metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Aqua­{2-morpholino-N-[1-(2-pyrid­yl)ethyl­­idene]ethanamine-κ3N,N′,N′′}bis­­(thio­cyanato-κN)nickel(II)

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: khaledi@siswa.um.edu.my

(Received 13 December 2010; accepted 15 December 2010; online 24 December 2010)

In the title compound, [Ni(NCS)2(C13H19N3O)(H2O)], the NiII ion is six-coordinated by the N,N′,N′′-tridentate Schiff base, the N atoms of two thio­cyanate ligands and one water O atom in a distorted octa­hedral geometry. Intra­molecular C—H⋯N and C—H⋯O hydrogen bonds occur. In the crystal, O—H⋯S, O—H⋯O and C—H⋯S hydrogen bonds link adjacent mol­ecules into layers parallel to the ac plane.

Related literature

For the structure of the Cu(II) complex with the Schiff base and thiocyanate, see: Suleiman Gwaram et al. (2011[Suleiman Gwaram, N., Ikmal Hisham, N. A., Khaledi, H. & Mohd Ali, H. (2011). Acta Cryst. E67, m58.]). For the structures of related Ni(II) complexes, see: Chiumia et al. (1999[Chiumia, G. C., Craig, D. C., Phillips, D. J., Rae, A. D. & Zafar Kaifi, F. M. (1999). Inorg. Chim. Acta, 285, 297-300.]); Zhao et al. (2008[Zhao, K., Yin, X.-H., Lin, C.-W., Meng, D.-X. & Wu, F. (2008). Acta Cryst. E64, m84-m85.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(NCS)2(C13H19N3O)(H2O)]

  • Mr = 426.20

  • Monoclinic, P 21 /c

  • a = 7.1881 (1) Å

  • b = 21.9708 (3) Å

  • c = 12.1438 (2) Å

  • β = 91.412 (1)°

  • V = 1917.27 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.25 mm−1

  • T = 100 K

  • 0.35 × 0.32 × 0.22 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.669, Tmax = 0.771

  • 14240 measured reflections

  • 3474 independent reflections

  • 3168 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.025

  • wR(F2) = 0.058

  • S = 1.09

  • 3474 reflections

  • 233 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Selected bond lengths (Å)

Ni1—N1 2.1079 (16)
Ni1—N2 2.0243 (15)
Ni1—N3 2.2317 (16)
Ni1—N4 2.0270 (16)
Ni1—N5 2.0318 (16)
Ni1—O2 2.0996 (13)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯S1i 0.83 (1) 2.32 (1) 3.1410 (14) 168 (2)
O2—H2B⋯O1ii 0.84 (1) 1.89 (1) 2.7023 (19) 163 (2)
C2—H2⋯S1ii 0.95 2.84 3.769 (3) 167
C11—H11A⋯N4 0.99 2.53 3.409 (3) 147
C12—H12B⋯O2 0.99 2.40 3.100 (2) 127
Symmetry codes: (i) x+1, y, z; (ii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: SHELXL97 and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The title mixed-ligand nickel(II) complex was obtained by following a similar synthetic procedure as for its analogous copper(II) complex (Suleiman Gwaram et al., 2011). However, compared to the square-pyramidal environment around the CuII ion, afforded by the tridentate Schiff base and the N atoms of two SCN-, the NiII ion is coordinated by one additional water ligand to have an octahedral geometry. The Ni—N and Ni—O bond lengths in this complex are comparable to those in the similar structures (Chiumia et al., 1999; Zhao et al., 2008). In the crystal, the adjacent molecules are linked together through O—H···S, O—H···O and C—H···S hydrogen bonds into layers parallel to the ac plane. An S···S interaction [3.5276 (7) Å] between S1 and S2 of the symmetry related molecule at -x, y + 1/2, -z + 3/2, connects the layers into a three-dimensional network. Intramolecular C—H···N and C—H···O hydrogen bonding are also observed.

Related literature top

For the structure of the Cu(II) complex with the Schiff base and isothiocyante see: Suleiman Gwaram et al. (2011). For the structures of related Ni(II) complexes, see: Chiumia et al. (1999); Zhao et al. (2008).

Experimental top

A mixture of 2-acetylpyridine (0.20 g, 1.65 mmol) and 4-(2-aminoethyl)morpholine (0.21 g, 1.65 mmol) in ethanol (20 ml) was refluxed for 2 hr followed by addition of a solution of nickel(II) acetate tetrahydrate (0.41 g, 1.65 mmol) and sodium thiocyanate (0.134 g, 1.65 mmol) in a minimum amount of water. The resulting solution was refluxed for 30 min, then left at room temperature. The crystals of the title complex were obtained in a week.

Refinement top

The C-bound H atoms were placed at calculated positions (C—H 0.95–0.99 Å) and were treated as riding on their parent C atoms. The O-bound H atoms were located in a difference Fourier map, and refined with a distance restraint of O—H 0.84 (2). For all H atoms, Uiso(H) values were set to 1.2–1.5 Ueq(carrier atom). An additional rigid-bond type restraint (DELU in SHELXL97) was placed on the displacement parameters of S1 and C14; S2 and C15.

Structure description top

The title mixed-ligand nickel(II) complex was obtained by following a similar synthetic procedure as for its analogous copper(II) complex (Suleiman Gwaram et al., 2011). However, compared to the square-pyramidal environment around the CuII ion, afforded by the tridentate Schiff base and the N atoms of two SCN-, the NiII ion is coordinated by one additional water ligand to have an octahedral geometry. The Ni—N and Ni—O bond lengths in this complex are comparable to those in the similar structures (Chiumia et al., 1999; Zhao et al., 2008). In the crystal, the adjacent molecules are linked together through O—H···S, O—H···O and C—H···S hydrogen bonds into layers parallel to the ac plane. An S···S interaction [3.5276 (7) Å] between S1 and S2 of the symmetry related molecule at -x, y + 1/2, -z + 3/2, connects the layers into a three-dimensional network. Intramolecular C—H···N and C—H···O hydrogen bonding are also observed.

For the structure of the Cu(II) complex with the Schiff base and isothiocyante see: Suleiman Gwaram et al. (2011). For the structures of related Ni(II) complexes, see: Chiumia et al. (1999); Zhao et al. (2008).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Displacement ellipsoid plot of the title compound at the 30% probability level. Hydrogen atoms are drawn as spheres of arbitrary radii.
[Figure 2] Fig. 2. Packing view looking down the a axis, showing the intermolecular S···S interactions. H atoms have been omitted for clarity.
Aqua{2-morpholino-N-[1-(2-pyridyl)ethylidene]ethanamine- κ3N,N',N''}bis(thiocyanato-κN)nickel(II) top
Crystal data top
[Ni(NCS)2(C13H19N3O)(H2O)]F(000) = 888
Mr = 426.20Dx = 1.477 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 7183 reflections
a = 7.1881 (1) Åθ = 2.5–30.5°
b = 21.9708 (3) ŵ = 1.25 mm1
c = 12.1438 (2) ÅT = 100 K
β = 91.412 (1)°Block, brown
V = 1917.27 (5) Å30.35 × 0.32 × 0.22 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
3474 independent reflections
Radiation source: fine-focus sealed tube3168 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
φ and ω scansθmax = 25.3°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 88
Tmin = 0.669, Tmax = 0.771k = 2626
14240 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.058H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.0176P)2 + 1.4584P]
where P = (Fo2 + 2Fc2)/3
3474 reflections(Δ/σ)max = 0.002
233 parametersΔρmax = 0.45 e Å3
4 restraintsΔρmin = 0.36 e Å3
Crystal data top
[Ni(NCS)2(C13H19N3O)(H2O)]V = 1917.27 (5) Å3
Mr = 426.20Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.1881 (1) ŵ = 1.25 mm1
b = 21.9708 (3) ÅT = 100 K
c = 12.1438 (2) Å0.35 × 0.32 × 0.22 mm
β = 91.412 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
3474 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3168 reflections with I > 2σ(I)
Tmin = 0.669, Tmax = 0.771Rint = 0.023
14240 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0254 restraints
wR(F2) = 0.058H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 0.45 e Å3
3474 reflectionsΔρmin = 0.36 e Å3
233 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.37854 (3)0.624396 (10)0.738472 (19)0.01680 (7)
S10.10541 (7)0.76958 (3)0.71728 (7)0.04681 (19)
S20.09981 (7)0.42948 (2)0.80865 (5)0.03219 (13)
O10.3805 (2)0.71032 (6)1.05938 (12)0.0317 (3)
O20.49597 (19)0.71103 (6)0.71792 (12)0.0252 (3)
H2A0.6074 (16)0.7214 (11)0.715 (2)0.038*
H2B0.439 (3)0.7350 (9)0.6756 (17)0.038*
N10.3653 (2)0.61959 (7)0.56510 (13)0.0243 (4)
N20.6213 (2)0.58250 (7)0.70457 (13)0.0214 (3)
N30.4992 (2)0.61675 (7)0.90902 (13)0.0200 (3)
N40.1391 (2)0.67219 (7)0.75249 (15)0.0264 (4)
N50.2469 (2)0.54344 (7)0.75822 (14)0.0240 (4)
C10.2343 (3)0.64192 (9)0.49655 (18)0.0331 (5)
H10.12600.65940.52690.040*
C20.2495 (4)0.64071 (11)0.3832 (2)0.0489 (7)
H20.15350.65670.33650.059*
C30.4066 (5)0.61587 (13)0.3399 (2)0.0585 (8)
H30.42080.61470.26230.070*
C40.5442 (4)0.59253 (12)0.40919 (19)0.0466 (6)
H40.65400.57540.38020.056*
C50.5190 (3)0.59464 (9)0.52205 (17)0.0286 (5)
C60.6588 (3)0.57188 (9)0.60449 (17)0.0269 (4)
C70.8288 (3)0.53922 (12)0.5662 (2)0.0447 (6)
H7A0.91500.53270.62890.067*
H7B0.88990.56380.51030.067*
H7C0.79260.49980.53450.067*
C80.7380 (3)0.56378 (9)0.79863 (17)0.0261 (4)
H8A0.84020.59340.81110.031*
H8B0.79320.52330.78470.031*
C90.6158 (3)0.56112 (9)0.89870 (17)0.0254 (4)
H9A0.53380.52500.89290.031*
H9B0.69540.55650.96590.031*
C100.3638 (3)0.60553 (9)0.99758 (16)0.0261 (4)
H10A0.43130.59071.06430.031*
H10B0.27510.57350.97330.031*
C110.2574 (3)0.66251 (9)1.02547 (17)0.0293 (5)
H11A0.18300.67580.96010.035*
H11B0.17050.65351.08540.035*
C120.5056 (3)0.72347 (9)0.97228 (17)0.0275 (4)
H12A0.58900.75730.99480.033*
H12B0.43350.73640.90580.033*
C130.6201 (3)0.66828 (9)0.94552 (16)0.0236 (4)
H13A0.70730.67850.88650.028*
H13B0.69440.65601.01150.028*
C140.0359 (3)0.71183 (9)0.73737 (18)0.0268 (4)
C150.1852 (3)0.49652 (8)0.78008 (15)0.0188 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.01653 (12)0.01553 (12)0.01836 (13)0.00019 (9)0.00068 (9)0.00097 (9)
S10.0204 (3)0.0230 (3)0.0970 (6)0.0010 (2)0.0003 (3)0.0168 (3)
S20.0322 (3)0.0209 (3)0.0432 (3)0.0068 (2)0.0049 (2)0.0085 (2)
O10.0418 (9)0.0285 (8)0.0253 (8)0.0089 (6)0.0097 (6)0.0101 (6)
O20.0240 (7)0.0231 (7)0.0282 (8)0.0048 (6)0.0048 (6)0.0097 (6)
N10.0283 (9)0.0221 (8)0.0222 (9)0.0049 (7)0.0045 (7)0.0000 (7)
N20.0202 (8)0.0219 (8)0.0220 (9)0.0012 (6)0.0013 (7)0.0016 (7)
N30.0244 (8)0.0183 (8)0.0174 (8)0.0001 (6)0.0013 (6)0.0001 (6)
N40.0210 (8)0.0222 (8)0.0361 (10)0.0012 (7)0.0013 (7)0.0014 (7)
N50.0227 (8)0.0195 (8)0.0298 (9)0.0001 (7)0.0009 (7)0.0015 (7)
C10.0408 (12)0.0251 (10)0.0325 (12)0.0051 (9)0.0150 (10)0.0002 (9)
C20.0769 (19)0.0364 (13)0.0320 (14)0.0005 (13)0.0256 (13)0.0015 (11)
C30.098 (2)0.0587 (17)0.0186 (12)0.0007 (16)0.0089 (14)0.0053 (12)
C40.0644 (17)0.0520 (15)0.0236 (12)0.0010 (13)0.0053 (11)0.0094 (11)
C50.0353 (11)0.0300 (11)0.0205 (11)0.0069 (9)0.0023 (9)0.0044 (9)
C60.0238 (10)0.0304 (11)0.0267 (11)0.0021 (8)0.0051 (8)0.0059 (9)
C70.0322 (12)0.0589 (16)0.0437 (15)0.0059 (11)0.0123 (11)0.0165 (12)
C80.0226 (10)0.0261 (10)0.0293 (11)0.0067 (8)0.0029 (8)0.0007 (9)
C90.0309 (11)0.0204 (10)0.0247 (11)0.0060 (8)0.0048 (9)0.0027 (8)
C100.0356 (11)0.0230 (10)0.0197 (10)0.0058 (8)0.0039 (9)0.0014 (8)
C110.0346 (11)0.0289 (11)0.0250 (11)0.0077 (9)0.0099 (9)0.0057 (9)
C120.0368 (11)0.0235 (10)0.0224 (11)0.0071 (9)0.0040 (9)0.0034 (8)
C130.0280 (10)0.0244 (10)0.0184 (10)0.0052 (8)0.0022 (8)0.0002 (8)
C140.0186 (9)0.0207 (9)0.0410 (12)0.0037 (7)0.0000 (9)0.0030 (9)
C150.0192 (9)0.0185 (8)0.0184 (9)0.0004 (7)0.0026 (7)0.0015 (7)
Geometric parameters (Å, º) top
Ni1—N12.1079 (16)C3—C41.382 (4)
Ni1—N22.0243 (15)C3—H30.9500
Ni1—N32.2317 (16)C4—C51.388 (3)
Ni1—N42.0270 (16)C4—H40.9500
Ni1—N52.0318 (16)C5—C61.487 (3)
Ni1—O22.0996 (13)C6—C71.501 (3)
S1—C141.640 (2)C7—H7A0.9800
S2—C151.6362 (19)C7—H7B0.9800
O1—C111.428 (2)C7—H7C0.9800
O1—C121.434 (2)C8—C91.518 (3)
O2—H2A0.834 (10)C8—H8A0.9900
O2—H2B0.835 (10)C8—H8B0.9900
N1—C11.335 (3)C9—H9A0.9900
N1—C51.350 (3)C9—H9B0.9900
N2—C61.273 (3)C10—C111.510 (3)
N2—C81.459 (2)C10—H10A0.9900
N3—C131.488 (2)C10—H10B0.9900
N3—C101.488 (2)C11—H11A0.9900
N3—C91.489 (2)C11—H11B0.9900
N4—C141.156 (3)C12—C131.505 (3)
N5—C151.156 (2)C12—H12A0.9900
C1—C21.384 (3)C12—H12B0.9900
C1—H10.9500C13—H13A0.9900
C2—C31.371 (4)C13—H13B0.9900
C2—H20.9500
N2—Ni1—N4172.20 (7)N2—C6—C5115.19 (18)
N2—Ni1—N591.85 (6)N2—C6—C7125.2 (2)
N4—Ni1—N592.56 (6)C5—C6—C7119.60 (19)
N2—Ni1—O292.11 (6)C6—C7—H7A109.5
N4—Ni1—O283.40 (6)C6—C7—H7B109.5
N5—Ni1—O2175.94 (6)H7A—C7—H7B109.5
N2—Ni1—N177.99 (6)C6—C7—H7C109.5
N4—Ni1—N195.30 (7)H7A—C7—H7C109.5
N5—Ni1—N193.69 (6)H7B—C7—H7C109.5
O2—Ni1—N186.28 (6)N2—C8—C9107.73 (15)
N2—Ni1—N380.64 (6)N2—C8—H8A110.2
N4—Ni1—N3105.80 (6)C9—C8—H8A110.2
N5—Ni1—N389.77 (6)N2—C8—H8B110.2
O2—Ni1—N391.75 (5)C9—C8—H8B110.2
N1—Ni1—N3158.45 (6)H8A—C8—H8B108.5
C11—O1—C12109.31 (14)N3—C9—C8111.96 (15)
Ni1—O2—H2A129.9 (17)N3—C9—H9A109.2
Ni1—O2—H2B117.1 (17)C8—C9—H9A109.2
H2A—O2—H2B105 (2)N3—C9—H9B109.2
C1—N1—C5118.65 (19)C8—C9—H9B109.2
C1—N1—Ni1128.17 (15)H9A—C9—H9B107.9
C5—N1—Ni1112.94 (13)N3—C10—C11111.62 (16)
C6—N2—C8124.37 (17)N3—C10—H10A109.3
C6—N2—Ni1118.78 (14)C11—C10—H10A109.3
C8—N2—Ni1116.78 (12)N3—C10—H10B109.3
C13—N3—C10107.34 (14)C11—C10—H10B109.3
C13—N3—C9108.88 (15)H10A—C10—H10B108.0
C10—N3—C9107.71 (14)O1—C11—C10111.17 (17)
C13—N3—Ni1115.45 (11)O1—C11—H11A109.4
C10—N3—Ni1115.92 (12)C10—C11—H11A109.4
C9—N3—Ni1100.97 (11)O1—C11—H11B109.4
C14—N4—Ni1156.93 (16)C10—C11—H11B109.4
C15—N5—Ni1172.08 (16)H11A—C11—H11B108.0
N1—C1—C2122.8 (2)O1—C12—C13110.66 (16)
N1—C1—H1118.6O1—C12—H12A109.5
C2—C1—H1118.6C13—C12—H12A109.5
C3—C2—C1118.4 (2)O1—C12—H12B109.5
C3—C2—H2120.8C13—C12—H12B109.5
C1—C2—H2120.8H12A—C12—H12B108.1
C2—C3—C4119.9 (2)N3—C13—C12111.02 (16)
C2—C3—H3120.1N3—C13—H13A109.4
C4—C3—H3120.1C12—C13—H13A109.4
C3—C4—C5118.7 (2)N3—C13—H13B109.4
C3—C4—H4120.6C12—C13—H13B109.4
C5—C4—H4120.6H13A—C13—H13B108.0
N1—C5—C4121.6 (2)N4—C14—S1178.19 (19)
N1—C5—C6114.94 (17)N5—C15—S2178.78 (18)
C4—C5—C6123.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···S1i0.83 (1)2.32 (1)3.1410 (14)168 (2)
O2—H2B···O1ii0.84 (1)1.89 (1)2.7023 (19)163 (2)
C2—H2···S1ii0.952.843.769 (3)167
C11—H11A···N40.992.533.409 (3)147
C12—H12B···O20.992.403.100 (2)127
Symmetry codes: (i) x+1, y, z; (ii) x, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formula[Ni(NCS)2(C13H19N3O)(H2O)]
Mr426.20
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)7.1881 (1), 21.9708 (3), 12.1438 (2)
β (°) 91.412 (1)
V3)1917.27 (5)
Z4
Radiation typeMo Kα
µ (mm1)1.25
Crystal size (mm)0.35 × 0.32 × 0.22
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.669, 0.771
No. of measured, independent and
observed [I > 2σ(I)] reflections
14240, 3474, 3168
Rint0.023
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.058, 1.09
No. of reflections3474
No. of parameters233
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.45, 0.36

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), X-SEED (Barbour, 2001), SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Selected bond lengths (Å) top
Ni1—N12.1079 (16)Ni1—N42.0270 (16)
Ni1—N22.0243 (15)Ni1—N52.0318 (16)
Ni1—N32.2317 (16)Ni1—O22.0996 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···S1i0.834 (10)2.320 (11)3.1410 (14)168 (2)
O2—H2B···O1ii0.835 (10)1.893 (12)2.7023 (19)163 (2)
C2—H2···S1ii0.952.843.769 (3)166.9
C11—H11A···N40.992.533.409 (3)147
C12—H12B···O20.992.403.100 (2)127
Symmetry codes: (i) x+1, y, z; (ii) x, y+3/2, z1/2.
 

Acknowledgements

The authors thank the University of Malaya for funding this study (FRGS grant FP004/2010B).

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChiumia, G. C., Craig, D. C., Phillips, D. J., Rae, A. D. & Zafar Kaifi, F. M. (1999). Inorg. Chim. Acta, 285, 297–300.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuleiman Gwaram, N., Ikmal Hisham, N. A., Khaledi, H. & Mohd Ali, H. (2011). Acta Cryst. E67, m58.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhao, K., Yin, X.-H., Lin, C.-W., Meng, D.-X. & Wu, F. (2008). Acta Cryst. E64, m84–m85.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds