organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-[4-Cyano-3-(tri­fluoro­meth­yl)phen­yl]-2-meth­­oxy­benzamide

aDepartment of Biotechnology, Sri Jayachamarajendra College of Engineering, Mysore 570 006, India, bDepartment of Studies in Physics, Manasagangotri, University of Mysore, Mysore 570 006, India, and cDepartment of Studies in Chemistry, Manasagangotri, University of Mysore, Mysore 570 006, India
*Correspondence e-mail: rangappaks@chemistry.uni-mysore.ac.in

(Received 12 October 2010; accepted 1 December 2010; online 18 December 2010)

In the title compound, C16H11F3N2O2, the carboxamide group connecting the two aromatic rings is in a syn-periplanar configuration; the mol­ecule is non-planar; the dihedral angle between the two aromatic rings is 13.95 (18)°. Intra­molecular N—H⋯O and C—H⋯O hydrogen bonds occur. In the crystal, mol­ecules are linked by inter­molecular C—H⋯O hydrogen bonds.

Related literature

For nucleosome, a repeat unit of chromatin, see: Luger & Richmond (1998[Luger, K. & Richmond, T. J. (1998). Curr. Opin. Genet. Dev, 8, 140-146.]). For the biological activity of substituted amide derivatives, see: Bylov et al. (1999[Bylov, I. E., Vasylyev, M. V. & Bilokin, Y. V. (1999). Cur. J. Med. Chem. 24, 997-1001.]); Gududuru et al. (2004[Gududuru, V., Hurh, H., Dalton, J. T. & Miller, D. D. (2004). Bioorg. Med. Chem. Lett. 14, 5289-5293.]). For the preparation of the title compound, see: Mantelingu et al. (2007[Mantelingu, K., Kishore, A. H., Balasubramanyam, K., Kumar, G. V., Altaf, M., Swamy, S. N., Selvi, R., Das, C., Narayana, C., Rangappa, K. S. & Kundu, T. K. (2007). J. Phys. Chem. B, 111, 4527-4534.]). For a related structure, see: Saeed et al. (2010[Saeed, A., Khera, R. A. & Simpson, J. (2010). Acta Cryst. E66, o911-o912.]).

[Scheme 1]

Experimental

Crystal data
  • C16H11F3N2O2

  • Mr = 320.27

  • Monoclinic, C 2/c

  • a = 15.117 (2) Å

  • b = 13.907 (2) Å

  • c = 14.5410 (11) Å

  • β = 107.360 (8)°

  • V = 2917.7 (6) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 293 K

  • 0.30 × 0.27 × 0.25 mm

Data collection
  • MacScience DIPLabo 32001 diffractometer

  • 3420 measured reflections

  • 1985 independent reflections

  • 1623 reflections with I > 2σ(I)

  • Rint = 0.016

  • θmax = 23.3°

Refinement
  • R[F2 > 2σ(F2)] = 0.060

  • wR(F2) = 0.206

  • S = 1.03

  • 1985 reflections

  • 209 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N7—H6⋯O15 0.96 1.90 2.648 (3) 133
C4—H12⋯O17i 0.96 2.41 3.346 (4) 165
C1—H15⋯O17 0.96 2.19 2.819 (4) 122
Symmetry code: (i) [x, -y, z-{\script{1\over 2}}].

Data collection: XPRESS (MacScience, 2002[MacScience (2002). XPRESS. MacScience Co. Ltd, Yokohama, Japan.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and ORTEPII (Johnson, 1976)[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]; software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Nucleosome, a repeat unit of chromatin is made up of an octameric histone core, bearing two copies of H2A, H2B, H3 and H4 with 145–147 bp DNA wrapped around the central domain (Luger & Richmond, 1998). Several chromatin modifiers are reponsible for adding different post-translational marks like acetylation, methylation, phosphorylation and others on N-terminal histone tails and for dictating the degree of genomic compaction. Histone acetyltransferases add the acetyl group on the specific lysine of histone H3 and H4 N-terminal, and these signatures increase the accessibility of the underlying chromatin at specific genes or over vast regions of the genome. Compounds comprising an amide bond as backbone have a wide range of biological activities. Among the natural and synthetic substituted amide derivatives, there are compounds possessing anti-proliferative (Gududuru et al. 2004), anti-viral, antimalarial, general anesthetics, anti-inflammatory (Bylov et al. 1999) and anti-microbial properties. In continuation of our research on benzamides, we have synthesized the title compound by the condenstation reaction and herein we report the single X-ray crystal structure of N-(4-cyano-3-(trifluoromethyl)phenyl)-2-methoxybemzamide.

A perspective view of the title compound is shown in Fig. 1. The carboxamide group connecting the two aromatic rings is in syn-periplanar-configuration. This is indicated by the torsion angle value of -7.6 (5)° about the atoms C6—N7—C8—O17. The two aromatic rings are out of plane with the dihedral angle value of 13.95 (18)° between the least squares planes of the rings. This value is very low when compare to the value of 57.69 (3)° (Saeed et al. 2010) reported earlier. This can be understood in terms of the different substituents on the phenyl ring. The CN triple bond is affected by the π-delocalization which is evident from the value 0.854 (6)Å for C22—N23. The methoxy group attached to one of the aromatic ring lies within the plane of the ring and can be oriented in trans conformation. This is confirmed by the torsion angle value of 179.1 (3)° about the atoms C9—C10—O15—C16. The geometry around the C8 atom of the keto group is distorted trigonal as indicated by the bond angles of 120.6 (3)°, 122.4 (3)° and 117.0 (2)° for the atoms C9—C8—O17, N7—C8—O17 and C9—C8—N7, respectively. The crystal structure is stabilized by intermolecular C—H···O and intramolecular N—H···O, C—H···F and C—H···O hydrogen bonds. The intermolecular hydrogen bond C4—H12···O17 has the bond length of 3.346 (4)Å and the bond angle of 165° with the symmetry code x,-y,-1/2 + z. The molecules exhibit layered stackings when viewd down the b axis as shown in Fig. 2.

Related literature top

For nucleosome, a repeat unit of chromatin, see: Luger & Richmond (1998). For the biological activity of substituted amide derivatives, see: Bylov et al. (1999); Gududuru et al. (2004). For the preparation of the title compound, see: Mantelingu et al. (2007). For a related structure, see: Saeed et al. (2010).

Experimental top

N-(4-Cyano-3-(trifluoromethyl)phenyl)-2-methoxybenzamide was synthesized as per the procedure reported in the literature (Mantelingu et al. 2007) earlier. The final product was obtained by recrystallization using methonol as a solvent. Slow evaporation of the solvent yielded colorless crystals after five days.

Structure description top

Nucleosome, a repeat unit of chromatin is made up of an octameric histone core, bearing two copies of H2A, H2B, H3 and H4 with 145–147 bp DNA wrapped around the central domain (Luger & Richmond, 1998). Several chromatin modifiers are reponsible for adding different post-translational marks like acetylation, methylation, phosphorylation and others on N-terminal histone tails and for dictating the degree of genomic compaction. Histone acetyltransferases add the acetyl group on the specific lysine of histone H3 and H4 N-terminal, and these signatures increase the accessibility of the underlying chromatin at specific genes or over vast regions of the genome. Compounds comprising an amide bond as backbone have a wide range of biological activities. Among the natural and synthetic substituted amide derivatives, there are compounds possessing anti-proliferative (Gududuru et al. 2004), anti-viral, antimalarial, general anesthetics, anti-inflammatory (Bylov et al. 1999) and anti-microbial properties. In continuation of our research on benzamides, we have synthesized the title compound by the condenstation reaction and herein we report the single X-ray crystal structure of N-(4-cyano-3-(trifluoromethyl)phenyl)-2-methoxybemzamide.

A perspective view of the title compound is shown in Fig. 1. The carboxamide group connecting the two aromatic rings is in syn-periplanar-configuration. This is indicated by the torsion angle value of -7.6 (5)° about the atoms C6—N7—C8—O17. The two aromatic rings are out of plane with the dihedral angle value of 13.95 (18)° between the least squares planes of the rings. This value is very low when compare to the value of 57.69 (3)° (Saeed et al. 2010) reported earlier. This can be understood in terms of the different substituents on the phenyl ring. The CN triple bond is affected by the π-delocalization which is evident from the value 0.854 (6)Å for C22—N23. The methoxy group attached to one of the aromatic ring lies within the plane of the ring and can be oriented in trans conformation. This is confirmed by the torsion angle value of 179.1 (3)° about the atoms C9—C10—O15—C16. The geometry around the C8 atom of the keto group is distorted trigonal as indicated by the bond angles of 120.6 (3)°, 122.4 (3)° and 117.0 (2)° for the atoms C9—C8—O17, N7—C8—O17 and C9—C8—N7, respectively. The crystal structure is stabilized by intermolecular C—H···O and intramolecular N—H···O, C—H···F and C—H···O hydrogen bonds. The intermolecular hydrogen bond C4—H12···O17 has the bond length of 3.346 (4)Å and the bond angle of 165° with the symmetry code x,-y,-1/2 + z. The molecules exhibit layered stackings when viewd down the b axis as shown in Fig. 2.

For nucleosome, a repeat unit of chromatin, see: Luger & Richmond (1998). For the biological activity of substituted amide derivatives, see: Bylov et al. (1999); Gududuru et al. (2004). For the preparation of the title compound, see: Mantelingu et al. (2007). For a related structure, see: Saeed et al. (2010).

Computing details top

Data collection: XPRESS (MacScience, 2002); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO (Otwinowski & Minor, 1997) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the title compound, with 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. Packing diagram of the molecule viewed down the b axis. The dashed lines represents the hydrogen bonds.
N-[4-Cyano-3-(trifluoromethyl)phenyl]-2-methoxybenzamide top
Crystal data top
C16H11F3N2O2Z = 8
Mr = 320.27F(000) = 1312
Monoclinic, C2/cDx = 1.458 Mg m3
Hall symbol: -C 2ycMo Kα radiation, λ = 0.71073 Å
a = 15.117 (2) ŵ = 0.12 mm1
b = 13.907 (2) ÅT = 293 K
c = 14.5410 (11) ÅBlock, colorless
β = 107.360 (8)°0.30 × 0.27 × 0.25 mm
V = 2917.7 (6) Å3
Data collection top
MacScience DIPLabo 32001
diffractometer
1623 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.016
Graphite monochromatorθmax = 23.3°, θmin = 2.3°
Detector resolution: 10.0 pixels mm-1h = 1616
ω scansk = 1514
3420 measured reflectionsl = 1414
1985 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.060H-atom parameters constrained
wR(F2) = 0.206 w = 1/[σ2(Fo2) + (0.1344P)2 + 1.7982P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.003
1985 reflectionsΔρmax = 0.30 e Å3
209 parametersΔρmin = 0.21 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.006 (3)
Crystal data top
C16H11F3N2O2V = 2917.7 (6) Å3
Mr = 320.27Z = 8
Monoclinic, C2/cMo Kα radiation
a = 15.117 (2) ŵ = 0.12 mm1
b = 13.907 (2) ÅT = 293 K
c = 14.5410 (11) Å0.30 × 0.27 × 0.25 mm
β = 107.360 (8)°
Data collection top
MacScience DIPLabo 32001
diffractometer
1623 reflections with I > 2σ(I)
3420 measured reflectionsRint = 0.016
1985 independent reflectionsθmax = 23.3°
Refinement top
R[F2 > 2σ(F2)] = 0.0600 restraints
wR(F2) = 0.206H-atom parameters constrained
S = 1.03Δρmax = 0.30 e Å3
1985 reflectionsΔρmin = 0.21 e Å3
209 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F190.08492 (17)0.25311 (16)0.34995 (19)0.1107 (10)
F200.22717 (16)0.24074 (17)0.37355 (18)0.1129 (10)
F210.1596 (3)0.14673 (16)0.44676 (16)0.1520 (15)
O150.08614 (17)0.31412 (17)0.15351 (18)0.0881 (10)
O170.1218 (2)0.15110 (16)0.39923 (17)0.0913 (10)
N70.11310 (17)0.14525 (17)0.24161 (18)0.0674 (9)
N230.1364 (3)0.3157 (4)0.1502 (3)0.1214 (19)
C10.1294 (2)0.0219 (2)0.3009 (2)0.0643 (10)
C20.13454 (19)0.1182 (2)0.2817 (2)0.0619 (10)
C30.1244 (2)0.1500 (2)0.1890 (2)0.0675 (11)
C40.1073 (2)0.0828 (2)0.1149 (2)0.0765 (11)
C50.1021 (2)0.0126 (2)0.1332 (2)0.0734 (12)
C60.11416 (19)0.0455 (2)0.2273 (2)0.0626 (11)
C80.1214 (2)0.1927 (2)0.3251 (2)0.0666 (11)
C90.1314 (2)0.2998 (2)0.3241 (2)0.0698 (11)
C100.1149 (2)0.3588 (2)0.2417 (3)0.0763 (14)
C110.1272 (3)0.4564 (3)0.2528 (4)0.0975 (18)
C120.1562 (3)0.4967 (3)0.3418 (4)0.113 (2)
C130.1740 (3)0.4411 (3)0.4235 (4)0.1078 (19)
C140.1608 (3)0.3431 (2)0.4140 (3)0.0852 (14)
C160.0674 (3)0.3715 (3)0.0683 (3)0.1134 (19)
C180.1520 (3)0.1878 (2)0.3628 (2)0.0781 (14)
C220.1326 (3)0.2568 (2)0.1652 (3)0.0644 (12)
H60.104900.181000.183200.0810*
H90.090100.058300.081500.0880*
H120.099200.103600.050000.0910*
H150.136300.000700.365500.0770*
H160.115200.496100.196500.1170*
H190.172000.303900.470700.1020*
H210.194600.468400.487000.1290*
H22A0.047400.330800.012600.1360*
H22B0.122800.404800.067700.1360*
H22C0.019700.417400.067300.1360*
H230.164500.565100.346700.1360*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F190.1193 (18)0.0972 (16)0.124 (2)0.0052 (13)0.0490 (14)0.0376 (13)
F200.1016 (17)0.1068 (17)0.1230 (19)0.0267 (13)0.0224 (13)0.0395 (13)
F210.310 (4)0.0802 (16)0.0651 (16)0.0290 (19)0.0550 (19)0.0146 (10)
O150.1043 (18)0.0797 (16)0.0830 (18)0.0090 (13)0.0323 (13)0.0272 (12)
O170.150 (2)0.0677 (15)0.0623 (15)0.0031 (13)0.0410 (13)0.0051 (10)
N70.0877 (18)0.0593 (15)0.0600 (16)0.0034 (12)0.0296 (12)0.0067 (11)
N230.123 (3)0.149 (4)0.097 (3)0.009 (3)0.040 (2)0.025 (3)
C10.0758 (19)0.0645 (18)0.0535 (17)0.0015 (14)0.0209 (13)0.0019 (13)
C20.0686 (18)0.0611 (17)0.0582 (18)0.0017 (13)0.0222 (13)0.0030 (13)
C30.0692 (18)0.0673 (19)0.069 (2)0.0013 (14)0.0253 (14)0.0025 (14)
C40.102 (2)0.079 (2)0.0536 (19)0.0012 (17)0.0312 (15)0.0052 (14)
C50.096 (2)0.070 (2)0.059 (2)0.0031 (16)0.0303 (15)0.0081 (14)
C60.0683 (18)0.0667 (19)0.0567 (18)0.0014 (13)0.0245 (13)0.0052 (13)
C80.0740 (19)0.0647 (19)0.065 (2)0.0022 (14)0.0268 (14)0.0041 (14)
C90.0688 (18)0.0625 (19)0.085 (2)0.0055 (14)0.0334 (16)0.0040 (15)
C100.069 (2)0.0632 (19)0.104 (3)0.0077 (14)0.0368 (18)0.0155 (17)
C110.103 (3)0.066 (2)0.132 (4)0.0093 (19)0.048 (2)0.020 (2)
C120.116 (3)0.058 (2)0.175 (5)0.005 (2)0.057 (3)0.001 (3)
C130.120 (3)0.075 (3)0.133 (4)0.000 (2)0.045 (3)0.022 (2)
C140.096 (2)0.068 (2)0.096 (3)0.0034 (17)0.0353 (19)0.0104 (18)
C160.133 (4)0.114 (3)0.098 (3)0.021 (3)0.042 (2)0.051 (2)
C180.099 (3)0.0649 (19)0.073 (2)0.0073 (19)0.0296 (17)0.0068 (15)
C220.077 (2)0.060 (2)0.062 (2)0.0050 (18)0.0294 (15)0.0145 (17)
Geometric parameters (Å, º) top
F19—C181.332 (5)C8—C91.498 (4)
F20—C181.324 (5)C9—C141.387 (5)
F21—C181.321 (4)C9—C101.412 (5)
O15—C101.374 (5)C10—C111.373 (5)
O15—C161.429 (5)C11—C121.357 (8)
O17—C81.222 (4)C12—C131.375 (7)
N7—C61.404 (4)C13—C141.378 (5)
N7—C81.354 (4)C1—H150.9600
N23—C220.854 (6)C4—H120.9600
N7—H60.9600C5—H90.9600
C1—C61.389 (4)C11—H160.9600
C1—C21.375 (4)C12—H230.9600
C2—C181.487 (4)C13—H210.9600
C2—C31.383 (4)C14—H190.9600
C3—C41.391 (4)C16—H22A0.9600
C3—C221.538 (4)C16—H22B0.9600
C4—C51.360 (4)C16—H22C0.9600
C5—C61.402 (4)
F19···C222.982 (5)C22···F202.948 (5)
F19···C3i3.365 (4)C22···F19i3.230 (5)
F19···C22i3.230 (5)C22···F192.982 (5)
F20···C16ii3.351 (5)C8···H152.7500
F20···O15ii3.060 (4)C10···H62.6000
F20···C222.948 (5)C11···H22C2.7600
F20···F21iii3.088 (4)C11···H22B2.7700
F21···F20iii3.088 (4)C13···H22Ci2.9900
F19···H22Aiv2.8100C14···H22Ci3.0000
F19···H23v2.8100C16···H162.4900
F20···H23v2.8500C16···H63.0900
F21···H152.3200H6···O151.9000
F21···H9iv2.7700H6···C102.6000
O15···N72.648 (3)H6···C163.0900
O15···C9i3.406 (4)H6···H92.2300
O15···F20vi3.060 (4)H9···H62.2300
O17···C12.819 (4)H9···F21vii2.7700
O17···C4iv3.346 (4)H12···O17vii2.4100
O15···H61.9000H15···F212.3200
O17···H152.1900H15···O172.1900
O17···H192.3900H15···C82.7500
O17···H12iv2.4100H16···N23viii2.7400
N7···O152.648 (3)H16···C162.4900
N7···C8i3.448 (4)H16···H22B2.2900
N23···H16v2.7400H16···H22C2.2800
N23···H19vii2.8200H19···O172.3900
C1···O172.819 (4)H19···N23iv2.8200
C3···F19i3.365 (4)H21···H22Bix2.5300
C4···O17vii3.346 (4)H22A···F19vii2.8100
C4···C13ii3.529 (6)H22B···C112.7700
C5···C12ii3.569 (6)H22B···H162.2900
C8···N7i3.448 (4)H22B···H21x2.5300
C9···O15i3.406 (4)H22C···C112.7600
C10···C10i3.553 (5)H22C···H162.2800
C12···C5vi3.569 (6)H22C···C13i2.9900
C13···C4vi3.529 (6)H22C···C14i3.0000
C14···C16i3.557 (7)H23···F19viii2.8100
C16···C14i3.557 (7)H23···F20viii2.8500
C16···F20vi3.351 (5)
C10—O15—C16118.8 (3)C9—C14—C13121.3 (4)
C6—N7—C8127.8 (2)F19—C18—C2112.6 (3)
C6—N7—H6113.00F20—C18—F21107.2 (3)
C8—N7—H6120.00F20—C18—C2113.5 (3)
C2—C1—C6120.5 (3)F21—C18—C2113.4 (2)
C3—C2—C18120.4 (3)F19—C18—F20103.2 (2)
C1—C2—C18118.7 (2)F19—C18—F21106.1 (3)
C1—C2—C3120.9 (3)N23—C22—C3178.3 (5)
C2—C3—C22122.4 (3)C2—C1—H15120.00
C4—C3—C22118.9 (3)C6—C1—H15119.00
C2—C3—C4118.8 (3)C3—C4—H12120.00
C3—C4—C5120.8 (3)C5—C4—H12119.00
C4—C5—C6120.7 (3)C4—C5—H9120.00
N7—C6—C1124.0 (3)C6—C5—H9119.00
C1—C6—C5118.4 (3)C10—C11—H16119.00
N7—C6—C5117.6 (2)C12—C11—H16120.00
O17—C8—C9120.4 (3)C11—C12—H23119.00
O17—C8—N7122.3 (3)C13—C12—H23120.00
N7—C8—C9117.3 (2)C12—C13—H21122.00
C8—C9—C14115.3 (3)C14—C13—H21119.00
C8—C9—C10126.4 (3)C9—C14—H19119.00
C10—C9—C14118.3 (3)C13—C14—H19119.00
C9—C10—C11119.4 (4)O15—C16—H22A109.00
O15—C10—C11123.4 (4)O15—C16—H22B109.00
O15—C10—C9117.1 (2)O15—C16—H22C110.00
C10—C11—C12120.9 (5)H22A—C16—H22B109.00
C11—C12—C13121.1 (4)H22A—C16—H22C109.00
C12—C13—C14119.0 (5)H22B—C16—H22C109.00
C16—O15—C10—C110.3 (5)C22—C3—C4—C5178.2 (3)
C16—O15—C10—C9179.1 (3)C2—C3—C4—C51.1 (5)
C8—N7—C6—C13.7 (5)C3—C4—C5—C60.2 (5)
C6—N7—C8—C9171.7 (3)C4—C5—C6—N7176.5 (3)
C8—N7—C6—C5178.5 (3)C4—C5—C6—C11.5 (5)
C6—N7—C8—O177.6 (5)N7—C8—C9—C1013.5 (5)
C6—C1—C2—C18179.3 (3)O17—C8—C9—C10167.2 (3)
C6—C1—C2—C30.2 (5)O17—C8—C9—C1413.6 (5)
C2—C1—C6—N7176.3 (3)N7—C8—C9—C14165.8 (3)
C2—C1—C6—C51.5 (5)C8—C9—C10—C11180.0 (4)
C1—C2—C18—F210.8 (5)C14—C9—C10—O15179.8 (3)
C1—C2—C18—F19121.3 (3)C8—C9—C14—C13179.2 (4)
C1—C2—C18—F20121.9 (3)C10—C9—C14—C130.2 (6)
C3—C2—C18—F21179.7 (4)C14—C9—C10—C110.8 (5)
C18—C2—C3—C4179.4 (3)C8—C9—C10—O150.5 (5)
C18—C2—C3—C221.4 (5)O15—C10—C11—C12179.7 (4)
C3—C2—C18—F2057.6 (4)C9—C10—C11—C120.9 (6)
C1—C2—C3—C22178.1 (3)C10—C11—C12—C130.1 (7)
C3—C2—C18—F1959.2 (4)C11—C12—C13—C140.8 (7)
C1—C2—C3—C41.1 (5)C12—C13—C14—C91.0 (7)
Symmetry codes: (i) x, y, z+1/2; (ii) x+1/2, y1/2, z+1/2; (iii) x+1/2, y1/2, z+1; (iv) x, y, z+1/2; (v) x, y1, z; (vi) x+1/2, y+1/2, z+1/2; (vii) x, y, z1/2; (viii) x, y+1, z; (ix) x, y+1, z+1/2; (x) x, y+1, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N7—H6···O150.961.902.648 (3)133
C4—H12···O17vii0.962.413.346 (4)165
C1—H15···F210.962.322.673 (4)101
C1—H15···O170.962.192.819 (4)122
C14—H19···O170.962.392.729 (4)100
Symmetry code: (vii) x, y, z1/2.

Experimental details

Crystal data
Chemical formulaC16H11F3N2O2
Mr320.27
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)15.117 (2), 13.907 (2), 14.5410 (11)
β (°) 107.360 (8)
V3)2917.7 (6)
Z8
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.30 × 0.27 × 0.25
Data collection
DiffractometerMacScience DIPLabo 32001
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
3420, 1985, 1623
Rint0.016
θmax (°)23.3
(sin θ/λ)max1)0.555
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.206, 1.03
No. of reflections1985
No. of parameters209
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.21

Computer programs: XPRESS (MacScience, 2002), SCALEPACK (Otwinowski & Minor, 1997), DENZO (Otwinowski & Minor, 1997) and SCALEPACK, SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and ORTEPII (Johnson, 1976).

Selected geometric parameters (Å, º) top
F19—C181.332 (5)O17—C81.222 (4)
F20—C181.324 (5)N7—C61.404 (4)
F21—C181.321 (4)N7—C81.354 (4)
O15—C101.374 (5)N23—C220.854 (6)
O15—C161.429 (5)
C10—O15—C16118.8 (3)O15—C10—C9117.1 (2)
C6—N7—C8127.8 (2)F19—C18—C2112.6 (3)
N7—C6—C1124.0 (3)F20—C18—F21107.2 (3)
N7—C6—C5117.6 (2)F20—C18—C2113.5 (3)
O17—C8—C9120.4 (3)F21—C18—C2113.4 (2)
O17—C8—N7122.3 (3)F19—C18—F20103.2 (2)
N7—C8—C9117.3 (2)F19—C18—F21106.1 (3)
O15—C10—C11123.4 (4)N23—C22—C3178.3 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N7—H6···O150.961.902.648 (3)133
C4—H12···O17i0.962.413.346 (4)165
C1—H15···O170.962.192.819 (4)122
Symmetry code: (i) x, y, z1/2.
 

Acknowledgements

The authors are grateful to the DST and the Government of India (project SP/I2/FOO/93) and the University of Mysore for financial assistance. HRM would like to thank the UGC–BRS and the University of Mysore for the award of a fellowship. SNS is grateful to the University Grants Commission (UGC), Government of India, for financial support under the major research project [grant No. 38–220/2009 (SR)]. SNS also expresses his sincere gratitude to J. S. S. Mahavidyapeetha for encouragement of this research work.

References

First citationBylov, I. E., Vasylyev, M. V. & Bilokin, Y. V. (1999). Cur. J. Med. Chem. 24, 997–1001.  Google Scholar
First citationGududuru, V., Hurh, H., Dalton, J. T. & Miller, D. D. (2004). Bioorg. Med. Chem. Lett. 14, 5289–5293.  Web of Science CrossRef PubMed CAS Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationLuger, K. & Richmond, T. J. (1998). Curr. Opin. Genet. Dev, 8, 140–146.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMacScience (2002). XPRESS. MacScience Co. Ltd, Yokohama, Japan.  Google Scholar
First citationMantelingu, K., Kishore, A. H., Balasubramanyam, K., Kumar, G. V., Altaf, M., Swamy, S. N., Selvi, R., Das, C., Narayana, C., Rangappa, K. S. & Kundu, T. K. (2007). J. Phys. Chem. B, 111, 4527–4534.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSaeed, A., Khera, R. A. & Simpson, J. (2010). Acta Cryst. E66, o911–o912.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds