metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[bis­­(μ2-4,4′-bi­pyridine)­bis­­(3-nitro­benzoato)nickel(II)]

aDepartment of Chemistry, Chung-Yuan Christian University, Chung-Li 320, Taiwan
*Correspondence e-mail: chiaher@cycu.edu.tw

(Received 15 November 2010; accepted 30 November 2010; online 11 December 2010)

The crystal structure of the title complex, [Ni(C7H4NO4)2(C10H8N2)2]n, exhibits a two-dimensional network, which is built up from slightly distorted NiN4O2 polyhedra (2 symmetry), bipyridine ligands, and carboxyl­ate anions. The NiII atoms are six-coordinated by two O atoms of two monodentate carboxyl­ate anions and four N atoms from bipyridine ligands and are connected into layers by the 4,4′-bipyridine ligands.

Related literature

For background to the hydro­thermal synthesis of coordination polymers with organic ligands, see: Kitagawa et al. (2004[Kitagawa, S., Kitaura, R. & Noro, S. (2004). Angew. Chem. Int. Ed. 43, 2334-2375.]); Long & Yaghi (2009[Long, J. L. & Yaghi, O. M. (2009). Chem. Soc. Rev. 38, 1213-1214.]). For related structures, see: Chiang et al. (2009[Chiang, P.-H., Hsu, S.-C. & Lin, C.-H. (2009). Acta Cryst. E65, m1302-m1303.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C7H4NO4)2(C10H8N2)2]

  • Mr = 703.28

  • Monoclinic, C 2/c

  • a = 18.1237 (10) Å

  • b = 11.3663 (6) Å

  • c = 15.0119 (8) Å

  • β = 95.439 (2)°

  • V = 3078.5 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.70 mm−1

  • T = 295 K

  • 0.45 × 0.30 × 0.10 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.745, Tmax = 0.934

  • 13263 measured reflections

  • 3836 independent reflections

  • 3470 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.101

  • S = 1.03

  • 3836 reflections

  • 224 parameters

  • H-atom parameters constrained

  • Δρmax = 0.71 e Å−3

  • Δρmin = −0.53 e Å−3

Data collection: APEX2 (Bruker, 2010[Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2010[Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2010[Brandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

The synthesis of metal coordination polymers has been a subject of intense research due to their interesting structural chemistry and potential applications in gas storage, separation, catalysis, magnetism, luminescence, and drug delivery (Kitagawa, et al., 2004). Here we report the synthesis of title complex with a two-dimensional structure which was contained nickel and mixed 4,4'-bipyridine and 3-nitrobenzate ligands.

The crystal structure analysis reveals that the title complex possesses similar two-dimensional layer structure. The octahedral metal ions are coordinated by four nitrogen atoms and two oxygen atoms which belonged to the four bpy ligands, and two NB ligands (Fig. 1). The average bond lengths of Ni—O are 2.058 (1) Å and the Ni—N are 2.128 (2) Å which are falling in the expected normal range. Each metal center was linked adjacent metal centers by four bpy ligands, resulting in a two-dimensional neutral rectangular grid in the bc plane with a (4,4)-net (Fig. 2). The neighboring layers interact through π-π interactions between the benzene rings of NB ligands (3.55 Å) and form a mimic three-dimensional framework. In generally, the title complex is an analogous of our precious reported cobalt compound (Chiang, et al., 2009).

Related literature top

For background to the hydrothermal synthesis of coordination polymers with organic ligands, see: Kitagawa et al. (2004); Long & Yaghi (2009). For related structures, see: Chiang et al. (2009).

Experimental top

Hydrothermal reactions were carried out at 453 K for 3 d in a Teflon-lined acid digestion bomb with an internal volume of 23 ml followed by slow cooling at 6 K/h to room temperature. A single-phase product consisting of blue crystals were obtained from a mixture of 4,4'-bipyridine (C10H8N2, 0.0781 g, 0.5 mmol), 3-nitrobenzoic acid (C7H5NO4, 0.0836 g, 0.5 mmol), Ni(NO3)2?6H2O (0.1454 g, 0.5 mmol), and H2O (12.0 ml), NH4OH (0.1 ml).

Refinement top

H atoms were constrained to ideal geometries, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C).

Structure description top

The synthesis of metal coordination polymers has been a subject of intense research due to their interesting structural chemistry and potential applications in gas storage, separation, catalysis, magnetism, luminescence, and drug delivery (Kitagawa, et al., 2004). Here we report the synthesis of title complex with a two-dimensional structure which was contained nickel and mixed 4,4'-bipyridine and 3-nitrobenzate ligands.

The crystal structure analysis reveals that the title complex possesses similar two-dimensional layer structure. The octahedral metal ions are coordinated by four nitrogen atoms and two oxygen atoms which belonged to the four bpy ligands, and two NB ligands (Fig. 1). The average bond lengths of Ni—O are 2.058 (1) Å and the Ni—N are 2.128 (2) Å which are falling in the expected normal range. Each metal center was linked adjacent metal centers by four bpy ligands, resulting in a two-dimensional neutral rectangular grid in the bc plane with a (4,4)-net (Fig. 2). The neighboring layers interact through π-π interactions between the benzene rings of NB ligands (3.55 Å) and form a mimic three-dimensional framework. In generally, the title complex is an analogous of our precious reported cobalt compound (Chiang, et al., 2009).

For background to the hydrothermal synthesis of coordination polymers with organic ligands, see: Kitagawa et al. (2004); Long & Yaghi (2009). For related structures, see: Chiang et al. (2009).

Computing details top

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT (Bruker, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2010); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Part of polymeric structure of the title compound, showing 50% probability displacement ellipsoids. [symmetry codes: (i) -x + 1, y, -z + 5/2; (ii) -x + 1/2, -y + 5/2, -z + 2; (iii) x, y - 1, z].
[Figure 2] Fig. 2. Crystal structure of the title compound showing the two-dimensional layers. The H atoms are omitted for clarity.
Poly[bis(µ2-4,4'-bipyridine)bis(3-nitrobenzoato)nickel(II)] top
Crystal data top
[Ni(C7H4NO4)2(C10H8N2)2]F(000) = 1448
Mr = 703.28Dx = 1.517 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 7469 reflections
a = 18.1237 (10) Åθ = 2.3–28.4°
b = 11.3663 (6) ŵ = 0.70 mm1
c = 15.0119 (8) ÅT = 295 K
β = 95.439 (2)°Columnar, blue
V = 3078.5 (3) Å30.45 × 0.30 × 0.10 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
3836 independent reflections
Radiation source: fine-focus sealed tube3470 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
Detector resolution: 8.3333 pixels mm-1θmax = 28.4°, θmin = 2.1°
φ and ω scansh = 2424
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
k = 1015
Tmin = 0.745, Tmax = 0.934l = 2018
13263 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.055P)2 + 3.5308P]
where P = (Fo2 + 2Fc2)/3
3836 reflections(Δ/σ)max = 0.002
224 parametersΔρmax = 0.71 e Å3
0 restraintsΔρmin = 0.53 e Å3
Crystal data top
[Ni(C7H4NO4)2(C10H8N2)2]V = 3078.5 (3) Å3
Mr = 703.28Z = 4
Monoclinic, C2/cMo Kα radiation
a = 18.1237 (10) ŵ = 0.70 mm1
b = 11.3663 (6) ÅT = 295 K
c = 15.0119 (8) Å0.45 × 0.30 × 0.10 mm
β = 95.439 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
3836 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
3470 reflections with I > 2σ(I)
Tmin = 0.745, Tmax = 0.934Rint = 0.023
13263 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.101H-atom parameters constrained
S = 1.03Δρmax = 0.71 e Å3
3836 reflectionsΔρmin = 0.53 e Å3
224 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.50001.19295 (2)1.25000.02130 (10)
O10.57303 (7)1.18647 (10)1.15316 (8)0.0311 (3)
N10.50001.37958 (17)1.25000.0274 (4)
C10.58736 (10)1.20357 (14)1.07335 (12)0.0298 (3)
O20.54917 (9)1.25698 (16)1.01439 (10)0.0515 (4)
C20.66083 (10)1.15107 (15)1.05145 (12)0.0318 (3)
N20.50002.00284 (16)1.25000.0264 (4)
O30.81171 (16)1.0200 (3)0.83539 (19)0.1131 (10)
N30.40568 (8)1.19913 (11)1.15701 (9)0.0261 (3)
C30.67500 (11)1.13723 (17)0.96282 (13)0.0387 (4)
H3A0.64031.16010.91650.046*
O40.70979 (17)1.1035 (3)0.79302 (15)0.1014 (9)
N40.75517 (16)1.0686 (2)0.85108 (18)0.0693 (7)
C40.74173 (13)1.08876 (19)0.94515 (15)0.0474 (5)
C50.79625 (13)1.0578 (2)1.01120 (18)0.0529 (6)
H5A0.84131.02730.99690.063*
C60.78225 (12)1.0733 (2)1.09890 (17)0.0500 (5)
H6A0.81841.05441.14480.060*
C70.71441 (11)1.11721 (17)1.11888 (14)0.0395 (4)
H7A0.70461.12411.17840.047*
C80.49914 (10)1.44061 (15)1.17354 (11)0.0323 (4)
H8A0.49891.39931.12010.039*
C90.49863 (11)1.56217 (15)1.17042 (12)0.0343 (4)
H9A0.49741.60131.11590.041*
C100.50001.6253 (2)1.25000.0289 (5)
C110.50001.75560 (19)1.25000.0292 (5)
C120.53631 (16)1.94065 (18)1.19430 (19)0.0637 (8)
H12A0.56341.98121.15460.076*
C130.53672 (18)1.81906 (18)1.1911 (2)0.0685 (9)
H13A0.56211.78051.14860.082*
C140.40194 (9)1.15368 (17)1.07508 (12)0.0320 (4)
H14A0.44131.10791.05950.038*
C150.34223 (9)1.17121 (17)1.01177 (12)0.0333 (4)
H15A0.34231.13830.95510.040*
C160.28214 (8)1.23809 (14)1.03306 (10)0.0258 (3)
C170.28557 (10)1.28207 (17)1.11967 (12)0.0337 (4)
H17A0.24611.32521.13810.040*
C180.34745 (10)1.26177 (17)1.17822 (11)0.0331 (4)
H18A0.34881.29331.23550.040*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.02510 (15)0.01629 (15)0.02124 (15)0.0000.00447 (10)0.000
O10.0359 (6)0.0310 (6)0.0264 (6)0.0015 (5)0.0027 (5)0.0002 (5)
N10.0350 (10)0.0183 (8)0.0277 (9)0.0000.0025 (7)0.000
C10.0353 (8)0.0257 (8)0.0280 (8)0.0033 (6)0.0005 (6)0.0002 (6)
O20.0540 (9)0.0647 (10)0.0352 (7)0.0153 (8)0.0006 (6)0.0132 (7)
C20.0397 (9)0.0245 (8)0.0318 (8)0.0039 (7)0.0063 (7)0.0018 (7)
N20.0301 (9)0.0181 (8)0.0300 (9)0.0000.0026 (7)0.000
O30.116 (2)0.138 (2)0.0964 (18)0.0219 (18)0.0682 (17)0.0171 (17)
N30.0267 (6)0.0246 (7)0.0255 (6)0.0016 (5)0.0053 (5)0.0006 (5)
C30.0510 (11)0.0325 (9)0.0339 (9)0.0080 (8)0.0110 (8)0.0009 (7)
O40.124 (2)0.142 (2)0.0431 (11)0.0011 (18)0.0311 (13)0.0084 (13)
N40.0897 (17)0.0634 (14)0.0620 (14)0.0163 (13)0.0458 (14)0.0110 (11)
C40.0611 (13)0.0358 (10)0.0494 (12)0.0121 (9)0.0271 (10)0.0027 (9)
C50.0479 (11)0.0395 (11)0.0751 (16)0.0005 (9)0.0260 (11)0.0024 (11)
C60.0432 (11)0.0449 (12)0.0619 (14)0.0054 (9)0.0052 (10)0.0076 (10)
C70.0441 (10)0.0355 (9)0.0390 (10)0.0014 (8)0.0054 (8)0.0047 (8)
C80.0471 (9)0.0209 (8)0.0282 (8)0.0022 (7)0.0007 (7)0.0016 (6)
C90.0517 (10)0.0207 (8)0.0302 (8)0.0017 (7)0.0020 (7)0.0035 (6)
C100.0360 (11)0.0164 (10)0.0339 (12)0.0000.0009 (9)0.000
C110.0380 (12)0.0169 (10)0.0321 (11)0.0000.0005 (9)0.000
C120.0924 (19)0.0214 (9)0.0867 (19)0.0000 (10)0.0572 (17)0.0040 (10)
C130.104 (2)0.0216 (10)0.090 (2)0.0037 (11)0.0647 (19)0.0007 (10)
C140.0261 (7)0.0354 (9)0.0330 (8)0.0052 (6)0.0053 (6)0.0092 (7)
C150.0285 (8)0.0419 (10)0.0279 (8)0.0051 (7)0.0053 (6)0.0105 (7)
C160.0253 (7)0.0260 (8)0.0250 (7)0.0001 (6)0.0027 (6)0.0009 (6)
C170.0324 (8)0.0425 (10)0.0252 (8)0.0131 (7)0.0027 (6)0.0022 (7)
C180.0359 (8)0.0396 (9)0.0224 (7)0.0104 (7)0.0044 (6)0.0036 (7)
Geometric parameters (Å, º) top
Ni1—O12.0580 (12)C5—H5A0.9300
Ni1—O1i2.0580 (12)C6—C71.386 (3)
Ni1—N32.1031 (13)C6—H6A0.9300
Ni1—N3i2.1031 (13)C7—H7A0.9300
Ni1—N12.1212 (19)C8—C91.382 (2)
Ni1—N2ii2.1609 (19)C8—H8A0.9300
O1—C11.265 (2)C9—C101.391 (2)
N1—C81.340 (2)C9—H9A0.9300
N1—C8i1.340 (2)C10—C9i1.391 (2)
C1—O21.231 (2)C10—C111.482 (3)
C1—C21.523 (2)C11—C131.363 (3)
C2—C71.389 (3)C11—C13i1.363 (3)
C2—C31.388 (2)C12—C131.383 (3)
N2—C121.318 (2)C12—H12A0.9300
N2—C12i1.318 (2)C13—H13A0.9300
N2—Ni1iii2.1610 (19)C14—C151.385 (2)
O3—N41.207 (3)C14—H14A0.9300
N3—C141.330 (2)C15—C161.390 (2)
N3—C181.336 (2)C15—H15A0.9300
C3—C41.377 (3)C16—C171.389 (2)
C3—H3A0.9300C16—C16iv1.482 (3)
O4—N41.207 (4)C17—C181.377 (2)
N4—C41.474 (3)C17—H17A0.9300
C4—C51.377 (4)C18—H18A0.9300
C5—C61.375 (4)
O1—Ni1—O1i175.90 (7)C6—C5—H5A120.9
O1—Ni1—N393.96 (5)C4—C5—H5A120.9
O1i—Ni1—N386.18 (5)C5—C6—C7120.1 (2)
O1—Ni1—N3i86.18 (5)C5—C6—H6A120.0
O1i—Ni1—N3i93.96 (5)C7—C6—H6A120.0
N3—Ni1—N3i176.17 (7)C6—C7—C2121.0 (2)
O1—Ni1—N192.05 (3)C6—C7—H7A119.5
O1i—Ni1—N192.05 (3)C2—C7—H7A119.5
N3—Ni1—N188.09 (4)N1—C8—C9123.09 (16)
N3i—Ni1—N188.09 (4)N1—C8—H8A118.5
O1—Ni1—N2ii87.95 (3)C9—C8—H8A118.5
O1i—Ni1—N2ii87.95 (3)C8—C9—C10119.10 (16)
N3—Ni1—N2ii91.91 (4)C8—C9—H9A120.4
N3i—Ni1—N2ii91.91 (4)C10—C9—H9A120.4
N1—Ni1—N2ii180.000 (1)C9—C10—C9i118.0 (2)
C1—O1—Ni1150.13 (12)C9—C10—C11121.02 (10)
C8—N1—C8i117.6 (2)C9i—C10—C11121.01 (10)
C8—N1—Ni1121.18 (10)C13—C11—C13i116.1 (2)
C8i—N1—Ni1121.18 (10)C13—C11—C10121.95 (12)
O2—C1—O1127.24 (18)C13i—C11—C10121.96 (12)
O2—C1—C2118.78 (16)N2—C12—C13124.3 (2)
O1—C1—C2113.98 (15)N2—C12—H12A117.9
C7—C2—C3119.16 (18)C13—C12—H12A117.9
C7—C2—C1121.09 (16)C11—C13—C12120.1 (2)
C3—C2—C1119.76 (17)C11—C13—H13A119.9
C12—N2—C12i115.1 (2)C12—C13—H13A119.9
C12—N2—Ni1iii122.44 (11)N3—C14—C15123.14 (16)
C12i—N2—Ni1iii122.44 (11)N3—C14—H14A118.4
C14—N3—C18117.08 (14)C15—C14—H14A118.4
C14—N3—Ni1124.60 (11)C14—C15—C16119.94 (16)
C18—N3—Ni1118.05 (11)C14—C15—H15A120.0
C4—C3—C2118.4 (2)C16—C15—H15A120.0
C4—C3—H3A120.8C17—C16—C15116.46 (14)
C2—C3—H3A120.8C17—C16—C16iv121.59 (18)
O3—N4—O4122.9 (3)C15—C16—C16iv121.95 (18)
O3—N4—C4118.6 (3)C18—C17—C16119.91 (16)
O4—N4—C4118.5 (2)C18—C17—H17A120.0
C3—C4—C5123.1 (2)C16—C17—H17A120.0
C3—C4—N4118.3 (2)N3—C18—C17123.43 (16)
C5—C4—N4118.5 (2)N3—C18—H18A118.3
C6—C5—C4118.1 (2)C17—C18—H18A118.3
Symmetry codes: (i) x+1, y, z+5/2; (ii) x, y1, z; (iii) x, y+1, z; (iv) x+1/2, y+5/2, z+2.

Experimental details

Crystal data
Chemical formula[Ni(C7H4NO4)2(C10H8N2)2]
Mr703.28
Crystal system, space groupMonoclinic, C2/c
Temperature (K)295
a, b, c (Å)18.1237 (10), 11.3663 (6), 15.0119 (8)
β (°) 95.439 (2)
V3)3078.5 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.70
Crystal size (mm)0.45 × 0.30 × 0.10
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.745, 0.934
No. of measured, independent and
observed [I > 2σ(I)] reflections
13263, 3836, 3470
Rint0.023
(sin θ/λ)max1)0.669
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.101, 1.03
No. of reflections3836
No. of parameters224
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.71, 0.53

Computer programs: APEX2 (Bruker, 2010), SAINT (Bruker, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2010), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This research was supported by the National Science Council, Taiwan (NSC99–2113-M-033–005-MY2).

References

First citationBrandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2000). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChiang, P.-H., Hsu, S.-C. & Lin, C.-H. (2009). Acta Cryst. E65, m1302–m1303.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKitagawa, S., Kitaura, R. & Noro, S. (2004). Angew. Chem. Int. Ed. 43, 2334–2375.  Web of Science CrossRef CAS Google Scholar
First citationLong, J. L. & Yaghi, O. M. (2009). Chem. Soc. Rev. 38, 1213–1214.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds