organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(4-Meth­­oxy­phen­yl)-4-methyl­benzene­sulfonamide

aDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, and bDepartment of Chemistry, Government College University, Lahore 54000, Pakistan
*Correspondence e-mail: akkurt@erciyes.edu.tr, iukhan@gcu.edu.pk

(Received 10 December 2010; accepted 15 December 2010; online 18 December 2010)

In the title compound, C14H15NO3S, the dihedral angle between the aromatic rings is 59.39 (14)° and the C—S—N—C torsion angle is −71.4 (2)°. In the crystal, a supra­molecular chain running along the b axis with a C(4) graph set is formed via N—H⋯O hydrogen bonds.

Related literature

For the biological activity of sulfonamides, see: Korolkovas (1988[Korolkovas, A. (1988). Essentials of Medicinal Chemistry, 2nd ed. pp. 699-716. New York: Wiley.]); Mandell & Sande (1992[Mandell, G. L. & Sande, M. A. (1992). Goodman and Gilman, The Pharmacological Basis of Therapeutics 2, 8th ed. edited by A. Gilman, T. W. Rall, A. S. Nies & P. Taylor, pp. 1047-1057. Singapore: McGraw-Hill.]). For some structural studies of sulfonamides, see: Khan, Akkurt et al. (2010[Khan, I. U., Akkurt, M., Sharif, S. & Ahmad, W. (2010). Acta Cryst. E66, o3053.]); Khan, Sharif et al. (2010[Khan, I. U., Sharif, S., Akkurt, M., Sajjad, A. & Ahmad, J. (2010). Acta Cryst. E66, o786.]); Sharif et al. (2010[Sharif, S., Iqbal, H., Khan, I. U., John, P. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o1288.]). For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C14H15NO3S

  • Mr = 277.34

  • Monoclinic, P 21

  • a = 9.1777 (4) Å

  • b = 5.2179 (2) Å

  • c = 15.1621 (7) Å

  • β = 103.518 (2)°

  • V = 705.97 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 296 K

  • 0.31 × 0.10 × 0.08 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • 6858 measured reflections

  • 2995 independent reflections

  • 2175 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.106

  • S = 1.03

  • 2995 reflections

  • 174 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.19 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1078 Freidel pairs

  • Flack parameter: 0.01 (8)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O2i 0.86 2.37 2.975 (3) 128
Symmetry code: (i) x, y-1, z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The crystal structure of the title compound, (I), was determined in continuation of structural studies of sulfonamides (Sharif et al., 2010; Khan, Akkurt et al., 2010; Khan, Sharif et al., 2010), of interest owing to their enormous potential as biologically active molecules (Korolkovas, 1988; Mandell & Sande, 1992).

In the title compound (I), (Fig. 1), the dihedral angle between the two aromatic rings (C1–C6) and (C8–C13) is 59.39 (14)°. The molecule is twisted at the S atom with the C6—S1—N1—C8 torsion angle of -71.4 (2)°. The packing of molecules linked by of N—H···O hydrogen bonds (Table 1) form supramolecular chains [C(4) graph set; Bernstein et al., 1995] aligned along the b axis (Fig. 2).

Related literature top

For the biological activity of sulfonamides, see: Korolkovas (1988); Mandell & Sande (1992). For some structural studies of sulfonamides, see: Khan, Akkurt et al. (2010); Khan, Sharif et al. (2010); Sharif et al. (2010). For graph-set notation, see: Bernstein et al. (1995).

Experimental top

To para anisidine (123 mg, 1 mmol) in distilled water (10 ml) was added para toluene sulfonyl chloride (190 mg, 1 mmol) with stirring at room temperature while maintaining the pH of the reaction mixture at 8 using 3% sodium carbonate. The progress of the reaction was monitored by TLC. The product was dissolved in methanol and recrystallized by slow evaporation of the solvent, to generate colourless needles (I) in 79% yield.

Refinement top

All H atoms were positioned geometrically, with N—H = 0.86 Å, and C—H = 0.93 (aromatic H) and 0.96 Å (methyl H) and were refined using a riding model, with Uiso(H) = 1.2 (1.5 for methyl groups)×Ueq(C, N). Three low-angle reflections, (100), (-101) and (001), whose intensities were strongly affected by the beamstop, were omitted in the refinement process.

Structure description top

The crystal structure of the title compound, (I), was determined in continuation of structural studies of sulfonamides (Sharif et al., 2010; Khan, Akkurt et al., 2010; Khan, Sharif et al., 2010), of interest owing to their enormous potential as biologically active molecules (Korolkovas, 1988; Mandell & Sande, 1992).

In the title compound (I), (Fig. 1), the dihedral angle between the two aromatic rings (C1–C6) and (C8–C13) is 59.39 (14)°. The molecule is twisted at the S atom with the C6—S1—N1—C8 torsion angle of -71.4 (2)°. The packing of molecules linked by of N—H···O hydrogen bonds (Table 1) form supramolecular chains [C(4) graph set; Bernstein et al., 1995] aligned along the b axis (Fig. 2).

For the biological activity of sulfonamides, see: Korolkovas (1988); Mandell & Sande (1992). For some structural studies of sulfonamides, see: Khan, Akkurt et al. (2010); Khan, Sharif et al. (2010); Sharif et al. (2010). For graph-set notation, see: Bernstein et al. (1995).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the title compound, showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A view of intermolecular N—H···O hydrogen bonds connecting the molecules into an infinite one-dimensional chain extending along the b axis of the unit cell. For the sake of clarity, the H atoms not involved in the motif have been omitted.
N-(4-Methoxyphenyl)-4-methylbenzenesulfonamide top
Crystal data top
C14H15NO3SF(000) = 292
Mr = 277.34Dx = 1.305 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 2249 reflections
a = 9.1777 (4) Åθ = 2.4–24.3°
b = 5.2179 (2) ŵ = 0.23 mm1
c = 15.1621 (7) ÅT = 296 K
β = 103.518 (2)°Needle, colourless
V = 705.97 (5) Å30.31 × 0.10 × 0.08 mm
Z = 2
Data collection top
Bruker APEXII CCD
diffractometer
2175 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.028
Graphite monochromatorθmax = 28.3°, θmin = 4.0°
φ and ω scansh = 1212
6858 measured reflectionsk = 56
2995 independent reflectionsl = 2020
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.106 w = 1/[σ2(Fo2) + (0.0532P)2 + 0.0074P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
2995 reflectionsΔρmax = 0.22 e Å3
174 parametersΔρmin = 0.19 e Å3
1 restraintAbsolute structure: Flack (1983), 1078 Freidel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.01 (8)
Crystal data top
C14H15NO3SV = 705.97 (5) Å3
Mr = 277.34Z = 2
Monoclinic, P21Mo Kα radiation
a = 9.1777 (4) ŵ = 0.23 mm1
b = 5.2179 (2) ÅT = 296 K
c = 15.1621 (7) Å0.31 × 0.10 × 0.08 mm
β = 103.518 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
2175 reflections with I > 2σ(I)
6858 measured reflectionsRint = 0.028
2995 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.106Δρmax = 0.22 e Å3
S = 1.03Δρmin = 0.19 e Å3
2995 reflectionsAbsolute structure: Flack (1983), 1078 Freidel pairs
174 parametersAbsolute structure parameter: 0.01 (8)
1 restraint
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.81437 (7)0.96578 (12)0.72795 (4)0.0537 (2)
O10.8984 (2)0.8808 (4)0.66620 (15)0.0765 (8)
O20.8331 (2)1.2212 (3)0.76342 (15)0.0703 (7)
O30.6677 (2)0.8944 (4)1.13469 (14)0.0716 (8)
N10.8557 (2)0.7730 (4)0.81409 (15)0.0525 (7)
C10.5796 (3)0.7294 (6)0.61403 (19)0.0629 (10)
C20.4331 (3)0.6996 (6)0.5708 (2)0.0701 (11)
C30.3249 (3)0.8611 (6)0.5875 (2)0.0660 (11)
C40.3684 (4)1.0479 (7)0.6502 (3)0.0822 (16)
C50.5157 (3)1.0831 (6)0.6953 (2)0.0723 (11)
C60.6241 (3)0.9244 (4)0.67623 (16)0.0475 (8)
C70.1637 (4)0.8293 (9)0.5376 (3)0.1073 (18)
C80.8041 (3)0.8134 (4)0.89527 (17)0.0443 (8)
C90.8648 (3)1.0074 (5)0.95370 (17)0.0486 (8)
C100.8214 (3)1.0414 (4)1.03440 (18)0.0520 (9)
C110.7174 (3)0.8782 (5)1.05675 (18)0.0518 (9)
C120.6576 (3)0.6828 (5)0.9981 (2)0.0612 (10)
C130.6996 (3)0.6528 (5)0.91731 (19)0.0554 (9)
C140.7243 (5)1.0919 (8)1.1956 (2)0.0991 (16)
H10.650900.617100.601600.0750*
H1A0.910800.641400.811000.0630*
H20.405900.567400.529000.0840*
H40.295901.156600.663300.0990*
H50.541601.212700.738200.0870*
H7A0.149300.901800.478000.1610*
H7B0.100200.915600.570200.1610*
H7C0.138900.650400.532800.1610*
H90.935501.116600.938900.0580*
H100.862301.173801.073400.0620*
H120.588500.570701.013200.0730*
H130.657000.523200.877500.0660*
H14A0.705501.253901.165100.1490*
H14B0.830201.069201.218300.1490*
H14C0.675801.087901.245300.1490*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0675 (4)0.0424 (3)0.0518 (4)0.0033 (3)0.0152 (3)0.0013 (3)
O10.0832 (13)0.0850 (16)0.0698 (14)0.0004 (11)0.0353 (12)0.0016 (11)
O20.0908 (14)0.0416 (10)0.0731 (13)0.0108 (9)0.0080 (12)0.0012 (10)
O30.0800 (13)0.0754 (15)0.0635 (13)0.0063 (10)0.0249 (12)0.0036 (11)
N10.0632 (13)0.0420 (12)0.0494 (13)0.0113 (9)0.0075 (11)0.0029 (10)
C10.0763 (19)0.0586 (16)0.0544 (17)0.0027 (15)0.0166 (16)0.0142 (15)
C20.083 (2)0.0731 (19)0.0519 (18)0.0090 (17)0.0109 (16)0.0158 (16)
C30.0721 (19)0.076 (2)0.0511 (17)0.0042 (16)0.0169 (16)0.0056 (16)
C40.074 (2)0.083 (3)0.092 (3)0.0204 (16)0.024 (2)0.010 (2)
C50.080 (2)0.0585 (16)0.076 (2)0.0045 (16)0.0133 (18)0.0241 (16)
C60.0703 (15)0.0377 (14)0.0355 (13)0.0045 (11)0.0147 (11)0.0029 (10)
C70.071 (2)0.158 (4)0.090 (3)0.015 (2)0.013 (2)0.010 (3)
C80.0457 (13)0.0346 (12)0.0471 (15)0.0084 (11)0.0004 (12)0.0002 (11)
C90.0503 (13)0.0434 (16)0.0479 (14)0.0063 (11)0.0033 (12)0.0019 (12)
C100.0572 (15)0.0453 (16)0.0490 (16)0.0038 (11)0.0032 (13)0.0063 (11)
C110.0491 (14)0.0518 (16)0.0515 (16)0.0053 (11)0.0060 (13)0.0009 (12)
C120.0594 (15)0.0503 (15)0.074 (2)0.0097 (13)0.0157 (15)0.0007 (14)
C130.0566 (15)0.0403 (14)0.0644 (19)0.0071 (12)0.0043 (14)0.0096 (13)
C140.144 (3)0.098 (3)0.066 (2)0.026 (3)0.046 (2)0.019 (2)
Geometric parameters (Å, º) top
S1—O11.416 (2)C10—C111.379 (4)
S1—O21.4324 (18)C11—C121.380 (4)
S1—N11.622 (2)C12—C131.376 (4)
S1—C61.752 (3)C1—H10.9300
O3—C111.365 (3)C2—H20.9300
O3—C141.400 (4)C4—H40.9300
N1—C81.434 (3)C5—H50.9300
N1—H1A0.8600C7—H7A0.9600
C1—C61.383 (4)C7—H7B0.9600
C1—C21.360 (4)C7—H7C0.9600
C2—C31.370 (4)C9—H90.9300
C3—C71.505 (5)C10—H100.9300
C3—C41.355 (5)C12—H120.9300
C4—C51.377 (5)C13—H130.9300
C5—C61.376 (4)C14—H14A0.9600
C8—C131.372 (4)C14—H14B0.9600
C8—C91.375 (3)C14—H14C0.9600
C9—C101.384 (4)
O2···C93.043 (3)H1A···H10iv2.3900
O2···N1i2.975 (3)H1A···H14Biv2.5500
O1···H7Bii2.6200H2···H7C2.5000
O1···H12.6400H2···C1ix2.8200
O2···H1Ai2.3700H2···C2ix3.0300
O2···H52.6100H4···H7B2.3700
O2···H92.6600H5···O22.6100
N1···O2iii2.975 (3)H7B···O1x2.6200
N1···H10iv2.8000H7B···H42.3700
C4···C14v3.575 (6)H7C···H22.5000
C9···O23.043 (3)H9···O22.6600
C14···C4vi3.575 (6)H9···C9viii2.9600
C1···H2vii2.8200H10···C142.5100
C2···H2vii3.0300H10···H14A2.2600
C3···H14Cv2.9100H10···H14B2.3500
C4···H14Cv2.9600H10···N1viii2.8000
C8···H10iv3.0700H10···C8viii3.0700
C9···H9iv2.9600H10···H1Aviii2.3900
C10···H14B2.7700H12···C11v2.9400
C10···H1Aviii3.0200H12···C12v3.0100
C10···H14A2.7000H14A···C102.7000
C11···H12vi2.9400H14A···H102.2600
C12···H12vi3.0100H14B···C102.7700
C14···H102.5100H14B···H102.3500
H1···O12.6400H14B···H1Aviii2.5500
H1A···O2iii2.3700H14C···C3vi2.9100
H1A···C10iv3.0200H14C···C4vi2.9600
O1—S1—O2120.23 (12)C8—C13—C12120.3 (2)
O1—S1—N1106.10 (12)C2—C1—H1120.00
O1—S1—C6107.78 (12)C6—C1—H1119.00
O2—S1—N1106.85 (12)C1—C2—H2119.00
O2—S1—C6107.59 (11)C3—C2—H2119.00
N1—S1—C6107.76 (11)C3—C4—H4119.00
C11—O3—C14118.0 (2)C5—C4—H4119.00
S1—N1—C8122.56 (16)C4—C5—H5120.00
C8—N1—H1A119.00C6—C5—H5120.00
S1—N1—H1A119.00C3—C7—H7A109.00
C2—C1—C6120.9 (3)C3—C7—H7B109.00
C1—C2—C3121.2 (3)C3—C7—H7C109.00
C4—C3—C7121.7 (3)H7A—C7—H7B109.00
C2—C3—C4117.7 (3)H7A—C7—H7C110.00
C2—C3—C7120.6 (3)H7B—C7—H7C109.00
C3—C4—C5122.6 (3)C8—C9—H9120.00
C4—C5—C6119.3 (3)C10—C9—H9120.00
S1—C6—C5121.71 (19)C9—C10—H10120.00
C1—C6—C5118.3 (3)C11—C10—H10120.00
S1—C6—C1120.0 (2)C11—C12—H12120.00
C9—C8—C13119.6 (2)C13—C12—H12120.00
N1—C8—C9119.7 (2)C8—C13—H13120.00
N1—C8—C13120.6 (2)C12—C13—H13120.00
C8—C9—C10120.5 (2)O3—C14—H14A109.00
C9—C10—C11119.8 (2)O3—C14—H14B110.00
O3—C11—C12116.2 (2)O3—C14—H14C109.00
O3—C11—C10124.4 (2)H14A—C14—H14B110.00
C10—C11—C12119.5 (3)H14A—C14—H14C109.00
C11—C12—C13120.4 (3)H14B—C14—H14C109.00
O1—S1—N1—C8173.41 (19)C1—C2—C3—C7178.6 (3)
O2—S1—N1—C844.0 (2)C7—C3—C4—C5178.7 (3)
C6—S1—N1—C871.4 (2)C2—C3—C4—C51.4 (5)
N1—S1—C6—C596.3 (2)C3—C4—C5—C60.3 (5)
O2—S1—C6—C1160.9 (2)C4—C5—C6—S1177.6 (3)
N1—S1—C6—C184.2 (2)C4—C5—C6—C12.0 (4)
O1—S1—C6—C129.9 (2)N1—C8—C13—C12175.9 (2)
O2—S1—C6—C518.6 (3)C9—C8—C13—C121.1 (4)
O1—S1—C6—C5149.7 (2)N1—C8—C9—C10176.9 (2)
C14—O3—C11—C100.9 (4)C13—C8—C9—C100.1 (4)
C14—O3—C11—C12179.3 (3)C8—C9—C10—C110.5 (4)
S1—N1—C8—C972.4 (3)C9—C10—C11—C120.1 (4)
S1—N1—C8—C13110.6 (2)C9—C10—C11—O3179.7 (2)
C2—C1—C6—C51.9 (4)O3—C11—C12—C13179.3 (2)
C6—C1—C2—C30.1 (5)C10—C11—C12—C130.9 (4)
C2—C1—C6—S1177.7 (2)C11—C12—C13—C81.5 (4)
C1—C2—C3—C41.5 (5)
Symmetry codes: (i) x, y+1, z; (ii) x+1, y, z; (iii) x, y1, z; (iv) x+2, y1/2, z+2; (v) x+1, y1/2, z+2; (vi) x+1, y+1/2, z+2; (vii) x+1, y+1/2, z+1; (viii) x+2, y+1/2, z+2; (ix) x+1, y1/2, z+1; (x) x1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2iii0.862.372.975 (3)128
Symmetry code: (iii) x, y1, z.

Experimental details

Crystal data
Chemical formulaC14H15NO3S
Mr277.34
Crystal system, space groupMonoclinic, P21
Temperature (K)296
a, b, c (Å)9.1777 (4), 5.2179 (2), 15.1621 (7)
β (°) 103.518 (2)
V3)705.97 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.23
Crystal size (mm)0.31 × 0.10 × 0.08
Data collection
DiffractometerBruker APEXII CCD
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
6858, 2995, 2175
Rint0.028
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.106, 1.03
No. of reflections2995
No. of parameters174
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.19
Absolute structureFlack (1983), 1078 Freidel pairs
Absolute structure parameter0.01 (8)

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2i0.862.372.975 (3)128
Symmetry code: (i) x, y1, z.
 

Acknowledgements

The authors are grateful to the Higher Education Commission for providing financial support.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKhan, I. U., Akkurt, M., Sharif, S. & Ahmad, W. (2010). Acta Cryst. E66, o3053.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKhan, I. U., Sharif, S., Akkurt, M., Sajjad, A. & Ahmad, J. (2010). Acta Cryst. E66, o786.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKorolkovas, A. (1988). Essentials of Medicinal Chemistry, 2nd ed. pp. 699–716. New York: Wiley.  Google Scholar
First citationMandell, G. L. & Sande, M. A. (1992). Goodman and Gilman, The Pharmacological Basis of Therapeutics 2, 8th ed. edited by A. Gilman, T. W. Rall, A. S. Nies & P. Taylor, pp. 1047–1057. Singapore: McGraw–Hill.  Google Scholar
First citationSharif, S., Iqbal, H., Khan, I. U., John, P. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o1288.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds