—C5—C60.9 (4)N3A—C3A—C4A—C5A179.1 (5)
C11—C4—C5—C6180.0 (3)C3A—C4A—C5A—C6A0.8 (8)
C4—C5—C6—C10.6 (5)C2A—C1A—C6A—C5A1.0 (7)
C4—C5—C6—C7179.9 (3)C2A—C1A—C6A—C7A175.3 (5)
C2—C1—C6—C50.3 (4)C4A—C5A—C6A—C1A0.2 (8)
C2—C1—C6—C7179.1 (3)C4A—C5A—C6A—C7A176.1 (6)
C5—C6—C7—S163.8 (4)C1A—C6A—C7A—S1A121.8 (6)
C1—C6—C7—S1116.9 (4)C5A—C6A—C7A—S1A61.9 (7)
C8—S1—C7—C679.8 (5)C8A—S1A—C7A—C6A79.6 (9)
N1—N2—C8—S21.9 (12)N1A—N2A—C8A—S1A179.7 (12)
N1—N2—C8—S1179.9 (7)N1A—N2A—C8A—S2A5.2 (17)
C9—S2—C8—N20.4 (9)C7A—S1A—C8A—N2A2.0 (18)
C9—S2—C8—S1178.6 (7)C7A—S1A—C8A—S2A176.5 (10)
C7—S1—C8—N20.7 (11)C9A—S2A—C8A—N2A2.4 (14)
C7—S1—C8—S2178.7 (6)C9A—S2A—C8A—S1A177.7 (12)
N2—N1—C9—C10179.0 (9)N2A—N1A—C9A—C10A179.9 (13)
N2—N1—C9—S22.5 (10)N2A—N1A—C9A—S2A4.6 (16)
C8—S2—C9—N11.3 (8)C8A—S2A—C9A—N1A1.3 (13)
C8—S2—C9—C10179.7 (10)C8A—S2A—C9A—C10A176.8 (14)
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2 and Cg3 are the centroids of the S2/C9/N1/N2/C8, C1–C6 and C1A–C6A rings, respectively
D—H···AD—HH···AD···AD—H···A
C10—H10B···O2i0.962.583.534 (11)171
C7—H7B···Cg2ii0.972.653.417 (6)134
C7—H7B···Cg3ii0.972.653.489 (6)145
C7A—H7D···Cg2ii0.972.633.269 (10)124
C7A—H7D···Cg3ii0.972.503.258 (10)135
C10A—H10F···Cg1iii0.962.983.683 (18)132
Symmetry codes: (i) x+1/2, y+1/2, z1/2; (ii) x, y+1, z; (iii) x, y1, z.

Experimental details

Crystal data
Chemical formulaC11H11N3O2S2
Mr281.37
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)100
a, b, c (Å)13.8210 (14), 4.5720 (5), 19.7929 (19)
V3)1250.7 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.42
Crystal size (mm)0.46 × 0.30 × 0.10
Data collection
DiffractometerBruker APEX DUO CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.831, 0.959
No. of measured, independent and
observed [I > 2σ(I)] reflections
10019, 3754, 3250
Rint0.026
(sin θ/λ)max1)0.780
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.091, 1.10
No. of reflections3754
No. of parameters330
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.45, 0.42
Absolute structureFlack (1983), 1234 Friedel pairs
Absolute structure parameter0.04 (6)

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1, Cg2 and Cg3 are the centroids of the S2/C9/N1/N2/C8, C1–C6 and C1A–C6A rings, respectively
D—H···AD—HH···AD···AD—H···A
C10—H10B···O2i0.962.583.534 (11)171
C7—H7B···Cg2ii0.972.653.417 (6)134
C7—H7B···Cg3ii0.972.653.489 (6)145
C7A—H7D···Cg2ii0.972.633.269 (10)124
C7A—H7D···Cg3ii0.972.503.258 (10)135
C10A—H10F···Cg1iii0.962.983.683 (18)132
Symmetry codes: (i) x+1/2, y+1/2, z1/2; (ii) x, y+1, z; (iii) x, y1, z.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Thomson Reuters ResearcherID: A-5085-2009.

Acknowledgements

AMI is thankful to the Director of the National Institute of Technology for providing research facilities and also thanks the Board for Research in Nuclear Sciences, Department of Atomic Energy, Government of India, for the Young Scientist award. SC thanks the Prince of Songkla University for generous support through the Crystal Materials Research Unit. The authors also thank Universiti Sains Malaysia for the Research University grant No. 1001/PFIZIK/811160.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBernard, A. M., Cocco, M. T., Maccioni, A. & Plumitallo, A. (1985). Farmaco, 40, 259–271.  CAS Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChandrakantha, B., Shetty, P., Nambiyar, V., Isloor, N. & Isloor, A. M. (2010). Eur. J. Med. Chem. 45, 1206–1210.  Web of Science CrossRef CAS PubMed Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFun, H.-K., Chantrapromma, S., Chandrakantha, B., Isloor, A. M. & Shetty, P. (2011). Acta Cryst. E67, o163.  Web of Science CrossRef IUCr Journals Google Scholar
First citationIsloor, A. M., Kalluraya, B. & Pai, K. S. (2010). Eur. J. Med. Chem. 45, 825–830.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKalluraya, B., Jagadeesha, R. L. & Isloor, A. M. (2004). Indian J. Het. Chem. 13, 245–248.  CAS Google Scholar
First citationOruç, E. E., Rollas, S., Kandemirli, F., Shvets, N. & Dimoglo, A. S. (2004). J. Med. Chem. 47, 6760–6767.  Web of Science PubMed Google Scholar
First citationSalimon, J., Salih, N., Hameed, A., Ibraheem, H. & Yousif, E. (2010). J. Appl. Sci. Res. 6, 866–870.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, H., Gao, Y. & Wang, W. (2010). Acta Cryst. E66, o3085.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds