metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[μ-1,2-Bis(di­phenyl­phosphan­yl)benzene-κ2P:P′]bis­­[chloridogold(I)]

aDepartment of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
*Correspondence e-mail: nobuto@chem.sci.osaka-u.ac.jp

(Received 13 December 2010; accepted 16 December 2010; online 24 December 2010)

In the crystal structure of the non-solvate form of the title compound, [Au2Cl2(C30H24P2)], two almost linear P—AuI—Cl units [175.87 (3) and 171.48 (3)°] are in a skewed arrangement with a Cl—Au⋯Au—Cl torsion angle of −65.29 (3)° so as to form an intra­molecular Au⋯Au inter­action [3.0563 (2) Å]. The complex mol­ecules are connected each other through inter­molecular C—H⋯π inter­actions, giving a sheet structure parallel to the bc plane.

Related literature

For the crystal structure of the diethyl­ether solvate form of the title compound, [(AuCl)2(C30H24P2)]·(C2H5)2O, see: Mohamed et al. (2003[Mohamed, A. A., Krause Bauer, J. A., Bruce, A. E. & Bruce, M. R. M. (2003). Acta Cryst. C59, m84-m86.]). For closely related structures, see: Hashimoto et al. (2010[Hashimoto, Y., Tsuge, K. & Konno, T. (2010). Chem. Lett. 39, 601-603.]).

[Scheme 1]

Experimental

Crystal data
  • [Au2Cl2(C30H24P2)]

  • Mr = 911.27

  • Monoclinic, P 21 /c

  • a = 13.0733 (2) Å

  • b = 12.4206 (2) Å

  • c = 17.4630 (3) Å

  • β = 96.795 (7)°

  • V = 2815.69 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 10.73 mm−1

  • T = 200 K

  • 0.15 × 0.10 × 0.10 mm

Data collection
  • Rigaku R-AXIS VII diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.189, Tmax = 0.341

  • 31710 measured reflections

  • 6438 independent reflections

  • 5897 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.023

  • wR(F2) = 0.041

  • S = 1.16

  • 6438 reflections

  • 325 parameters

  • H-atom parameters constrained

  • Δρmax = 0.54 e Å−3

  • Δρmin = −0.80 e Å−3

Table 1
Selected bond lengths (Å)

Au1—P1 2.2256 (8)
Au1—Cl1 2.2739 (8)
Au2—P2 2.2279 (7)
Au2—Cl2 2.2792 (8)

Table 2
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C25–C30 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15⋯Cgi 0.95 2.82 3.569 (4) 137
C21—H21⋯Cgii 0.95 2.84 3.559 (4) 134
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: Yadokari-XG 2009 (Kabuto et al., 2009[Kabuto, C., Akine, S., Nemoto, T. & Kwon, E. (2009). J. Crystallogr. Soc. Jpn, 51, 218-224.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]) and ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: Yadokari-XG 2009 and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

[(AuCl)2(diphosphine)]-type digold(I) complexes have been known as a good starting material to produce [(AuL)2(diphosphine)]-type digold(I) metallounits. Recently, we found that a digold(I) complex, [{Au(D-Hpen)}2(dppm)] (D-pen = D-penicillaminate, dppm = 1,2-bis(diphenylphosphino)methane), which was prepared from [(AuCl)2(dppm)] and D-pen, can act as a hexadentate-S2N2O2 metalloligand toward a NiII center to give a unique trinuclear NiIIAuI2 complex with a nine-membered metalloring, [NiAu2(D-pen)2(dppm)] (Hashimoto et al., 2010). In the course of our study on a digold(I) metalloligand system having both D-pen and diphosphines, we started to use [(AuCl)2(dppbz)] (dppbz = o-phenylenebis(diphenylphosphine)) instead of [(AuCl)2(dppm)]. Herein, we report the crystal structure of the non-solvate form of [(AuCl)2(dppbz)] (I). The crystal structure of the diethylether solvate form of the title compound, [(AuCl)2(dppbz)].Et2O (II), has been reported by Mohamed et al. (2003).

The asymmetric unit of (I) contains only a complex molecule without a significant solvent accessible space, which is distinct from the solvated structure of (II) (Mohamed et al., 2003). The complex molecule is composed of two [AuICl] units that are linked by a dppbz ligand through Au—P bonds, forming a digold(I) structure in [(AuCl)2(dppbz)] (Fig. 1). In (I), two approximately linear P—AuI—Cl units are skewed each other so as to form an intramolecular Au···Au interaction. This conformational feature is the same as that in (II). In the crystal (I), the Au···Au distance [3.05634 (17) Å] is longer than that in (II) [2.966 (1) Å], and the Cl—Au···Au—Cl torsion angle [–65.29 (3)°] is larger than that in (II) [–63.92 (7)°]. The other bond distances and angles in (I) are similar to those in (II).

The crystal structure of (I) is stabilized by several intermolecular C—H···π interactions. Each complex molecule is connected with four adjacent molecules through a C—H···π interaction [H15···Cgi = 2.82 Å and H21···Cgii = 2.84 Å; symmetry codes: (i) x, 3/2–y, -1/2 + z, (ii) 1 - x, -1/2 + y, 1/2–z]; Cg is the centroid of the C25–C30 ring] to construct a two-dimensional sheet structure (Fig. 2). Such an intermolecular C—H···π interaction has not been observed in (II).

Related literature top

For the crystal structure of the diethylether solvate form of the title compound, [(AuCl)2(dppbz)].Et2O, see: Mohamed et al. (2003). For closely related structures, see: Hashimoto et al. (2010).

Experimental top

To a solution containing tetrahydrothiophenechlorogold(I) (100 mg, 0.32 mmol) in 10 ml of CH2Cl2 was added o-phenylenebis(diphenylphosphine) (140 mg, 0.31 mmol). After stirring for 20 minutes, 100 ml of diethylether was added to the reaction solution. The resulting white powder was recrystallized from CH2Cl2 by diffusing diethylether, which afforded colorless block crystals of (I).

Refinement top

H atoms were placed at calculated positions and refined with isotropic displacement parameters [Uiso(H) = 1.2Ueq(C)] and a riding model (C—H = 0.95 Å).

Structure description top

[(AuCl)2(diphosphine)]-type digold(I) complexes have been known as a good starting material to produce [(AuL)2(diphosphine)]-type digold(I) metallounits. Recently, we found that a digold(I) complex, [{Au(D-Hpen)}2(dppm)] (D-pen = D-penicillaminate, dppm = 1,2-bis(diphenylphosphino)methane), which was prepared from [(AuCl)2(dppm)] and D-pen, can act as a hexadentate-S2N2O2 metalloligand toward a NiII center to give a unique trinuclear NiIIAuI2 complex with a nine-membered metalloring, [NiAu2(D-pen)2(dppm)] (Hashimoto et al., 2010). In the course of our study on a digold(I) metalloligand system having both D-pen and diphosphines, we started to use [(AuCl)2(dppbz)] (dppbz = o-phenylenebis(diphenylphosphine)) instead of [(AuCl)2(dppm)]. Herein, we report the crystal structure of the non-solvate form of [(AuCl)2(dppbz)] (I). The crystal structure of the diethylether solvate form of the title compound, [(AuCl)2(dppbz)].Et2O (II), has been reported by Mohamed et al. (2003).

The asymmetric unit of (I) contains only a complex molecule without a significant solvent accessible space, which is distinct from the solvated structure of (II) (Mohamed et al., 2003). The complex molecule is composed of two [AuICl] units that are linked by a dppbz ligand through Au—P bonds, forming a digold(I) structure in [(AuCl)2(dppbz)] (Fig. 1). In (I), two approximately linear P—AuI—Cl units are skewed each other so as to form an intramolecular Au···Au interaction. This conformational feature is the same as that in (II). In the crystal (I), the Au···Au distance [3.05634 (17) Å] is longer than that in (II) [2.966 (1) Å], and the Cl—Au···Au—Cl torsion angle [–65.29 (3)°] is larger than that in (II) [–63.92 (7)°]. The other bond distances and angles in (I) are similar to those in (II).

The crystal structure of (I) is stabilized by several intermolecular C—H···π interactions. Each complex molecule is connected with four adjacent molecules through a C—H···π interaction [H15···Cgi = 2.82 Å and H21···Cgii = 2.84 Å; symmetry codes: (i) x, 3/2–y, -1/2 + z, (ii) 1 - x, -1/2 + y, 1/2–z]; Cg is the centroid of the C25–C30 ring] to construct a two-dimensional sheet structure (Fig. 2). Such an intermolecular C—H···π interaction has not been observed in (II).

For the crystal structure of the diethylether solvate form of the title compound, [(AuCl)2(dppbz)].Et2O, see: Mohamed et al. (2003). For closely related structures, see: Hashimoto et al. (2010).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: Yadokari-XG 2009 (Kabuto et al., 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006) and ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: Yadokari-XG 2009 (Kabuto et al., 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. A view of molecular structure of the title compound, showing the atom-numbering scheme and 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. A crystal packing drawing of the title compound. The blue lines indicate C—H···π interactions.
[µ-1,2-Bis(diphenylphosphanyl)benzene- κ2P:P']bis[chloridogold(I)] top
Crystal data top
[Au2Cl2(C30H24P2)]F(000) = 1704
Mr = 911.27Dx = 2.150 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71075 Å
Hall symbol: -P 2ybcCell parameters from 24394 reflections
a = 13.0733 (2) Åθ = 3.1–27.5°
b = 12.4206 (2) ŵ = 10.73 mm1
c = 17.4630 (3) ÅT = 200 K
β = 96.795 (7)°Block, white
V = 2815.69 (8) Å30.15 × 0.10 × 0.10 mm
Z = 4
Data collection top
Rigaku R-AXIS VII
diffractometer
6438 independent reflections
Radiation source: fine-focus sealed tube5897 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
Detector resolution: 10.000 pixels mm-1θmax = 27.5°, θmin = 3.1°
ω scansh = 1616
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1516
Tmin = 0.189, Tmax = 0.341l = 2222
31710 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.041H-atom parameters constrained
S = 1.16 w = 1/[σ2(Fo2) + (0.0112P)2 + 2.7453P]
where P = (Fo2 + 2Fc2)/3
6438 reflections(Δ/σ)max = 0.002
325 parametersΔρmax = 0.54 e Å3
0 restraintsΔρmin = 0.80 e Å3
Crystal data top
[Au2Cl2(C30H24P2)]V = 2815.69 (8) Å3
Mr = 911.27Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.0733 (2) ŵ = 10.73 mm1
b = 12.4206 (2) ÅT = 200 K
c = 17.4630 (3) Å0.15 × 0.10 × 0.10 mm
β = 96.795 (7)°
Data collection top
Rigaku R-AXIS VII
diffractometer
6438 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
5897 reflections with I > 2σ(I)
Tmin = 0.189, Tmax = 0.341Rint = 0.030
31710 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0230 restraints
wR(F2) = 0.041H-atom parameters constrained
S = 1.16Δρmax = 0.54 e Å3
6438 reflectionsΔρmin = 0.80 e Å3
325 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Au10.283249 (9)0.406709 (9)0.296038 (6)0.02169 (4)
Au20.229077 (9)0.602225 (9)0.389584 (6)0.02065 (4)
Cl10.38861 (7)0.31036 (7)0.38364 (5)0.0385 (2)
Cl20.13663 (7)0.53399 (7)0.48118 (5)0.0371 (2)
P10.18427 (6)0.49382 (6)0.20367 (4)0.01918 (16)
P20.33234 (6)0.68257 (6)0.31436 (4)0.01836 (16)
C10.0679 (2)0.5541 (2)0.23080 (17)0.0234 (7)
C20.0205 (3)0.5115 (3)0.29040 (19)0.0340 (8)
H20.04860.44900.31640.041*
C30.0664 (3)0.5576 (3)0.3129 (2)0.0444 (10)
H30.09720.52820.35480.053*
C40.1088 (3)0.6462 (3)0.2748 (2)0.0444 (10)
H40.16900.67830.29040.053*
C50.0643 (3)0.6886 (3)0.2142 (3)0.0523 (11)
H50.09450.74920.18720.063*
C60.0241 (3)0.6436 (3)0.1923 (2)0.0379 (9)
H60.05500.67380.15070.045*
C70.1435 (2)0.4040 (2)0.12379 (17)0.0236 (7)
C80.0401 (3)0.3877 (3)0.0987 (2)0.0380 (9)
H80.01070.42990.11940.046*
C90.0104 (3)0.3101 (3)0.0436 (2)0.0502 (10)
H90.06060.29720.02790.060*
C100.0833 (3)0.2523 (3)0.0118 (2)0.0463 (10)
H100.06260.20020.02670.056*
C110.1864 (3)0.2685 (3)0.03467 (19)0.0402 (9)
H110.23650.22850.01150.048*
C120.2168 (3)0.3431 (3)0.09162 (19)0.0328 (8)
H120.28790.35270.10880.039*
C130.2511 (2)0.6058 (2)0.16336 (17)0.0197 (6)
C140.2447 (3)0.6146 (2)0.08372 (18)0.0280 (7)
H140.20840.56130.05230.034*
C150.2902 (3)0.6993 (3)0.04926 (17)0.0306 (7)
H150.28600.70310.00530.037*
C160.3408 (3)0.7769 (3)0.09325 (17)0.0311 (8)
H160.37110.83580.06950.037*
C170.3483 (2)0.7703 (2)0.17310 (17)0.0269 (7)
H170.38400.82500.20350.032*
C180.3046 (2)0.6855 (2)0.20917 (16)0.0202 (6)
C190.4619 (2)0.6301 (2)0.33296 (16)0.0209 (6)
C200.5251 (3)0.6146 (3)0.27570 (18)0.0305 (7)
H200.50060.63040.22350.037*
C210.6239 (3)0.5762 (3)0.2947 (2)0.0399 (9)
H210.66710.56510.25530.048*
C220.6606 (3)0.5538 (3)0.37001 (19)0.0325 (8)
H220.72870.52760.38260.039*
C230.5983 (3)0.5693 (3)0.42694 (19)0.0298 (7)
H230.62370.55440.47910.036*
C240.4994 (2)0.6062 (2)0.40878 (18)0.0271 (7)
H240.45630.61560.44840.032*
C250.3414 (2)0.8233 (2)0.34357 (16)0.0216 (6)
C260.2503 (3)0.8795 (3)0.34737 (19)0.0321 (8)
H260.18620.84740.32870.039*
C270.2528 (3)0.9822 (3)0.3782 (2)0.0422 (9)
H270.19041.02070.38050.051*
C280.3447 (4)1.0283 (3)0.4055 (2)0.0490 (11)
H280.34581.09830.42750.059*
C290.4353 (4)0.9744 (3)0.4013 (2)0.0462 (10)
H290.49901.00760.41950.055*
C300.4338 (3)0.8710 (3)0.37043 (19)0.0339 (8)
H300.49650.83340.36790.041*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Au10.02405 (7)0.02000 (6)0.02113 (6)0.00025 (5)0.00320 (5)0.00152 (4)
Au20.02083 (7)0.02433 (7)0.01768 (6)0.00245 (5)0.00596 (5)0.00182 (4)
Cl10.0439 (5)0.0344 (5)0.0352 (5)0.0106 (4)0.0034 (4)0.0077 (4)
Cl20.0305 (4)0.0520 (5)0.0309 (4)0.0058 (4)0.0116 (4)0.0160 (4)
P10.0189 (4)0.0204 (4)0.0184 (4)0.0017 (3)0.0030 (3)0.0002 (3)
P20.0203 (4)0.0216 (4)0.0138 (4)0.0025 (3)0.0045 (3)0.0004 (3)
C10.0204 (16)0.0254 (16)0.0246 (16)0.0056 (13)0.0039 (13)0.0075 (12)
C20.0252 (18)0.046 (2)0.0313 (19)0.0061 (16)0.0074 (15)0.0009 (15)
C30.030 (2)0.069 (3)0.038 (2)0.0064 (19)0.0160 (17)0.0050 (19)
C40.028 (2)0.048 (2)0.061 (3)0.0017 (18)0.0181 (19)0.025 (2)
C50.041 (2)0.029 (2)0.090 (3)0.0116 (18)0.022 (2)0.004 (2)
C60.036 (2)0.0316 (19)0.048 (2)0.0066 (16)0.0167 (18)0.0031 (16)
C70.0255 (17)0.0236 (16)0.0214 (16)0.0004 (13)0.0015 (13)0.0007 (12)
C80.0298 (19)0.037 (2)0.046 (2)0.0058 (16)0.0034 (17)0.0149 (16)
C90.041 (2)0.052 (2)0.053 (3)0.003 (2)0.0140 (19)0.019 (2)
C100.067 (3)0.034 (2)0.035 (2)0.0033 (19)0.010 (2)0.0139 (16)
C110.058 (3)0.0335 (19)0.0293 (19)0.0136 (18)0.0077 (18)0.0084 (15)
C120.032 (2)0.0336 (18)0.0331 (19)0.0030 (15)0.0070 (15)0.0048 (14)
C130.0181 (15)0.0222 (15)0.0190 (15)0.0019 (12)0.0030 (12)0.0018 (11)
C140.0326 (18)0.0284 (17)0.0222 (16)0.0012 (14)0.0000 (14)0.0000 (13)
C150.042 (2)0.0367 (18)0.0139 (15)0.0024 (16)0.0064 (14)0.0026 (13)
C160.041 (2)0.0308 (18)0.0217 (16)0.0092 (15)0.0065 (15)0.0051 (13)
C170.0331 (19)0.0278 (17)0.0198 (15)0.0072 (14)0.0028 (14)0.0021 (12)
C180.0191 (15)0.0271 (16)0.0148 (14)0.0009 (12)0.0032 (12)0.0011 (11)
C190.0217 (16)0.0222 (15)0.0194 (15)0.0022 (12)0.0050 (12)0.0005 (11)
C200.0272 (18)0.046 (2)0.0187 (16)0.0034 (15)0.0047 (14)0.0029 (14)
C210.0284 (19)0.065 (2)0.0280 (19)0.0073 (18)0.0101 (16)0.0085 (17)
C220.0213 (17)0.0395 (19)0.036 (2)0.0058 (15)0.0017 (15)0.0024 (15)
C230.0304 (19)0.0355 (18)0.0228 (17)0.0012 (15)0.0004 (14)0.0043 (13)
C240.0256 (17)0.0354 (18)0.0212 (16)0.0027 (14)0.0072 (13)0.0015 (13)
C250.0299 (17)0.0228 (15)0.0131 (14)0.0030 (13)0.0068 (13)0.0013 (11)
C260.043 (2)0.0284 (17)0.0262 (17)0.0031 (16)0.0101 (16)0.0053 (13)
C270.066 (3)0.0287 (19)0.035 (2)0.0113 (19)0.0192 (19)0.0077 (15)
C280.097 (4)0.0248 (18)0.0281 (19)0.001 (2)0.019 (2)0.0004 (15)
C290.074 (3)0.033 (2)0.030 (2)0.021 (2)0.0001 (19)0.0035 (15)
C300.041 (2)0.0309 (18)0.0297 (18)0.0079 (16)0.0021 (16)0.0017 (14)
Geometric parameters (Å, º) top
Au1—P12.2256 (8)C13—C141.388 (4)
Au1—Cl12.2739 (8)C13—C181.407 (4)
Au1—Au23.0563 (2)C14—C151.381 (4)
Au2—P22.2279 (7)C14—H140.9500
Au2—Cl22.2792 (8)C15—C161.355 (4)
P1—C11.808 (3)C15—H150.9500
P1—C71.816 (3)C16—C171.389 (4)
P1—C131.827 (3)C16—H160.9500
P2—C191.809 (3)C17—C181.384 (4)
P2—C251.821 (3)C17—H170.9500
P2—C181.830 (3)C19—C201.384 (4)
C1—C21.378 (4)C19—C241.388 (4)
C1—C61.387 (5)C20—C211.381 (5)
C2—C31.372 (5)C20—H200.9500
C2—H20.9500C21—C221.373 (5)
C3—C41.368 (6)C21—H210.9500
C3—H30.9500C22—C231.371 (5)
C4—C51.373 (6)C22—H220.9500
C4—H40.9500C23—C241.373 (5)
C5—C61.377 (5)C23—H230.9500
C5—H50.9500C24—H240.9500
C6—H60.9500C25—C301.377 (4)
C7—C81.385 (5)C25—C261.388 (4)
C7—C121.391 (4)C26—C271.383 (5)
C8—C91.385 (5)C26—H260.9500
C8—H80.9500C27—C281.364 (6)
C9—C101.362 (5)C27—H270.9500
C9—H90.9500C28—C291.370 (6)
C10—C111.374 (5)C28—H280.9500
C10—H100.9500C29—C301.392 (5)
C11—C121.383 (5)C29—H290.9500
C11—H110.9500C30—H300.9500
C12—H120.9500
P1—Au1—Cl1175.87 (3)C14—C13—C18118.8 (3)
P1—Au1—Au281.343 (19)C14—C13—P1118.1 (2)
Cl1—Au1—Au2102.64 (2)C18—C13—P1123.1 (2)
P2—Au2—Cl2171.48 (3)C15—C14—C13121.3 (3)
P2—Au2—Au181.132 (19)C15—C14—H14119.4
Cl2—Au2—Au1104.79 (2)C13—C14—H14119.4
C1—P1—C7106.00 (14)C16—C15—C14120.1 (3)
C1—P1—C13103.96 (14)C16—C15—H15120.0
C7—P1—C13106.38 (14)C14—C15—H15120.0
C1—P1—Au1116.51 (10)C15—C16—C17119.9 (3)
C7—P1—Au1110.53 (10)C15—C16—H16120.0
C13—P1—Au1112.70 (10)C17—C16—H16120.0
C19—P2—C25105.53 (14)C18—C17—C16121.2 (3)
C19—P2—C18104.91 (13)C18—C17—H17119.4
C25—P2—C18105.09 (13)C16—C17—H17119.4
C19—P2—Au2110.65 (10)C17—C18—C13118.8 (3)
C25—P2—Au2106.77 (9)C17—C18—P2115.4 (2)
C18—P2—Au2122.62 (10)C13—C18—P2125.6 (2)
C2—C1—C6118.5 (3)C20—C19—C24119.1 (3)
C2—C1—P1120.4 (3)C20—C19—P2123.1 (2)
C6—C1—P1121.1 (2)C24—C19—P2117.7 (2)
C3—C2—C1121.1 (3)C21—C20—C19119.7 (3)
C3—C2—H2119.4C21—C20—H20120.1
C1—C2—H2119.4C19—C20—H20120.1
C4—C3—C2119.9 (3)C22—C21—C20120.7 (3)
C4—C3—H3120.0C22—C21—H21119.6
C2—C3—H3120.0C20—C21—H21119.6
C3—C4—C5119.9 (3)C23—C22—C21119.7 (3)
C3—C4—H4120.0C23—C22—H22120.1
C5—C4—H4120.0C21—C22—H22120.1
C4—C5—C6120.3 (4)C22—C23—C24120.2 (3)
C4—C5—H5119.8C22—C23—H23119.9
C6—C5—H5119.8C24—C23—H23119.9
C5—C6—C1120.1 (3)C23—C24—C19120.5 (3)
C5—C6—H6119.9C23—C24—H24119.7
C1—C6—H6119.9C19—C24—H24119.7
C8—C7—C12119.1 (3)C30—C25—C26119.3 (3)
C8—C7—P1121.3 (2)C30—C25—P2122.2 (2)
C12—C7—P1119.4 (3)C26—C25—P2117.9 (2)
C9—C8—C7120.3 (3)C27—C26—C25120.1 (3)
C9—C8—H8119.9C27—C26—H26119.9
C7—C8—H8119.9C25—C26—H26119.9
C10—C9—C8119.8 (4)C28—C27—C26120.1 (4)
C10—C9—H9120.1C28—C27—H27120.0
C8—C9—H9120.1C26—C27—H27120.0
C9—C10—C11120.9 (3)C27—C28—C29120.5 (3)
C9—C10—H10119.5C27—C28—H28119.8
C11—C10—H10119.5C29—C28—H28119.7
C10—C11—C12119.7 (3)C28—C29—C30119.9 (4)
C10—C11—H11120.2C28—C29—H29120.0
C12—C11—H11120.2C30—C29—H29120.0
C11—C12—C7120.1 (3)C25—C30—C29120.0 (4)
C11—C12—H12119.9C25—C30—H30120.0
C7—C12—H12119.9C29—C30—H30120.0
P1—Au1—Au2—P270.42 (3)P1—C13—C14—C15177.7 (3)
Cl1—Au1—Au2—P2108.45 (3)C13—C14—C15—C161.1 (5)
P1—Au1—Au2—Cl2115.85 (3)C14—C15—C16—C171.0 (5)
Cl1—Au1—Au2—Cl265.29 (3)C15—C16—C17—C180.1 (5)
Au2—Au1—P1—C142.04 (11)C16—C17—C18—C130.7 (5)
Au2—Au1—P1—C7163.09 (11)C16—C17—C18—P2174.4 (3)
Au2—Au1—P1—C1378.02 (10)C14—C13—C18—C170.6 (4)
Au1—Au2—P2—C1963.84 (10)P1—C13—C18—C17176.6 (2)
Au1—Au2—P2—C25178.20 (11)C14—C13—C18—P2173.9 (2)
Au1—Au2—P2—C1860.75 (11)P1—C13—C18—P28.9 (4)
C7—P1—C1—C296.0 (3)C19—P2—C18—C1778.0 (3)
C13—P1—C1—C2152.0 (3)C25—P2—C18—C1733.0 (3)
Au1—P1—C1—C227.4 (3)Au2—P2—C18—C17154.9 (2)
C7—P1—C1—C683.8 (3)C19—P2—C18—C1396.7 (3)
C13—P1—C1—C628.2 (3)C25—P2—C18—C13152.3 (3)
Au1—P1—C1—C6152.8 (2)Au2—P2—C18—C1330.5 (3)
C6—C1—C2—C31.7 (5)C25—P2—C19—C20101.8 (3)
P1—C1—C2—C3178.5 (3)C18—P2—C19—C209.0 (3)
C1—C2—C3—C41.4 (6)Au2—P2—C19—C20143.1 (2)
C2—C3—C4—C50.1 (6)C25—P2—C19—C2477.1 (3)
C3—C4—C5—C61.2 (6)C18—P2—C19—C24172.2 (2)
C4—C5—C6—C10.8 (6)Au2—P2—C19—C2438.1 (3)
C2—C1—C6—C50.6 (5)C24—C19—C20—C210.1 (5)
P1—C1—C6—C5179.6 (3)P2—C19—C20—C21178.7 (3)
C1—P1—C7—C83.9 (3)C19—C20—C21—C220.5 (6)
C13—P1—C7—C8114.2 (3)C20—C21—C22—C230.2 (6)
Au1—P1—C7—C8123.2 (3)C21—C22—C23—C240.6 (5)
C1—P1—C7—C12178.1 (2)C22—C23—C24—C191.1 (5)
C13—P1—C7—C1271.6 (3)C20—C19—C24—C230.9 (5)
Au1—P1—C7—C1251.0 (3)P2—C19—C24—C23178.0 (2)
C12—C7—C8—C91.4 (5)C19—P2—C25—C302.3 (3)
P1—C7—C8—C9172.8 (3)C18—P2—C25—C30108.3 (3)
C7—C8—C9—C102.4 (6)Au2—P2—C25—C30120.1 (2)
C8—C9—C10—C111.2 (6)C19—P2—C25—C26169.8 (2)
C9—C10—C11—C121.1 (6)C18—P2—C25—C2679.7 (3)
C10—C11—C12—C72.1 (5)Au2—P2—C25—C2652.0 (2)
C8—C7—C12—C110.9 (5)C30—C25—C26—C270.3 (5)
P1—C7—C12—C11175.2 (3)P2—C25—C26—C27172.0 (2)
C1—P1—C13—C14101.0 (3)C25—C26—C27—C280.4 (5)
C7—P1—C13—C1410.6 (3)C26—C27—C28—C291.2 (5)
Au1—P1—C13—C14131.9 (2)C27—C28—C29—C301.2 (5)
C1—P1—C13—C1876.2 (3)C26—C25—C30—C290.3 (5)
C7—P1—C13—C18172.1 (2)P2—C25—C30—C29171.7 (3)
Au1—P1—C13—C1850.9 (3)C28—C29—C30—C250.5 (5)
C18—C13—C14—C150.3 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15···Cgi0.952.823.569 (4)137
C21—H21···Cgii0.952.843.559 (4)134
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Au2Cl2(C30H24P2)]
Mr911.27
Crystal system, space groupMonoclinic, P21/c
Temperature (K)200
a, b, c (Å)13.0733 (2), 12.4206 (2), 17.4630 (3)
β (°) 96.795 (7)
V3)2815.69 (8)
Z4
Radiation typeMo Kα
µ (mm1)10.73
Crystal size (mm)0.15 × 0.10 × 0.10
Data collection
DiffractometerRigaku R-AXIS VII
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.189, 0.341
No. of measured, independent and
observed [I > 2σ(I)] reflections
31710, 6438, 5897
Rint0.030
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.041, 1.16
No. of reflections6438
No. of parameters325
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.54, 0.80

Computer programs: PROCESS-AUTO (Rigaku, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2006) and ORTEP-3 for Windows (Farrugia, 1997), Yadokari-XG 2009 (Kabuto et al., 2009) and publCIF (Westrip, 2010).

Selected bond lengths (Å) top
Au1—P12.2256 (8)Au2—P22.2279 (7)
Au1—Cl12.2739 (8)Au2—Cl22.2792 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15···Cgi0.952.823.569 (4)137
C21—H21···Cgii0.952.843.559 (4)134
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x+1, y1/2, z+1/2.
 

References

First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHashimoto, Y., Tsuge, K. & Konno, T. (2010). Chem. Lett. 39, 601–603.  Web of Science CSD CrossRef CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationKabuto, C., Akine, S., Nemoto, T. & Kwon, E. (2009). J. Crystallogr. Soc. Jpn, 51, 218–224.  CrossRef Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMohamed, A. A., Krause Bauer, J. A., Bruce, A. E. & Bruce, M. R. M. (2003). Acta Cryst. C59, m84–m86.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds