organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(3E,5E)-3,5-Bis(4-hy­dr­oxy­benzyl­­idene)oxan-4-one

aGuangdong University of Technology, Faculty of Chemical Engineering and Light Industry, Guangzhou 510006, Guangdong, People's Republic of China
*Correspondence e-mail: corihhr@yahoo.cn

(Received 9 October 2010; accepted 8 December 2010; online 11 December 2010)

In the title compound, C19H16O4, there are two 4-hy­droxy­benzyl substituents on the oxan-4-one (tetra­hydro­pyran-4-one) ring, which exhibits an envelope conformation. The dihedral angles between pyran­one ring and the two benzene rings are 26.69 (9) and 36.01 (9)° while the benzene rings make a dihedral angle of 20.88 (10)°. In the crystal, mol­ecules are linked by inter­molecular O—H⋯O hydrogen bonds into a supra­molecular three-dimensional twofold inter­penetrating hydrogen-bonded network.

Related literature

For the pharmacological activity or curcumin [systematic name (1E,6E)-1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-hep­ta­diene-3,5-dione], see: Maheshwari et al. (2006[Maheshwari, R. K., Singh, A. K., Gaddipati, J. & Srimal, R. C. (2006). Life Sci. 78, 2081-2087.]). For curcumin analogues, see: Liang et al. (2009[Liang, G., Shao, L., Wang, Y., Zhao, C. G., Chu, Y. H., Xiao, J., Zhao, Y., Li, X. K. & Yang, S. Y. (2009). Bioorg. Med. Chem. 15, 2623-2631.]). For the synthesis of the title compound, see: Youssef et al. (2004[Youssef, K. M., El-Sherbeny, M. A., El-Shafie, F. S., Farag, H. A., Al-Deeb, O. A. & Awadalla, S. A. (2004). Arch. Pharm. Pharm. Med. Chem. 337, 42-54.]); Du et al. (2006[Du, Z. Y., Liu, R. R., Shao, W. Y., Mao, X. P., Ma, L., Gu, L. Q., Huang, Z. S. & Chen, A. S. C. (2006). Eur. J. Med. Chem. 42, 213-218.]). For related structures, see: Abaee et al. (2008[Abaee, M. S., Mojtahedi, M. M., Sharifi, R., Zahedi, M. M., Mesbah, A. W. & Massa, W. (2008). J. Chem. Res. pp. 388-389.]); Du et al. (2006[Du, Z. Y., Liu, R. R., Shao, W. Y., Mao, X. P., Ma, L., Gu, L. Q., Huang, Z. S. & Chen, A. S. C. (2006). Eur. J. Med. Chem. 42, 213-218.]).

[Scheme 1]

Experimental

Crystal data
  • C19H16O4

  • Mr = 308.32

  • Orthorhombic, P b c a

  • a = 11.812 (3) Å

  • b = 7.4687 (16) Å

  • c = 33.233 (7) Å

  • V = 2931.9 (11) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.42 × 0.37 × 0.29 mm

Data collection
  • Bruker SMART CCD 1K area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.960, Tmax = 0.972

  • 16659 measured reflections

  • 3224 independent reflections

  • 1941 reflections with I > 2σ(I)

  • Rint = 0.053

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.124

  • S = 1.04

  • 3224 reflections

  • 211 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O4i 0.82 1.95 2.757 (2) 167
O4—H4⋯O1ii 0.82 1.86 2.677 (2) 171
Symmetry codes: (i) [-x+{\script{3\over 2}}, -y+2, z-{\script{1\over 2}}]; (ii) [-x+2, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2000[Bruker (2000). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

For thousands of years Eastern medicine has used curcumin, the major component of turmeric, for a wide range of health benefits, but only in recent times has its biological action been understood. Curcumin possesses a wide spectrum of pharmacological activities including anti-oxidant, anti-inflammatory, antiviral, antifungal, cancer chemo preventive, cancer chemotherapeutic properties (Maheshwari et al., 2006). As the limitation of solubility, stability and activity of curcumin for clinical application, many series of curcumin analoges with a monoketone function have attracted interests in trial of improving the properties (Liang et al., 2009). This class of compounds is readily synthesized by reacting a substituted benzaldehyde with tetrahydropyran-4-one; in the case of the title compound 4-hydroxybenzaldehyde was used as the reactant.

The compound was purified by re-crystallization from THF and characterized by NMR spectrum and ESI mass spectrum. The analytical and spectroscopic data are consistent with the proposed structure given in Scheme 1. The molecular structure of the title compound contains the two 4-methylbenzyl substituents on the tetrahydropyran-4-one and the six-member ring adopts an envelope conformation with the flap oxygen atom displaced by 0.648 (8) Å from the plane of the other five atoms (Figure 1).

Similar structures have been observed in the literature (Abaee et al., 2008; Du et al.,2006).

The dihedral angles formed between the mean plane through the six atoms of the pyranone ring and two benzene rings of 4-methylbenzyl groups are 26.69 (9) and 36.01 (9)°, the corresponding dihedral angles between two benzene rings of 4-methylbenzyl groups is 20.88 (10) °.

In the crystal packing, intermolecular O—H···O hydrogen bonds (Figure 2, table 1) connect the molecules into a supramolecular three-dimensional two-fold interpenetrating hydrogen bonding network (Figure 3).

Related literature top

For the pharmacological activity or curcumin, see: Maheshwari et al. (2006). For curcumin alalogues, see: Liang et al. (2009). For the synthesis of the title compound, see: Youssef et al. (2004); Du et al. (2006). For related structures, see: Abaee et al. (2008); Du et al. (2006).

Experimental top

The title compound was synthesized using a general procedure (Du et al.,2006; Youssef et al., 2004) 4-hydroxybenzaldehyde (0.01 mol) and tetrahydropyran-4-one (0.005 mol) were dissolved in THF and added 0.5 mL concentrated HCl as catalyst. The mixture was warmed at 298-303 K for 12 h, cold water was added to precipitate the yellow compound. Crystals were obtained by recrystallization from THF. The formulation was established by the NMR spectrum and ESI mass spectrum. 1H NMR (MSDO-d6, 300 MHz) δ (ppm): 10.03 (brs, 2H, -COH), 7.55 (s, 2H, -CCH=), 7.28 (d, J = 8.1, 4H, ArH), 6.85 (d, J = 8.1, ArH), 4.85 (s, 4H, -CCH2-O-CCH2-C). The ESI mass spectrum showed ions at 308.

Refinement top

The C-bound H atoms were positioned geometrically and were included in the refinement in the riding-model approximation, with distances 0.96 (CH3), 0.97 (CH2) and 0.95 Å (aromatic); Uiso(H) = 1.2Ueq(C) for H atoms on secondary and tertiary C atoms, and Uiso = 1.5Ueq(C) for methyl H atoms. The two water H atoms were located in a difference Fourier map and then refined as riding on the water O atom with Uiso(H) = 1.5Ueq(O).

Structure description top

For thousands of years Eastern medicine has used curcumin, the major component of turmeric, for a wide range of health benefits, but only in recent times has its biological action been understood. Curcumin possesses a wide spectrum of pharmacological activities including anti-oxidant, anti-inflammatory, antiviral, antifungal, cancer chemo preventive, cancer chemotherapeutic properties (Maheshwari et al., 2006). As the limitation of solubility, stability and activity of curcumin for clinical application, many series of curcumin analoges with a monoketone function have attracted interests in trial of improving the properties (Liang et al., 2009). This class of compounds is readily synthesized by reacting a substituted benzaldehyde with tetrahydropyran-4-one; in the case of the title compound 4-hydroxybenzaldehyde was used as the reactant.

The compound was purified by re-crystallization from THF and characterized by NMR spectrum and ESI mass spectrum. The analytical and spectroscopic data are consistent with the proposed structure given in Scheme 1. The molecular structure of the title compound contains the two 4-methylbenzyl substituents on the tetrahydropyran-4-one and the six-member ring adopts an envelope conformation with the flap oxygen atom displaced by 0.648 (8) Å from the plane of the other five atoms (Figure 1).

Similar structures have been observed in the literature (Abaee et al., 2008; Du et al.,2006).

The dihedral angles formed between the mean plane through the six atoms of the pyranone ring and two benzene rings of 4-methylbenzyl groups are 26.69 (9) and 36.01 (9)°, the corresponding dihedral angles between two benzene rings of 4-methylbenzyl groups is 20.88 (10) °.

In the crystal packing, intermolecular O—H···O hydrogen bonds (Figure 2, table 1) connect the molecules into a supramolecular three-dimensional two-fold interpenetrating hydrogen bonding network (Figure 3).

For the pharmacological activity or curcumin, see: Maheshwari et al. (2006). For curcumin alalogues, see: Liang et al. (2009). For the synthesis of the title compound, see: Youssef et al. (2004); Du et al. (2006). For related structures, see: Abaee et al. (2008); Du et al. (2006).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT-Plus (Bruker, 2000); data reduction: SAINT-Plus (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Perspective view showing 30% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. Hydrogen bonds of the title compound via the O—H···O are shown as dashed lines. Symmetry: A = -x + 2, y - 1/2, -z + 3/2; B = -x + 3/2, -y + 2, z -1/2; C = -x + 2, y + 1/2, -z + 3/2; D = -x + 3/2, -y + 2, z + 1/2.
[Figure 3] Fig. 3. Crystal packing of the title compound, viewed along the b axis, showing the three dimensional two-fold interpenetrating hydrogen bonding network. Dashed lines indicate hydrogen bonds.
(3E,5E)-3,5-Bis(4-hydroxybenzylidene)oxan-4-one top
Crystal data top
C19H16O4F(000) = 1296
Mr = 308.32Dx = 1.397 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 3683 reflections
a = 11.812 (3) Åθ = 2.5–26.7°
b = 7.4687 (16) ŵ = 0.10 mm1
c = 33.233 (7) ÅT = 293 K
V = 2931.9 (11) Å3Block, colourless
Z = 80.42 × 0.37 × 0.29 mm
Data collection top
Bruker SMART CCD 1K area-detector
diffractometer
3224 independent reflections
Radiation source: fine-focus sealed tube1941 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.053
φ and ω scansθmax = 27.1°, θmin = 1.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1514
Tmin = 0.960, Tmax = 0.972k = 89
16659 measured reflectionsl = 4240
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.124 w = 1/[σ2(Fo2) + (0.0545P)2 + 0.5774P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
3224 reflectionsΔρmax = 0.17 e Å3
211 parametersΔρmin = 0.18 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0029 (5)
Crystal data top
C19H16O4V = 2931.9 (11) Å3
Mr = 308.32Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 11.812 (3) ŵ = 0.10 mm1
b = 7.4687 (16) ÅT = 293 K
c = 33.233 (7) Å0.42 × 0.37 × 0.29 mm
Data collection top
Bruker SMART CCD 1K area-detector
diffractometer
3224 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1941 reflections with I > 2σ(I)
Tmin = 0.960, Tmax = 0.972Rint = 0.053
16659 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.124H-atom parameters constrained
S = 1.04Δρmax = 0.17 e Å3
3224 reflectionsΔρmin = 0.18 e Å3
211 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.91919 (16)0.7445 (3)0.61879 (5)0.0348 (4)
C20.88020 (14)0.8252 (2)0.58058 (5)0.0322 (4)
C30.79877 (16)0.9793 (3)0.58346 (5)0.0374 (5)
H3A0.80831.05640.56020.045*
H3B0.72190.93370.58310.045*
C40.79701 (16)0.9771 (3)0.65410 (5)0.0374 (5)
H4A0.72060.92980.65360.045*
H4B0.80421.05300.67760.045*
C50.87964 (15)0.8251 (2)0.65713 (5)0.0323 (4)
C60.92068 (15)0.7571 (3)0.54608 (5)0.0342 (4)
H60.97210.66420.54960.041*
C70.89904 (14)0.8015 (2)0.50413 (5)0.0327 (4)
C80.97612 (15)0.7402 (3)0.47550 (6)0.0386 (5)
H81.03640.66930.48390.046*
C90.96621 (15)0.7811 (3)0.43528 (6)0.0404 (5)
H91.01880.73720.41690.048*
C100.87774 (16)0.8876 (3)0.42219 (6)0.0395 (5)
C110.79695 (16)0.9439 (3)0.44952 (6)0.0440 (5)
H110.73541.01110.44080.053*
C120.80732 (16)0.9009 (3)0.48974 (6)0.0410 (5)
H120.75190.93890.50770.049*
C130.91900 (14)0.7598 (3)0.69197 (5)0.0340 (4)
H130.97320.67030.68940.041*
C140.89027 (15)0.8069 (2)0.73343 (5)0.0322 (4)
C150.96953 (15)0.7720 (3)0.76362 (5)0.0366 (5)
H151.03670.71440.75690.044*
C160.95080 (15)0.8209 (3)0.80322 (6)0.0387 (5)
H161.00480.79660.82280.046*
C170.85055 (15)0.9063 (3)0.81330 (6)0.0381 (5)
C180.76801 (16)0.9319 (3)0.78463 (6)0.0401 (5)
H180.69890.98210.79190.048*
C190.78746 (15)0.8832 (2)0.74526 (6)0.0373 (5)
H190.73110.90140.72620.045*
O10.98058 (13)0.6110 (2)0.61862 (4)0.0528 (4)
O20.81578 (11)1.08088 (17)0.61899 (4)0.0395 (3)
O30.87617 (13)0.9311 (2)0.38255 (4)0.0589 (4)
H30.81390.97180.37660.088*
O40.83014 (11)0.9651 (2)0.85156 (4)0.0542 (4)
H40.88960.99920.86180.081*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0388 (10)0.0336 (10)0.0321 (10)0.0021 (8)0.0001 (8)0.0024 (9)
C20.0376 (10)0.0295 (10)0.0294 (10)0.0016 (8)0.0009 (8)0.0011 (8)
C30.0434 (11)0.0372 (11)0.0316 (11)0.0040 (8)0.0004 (9)0.0003 (9)
C40.0475 (11)0.0368 (11)0.0279 (10)0.0060 (8)0.0027 (8)0.0010 (8)
C50.0360 (10)0.0315 (10)0.0295 (10)0.0003 (8)0.0007 (8)0.0016 (8)
C60.0369 (10)0.0320 (10)0.0338 (11)0.0030 (8)0.0009 (8)0.0013 (9)
C70.0375 (10)0.0308 (10)0.0299 (10)0.0007 (8)0.0011 (8)0.0006 (8)
C80.0386 (11)0.0413 (11)0.0361 (11)0.0057 (9)0.0003 (8)0.0013 (9)
C90.0412 (11)0.0471 (12)0.0328 (11)0.0019 (9)0.0066 (9)0.0055 (9)
C100.0441 (11)0.0427 (12)0.0317 (11)0.0042 (9)0.0012 (9)0.0017 (9)
C110.0453 (12)0.0467 (12)0.0401 (12)0.0122 (9)0.0050 (9)0.0005 (10)
C120.0394 (11)0.0494 (12)0.0342 (11)0.0065 (9)0.0028 (8)0.0030 (9)
C130.0372 (10)0.0321 (10)0.0329 (11)0.0014 (8)0.0011 (8)0.0041 (9)
C140.0378 (10)0.0294 (10)0.0295 (10)0.0004 (8)0.0018 (8)0.0016 (8)
C150.0356 (10)0.0385 (11)0.0359 (11)0.0026 (8)0.0006 (8)0.0028 (9)
C160.0382 (11)0.0472 (12)0.0307 (11)0.0009 (9)0.0059 (8)0.0019 (9)
C170.0436 (11)0.0402 (11)0.0306 (11)0.0048 (9)0.0028 (9)0.0077 (9)
C180.0372 (11)0.0451 (12)0.0379 (11)0.0022 (9)0.0036 (9)0.0029 (10)
C190.0370 (11)0.0412 (11)0.0336 (11)0.0002 (8)0.0038 (8)0.0017 (9)
O10.0708 (10)0.0518 (9)0.0357 (8)0.0293 (8)0.0031 (7)0.0019 (7)
O20.0563 (9)0.0305 (7)0.0316 (7)0.0050 (6)0.0022 (6)0.0008 (6)
O30.0632 (10)0.0830 (12)0.0305 (8)0.0091 (9)0.0008 (7)0.0092 (8)
O40.0501 (9)0.0778 (11)0.0346 (8)0.0016 (8)0.0036 (7)0.0213 (8)
Geometric parameters (Å, º) top
C1—O11.233 (2)C10—O31.357 (2)
C1—C21.479 (2)C10—C111.383 (3)
C1—C51.485 (2)C11—C121.380 (3)
C2—C61.343 (2)C11—H110.9300
C2—C31.503 (2)C12—H120.9300
C3—O21.418 (2)C13—C141.462 (2)
C3—H3A0.9700C13—H130.9300
C3—H3B0.9700C14—C151.397 (2)
C4—O21.418 (2)C14—C191.398 (2)
C4—C51.501 (3)C15—C161.383 (2)
C4—H4A0.9700C15—H150.9300
C4—H4B0.9700C16—C171.386 (3)
C5—C131.340 (2)C16—H160.9300
C6—C71.455 (2)C17—O41.367 (2)
C6—H60.9300C17—C181.376 (3)
C7—C81.394 (2)C18—C191.377 (2)
C7—C121.398 (2)C18—H180.9300
C8—C91.376 (3)C19—H190.9300
C8—H80.9300O3—H30.8200
C9—C101.383 (3)O4—H40.8200
C9—H90.9300
O1—C1—C2120.58 (16)O3—C10—C11123.72 (18)
O1—C1—C5121.12 (17)O3—C10—C9116.96 (17)
C2—C1—C5118.27 (16)C11—C10—C9119.32 (18)
C6—C2—C1117.91 (17)C12—C11—C10120.24 (18)
C6—C2—C3124.92 (16)C12—C11—H11119.9
C1—C2—C3117.18 (15)C10—C11—H11119.9
O2—C3—C2111.83 (14)C11—C12—C7121.60 (18)
O2—C3—H3A109.2C11—C12—H12119.2
C2—C3—H3A109.2C7—C12—H12119.2
O2—C3—H3B109.2C5—C13—C14130.28 (18)
C2—C3—H3B109.2C5—C13—H13114.9
H3A—C3—H3B107.9C14—C13—H13114.9
O2—C4—C5111.52 (14)C15—C14—C19117.14 (16)
O2—C4—H4A109.3C15—C14—C13118.46 (16)
C5—C4—H4A109.3C19—C14—C13124.39 (16)
O2—C4—H4B109.3C16—C15—C14121.80 (17)
C5—C4—H4B109.3C16—C15—H15119.1
H4A—C4—H4B108.0C14—C15—H15119.1
C13—C5—C1119.01 (17)C15—C16—C17119.20 (17)
C13—C5—C4123.99 (16)C15—C16—H16120.4
C1—C5—C4116.99 (15)C17—C16—H16120.4
C2—C6—C7132.00 (17)O4—C17—C18118.33 (17)
C2—C6—H6114.0O4—C17—C16121.56 (17)
C7—C6—H6114.0C18—C17—C16120.10 (18)
C8—C7—C12116.55 (17)C17—C18—C19120.19 (18)
C8—C7—C6117.65 (16)C17—C18—H18119.9
C12—C7—C6125.80 (16)C19—C18—H18119.9
C9—C8—C7122.31 (18)C18—C19—C14121.31 (17)
C9—C8—H8118.8C18—C19—H19119.3
C7—C8—H8118.8C14—C19—H19119.3
C8—C9—C10119.82 (17)C3—O2—C4111.76 (14)
C8—C9—H9120.1C10—O3—H3109.5
C10—C9—H9120.1C17—O4—H4109.5
O1—C1—C2—C65.0 (3)O3—C10—C11—C12176.96 (19)
C5—C1—C2—C6176.83 (17)C9—C10—C11—C122.8 (3)
O1—C1—C2—C3175.61 (18)C10—C11—C12—C70.6 (3)
C5—C1—C2—C32.6 (2)C8—C7—C12—C113.3 (3)
C6—C2—C3—O2148.76 (18)C6—C7—C12—C11176.68 (19)
C1—C2—C3—O230.6 (2)C1—C5—C13—C14176.43 (17)
O1—C1—C5—C135.4 (3)C4—C5—C13—C143.7 (3)
C2—C1—C5—C13176.41 (16)C5—C13—C14—C15156.10 (19)
O1—C1—C5—C4174.69 (18)C5—C13—C14—C1924.7 (3)
C2—C1—C5—C43.5 (2)C19—C14—C15—C164.0 (3)
O2—C4—C5—C13147.53 (18)C13—C14—C15—C16176.72 (18)
O2—C4—C5—C132.3 (2)C14—C15—C16—C170.2 (3)
C1—C2—C6—C7178.79 (18)C15—C16—C17—O4176.80 (18)
C3—C2—C6—C71.9 (3)C15—C16—C17—C184.0 (3)
C2—C6—C7—C8162.9 (2)O4—C17—C18—C19176.59 (18)
C2—C6—C7—C1217.0 (3)C16—C17—C18—C194.2 (3)
C12—C7—C8—C92.8 (3)C17—C18—C19—C140.2 (3)
C6—C7—C8—C9177.20 (17)C15—C14—C19—C183.9 (3)
C7—C8—C9—C100.5 (3)C13—C14—C19—C18176.94 (18)
C8—C9—C10—O3176.46 (18)C2—C3—O2—C462.06 (19)
C8—C9—C10—C113.4 (3)C5—C4—O2—C362.96 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O4i0.821.952.757 (2)167
O4—H4···O1ii0.821.862.677 (2)171
Symmetry codes: (i) x+3/2, y+2, z1/2; (ii) x+2, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC19H16O4
Mr308.32
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)293
a, b, c (Å)11.812 (3), 7.4687 (16), 33.233 (7)
V3)2931.9 (11)
Z8
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.42 × 0.37 × 0.29
Data collection
DiffractometerBruker SMART CCD 1K area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.960, 0.972
No. of measured, independent and
observed [I > 2σ(I)] reflections
16659, 3224, 1941
Rint0.053
(sin θ/λ)max1)0.640
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.124, 1.04
No. of reflections3224
No. of parameters211
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.18

Computer programs: SMART (Bruker, 2000), SAINT-Plus (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O4i0.821.952.757 (2)167
O4—H4···O1ii0.821.862.677 (2)171
Symmetry codes: (i) x+3/2, y+2, z1/2; (ii) x+2, y+1/2, z+3/2.
 

Acknowledgements

We thank the projects of China National Natural Science Funds, Guangdong Provincial Science Foundation and the 211 project of Guangdong Province for support.

References

First citationAbaee, M. S., Mojtahedi, M. M., Sharifi, R., Zahedi, M. M., Mesbah, A. W. & Massa, W. (2008). J. Chem. Res. pp. 388–389.  Google Scholar
First citationBruker (2000). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDu, Z. Y., Liu, R. R., Shao, W. Y., Mao, X. P., Ma, L., Gu, L. Q., Huang, Z. S. & Chen, A. S. C. (2006). Eur. J. Med. Chem. 42, 213–218.  Web of Science CrossRef Google Scholar
First citationLiang, G., Shao, L., Wang, Y., Zhao, C. G., Chu, Y. H., Xiao, J., Zhao, Y., Li, X. K. & Yang, S. Y. (2009). Bioorg. Med. Chem. 15, 2623–2631.  Web of Science CrossRef Google Scholar
First citationMaheshwari, R. K., Singh, A. K., Gaddipati, J. & Srimal, R. C. (2006). Life Sci. 78, 2081–2087.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYoussef, K. M., El-Sherbeny, M. A., El-Shafie, F. S., Farag, H. A., Al-Deeb, O. A. & Awadalla, S. A. (2004). Arch. Pharm. Pharm. Med. Chem. 337, 42–54.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds