organic compounds
(Z)-3-Chloromethylidene-5,6-dimethoxy-2-methyl-2,3-dihydro-1,2-benzothiazole 1,1-dioxide
aSchool of Pharmacy, University of Hertfordshire, College Lane, Hatfield AL10 9AB, England, and bSchool of Chemistry, Newcastle University, Newcastle upon Tyne NE1 7RU, England
*Correspondence e-mail: j.p.bassin@herts.ac.uk
The title compound, C11H12ClNO4S, adopts a Z configuration about the C=C double bond. The benzisothiazole system is essentially planar [maximum deviation of 0.235 (2) Å for the S atom]. In the crystal, the molecules stack parallel to each other in the b-axis direction, with interplanar spacings for the benzene and thiazole rings ranging from 3.402 (2) to 3.702 (2) Å.
Related literature
3-Substituted 1,2-benzisothiazole-1,1-dioxides are an important class of heterocycles with a broad range of biological activity, see: Feit et al. (1973); Shutske et al. (1983); Bachman et al. (1978); Vicini et al. (2003); Sharmeen et al. (2001). Various synthetic routes have been developed for the synthesis of 1,2-benzisothiazole-1,1-dioxides, see: Chapman & Peart (1996). Carbonation of ortho-lithiated is the most common method for the preparation of substituted saccharins; however, this results in poor yields (Lombardino, 1971) and is limited by the availability of starting materials. A recent improved synthesis of 1,2-benzisothiazole-1,1-dioxides involved of N-acyl-benzenesulfonamides using LDA, see: Hermann et al. (1992).
Experimental
Crystal data
|
Data collection: APEX2 (Bruker, 2004); cell SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and local programs.
Supporting information
https://doi.org/10.1107/S1600536810049561/jh2234sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810049561/jh2234Isup2.hkl
The title compound was synthesized by reacting 2-(5,6-dimethoxy-2-methyl-1,1-dioxido-2,3-dihydrobenzo [d]isothiazol-3-yl)-1-phenylethanone (1 g; 2.77 mmol), dissolved in pyridine (10 ml), with sodium hypochlorite (10 ml). An
occurred and with time the solution became turbid. The reaction mixture was stirred for a total of 30 minutes and then poured onto crushed ice. The resulting light yellow solid was filtered by suction filtration and air dried. It was re-crystallized from ethanol to afford a creamy white solid which was re-crystallized a second time to give 1 as a colourless crystalline product [yield: 87%, m.p.: 457 K].H atoms were constrained with a riding model, having C—H = 0.95–0.98 Å and Uiso(H) = 1.5eq(H) for methyl groups and 1.2Ueq(C) for other atoms. The largest residual electron density peak lies 1.81 Å from Cl1 and 1.04 Å from C3, but has no structural chemical significance.
3-Substituted 1,2-benzisothiazole-1,1-dioxides are an important class of heterocycles with a broad range of biological activity, see: Feit et al. (1973); Shutske et al. (1983); Bachman et al. (1978); Vicini et al. (2003); Sharmeen et al. (2001). Various synthetic routes have been developed for the synthesis of 1,2-benzisothiazole-1,1-dioxides, see: Chapman & Peart (1996). Carbonation of ortho-lithiated
is the most common method for the preparation of substituted saccharins; however, this results in poor yields (Lombardino, 1971) and is limited by the availability of starting materials. A recent improved synthesis of 1,2-benzisothiazole-1,1-dioxides involved of N-acyl-benzenesulfonamides using LDA, see: Hermann et al. (1992).Data collection: APEX2 (Bruker, 2004); cell
SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and local programs.C11H12ClNO4S | Z = 2 |
Mr = 289.73 | F(000) = 300 |
Triclinic, P1 | Dx = 1.618 Mg m−3 |
Hall symbol: -P 1 | Synchrotron radiation, λ = 0.6937 Å |
a = 7.578 (5) Å | Cell parameters from 974 reflections |
b = 7.904 (6) Å | θ = 2.6–24.5° |
c = 10.002 (7) Å | µ = 0.50 mm−1 |
α = 88.875 (11)° | T = 120 K |
β = 86.293 (10)° | Needle, colourless |
γ = 84.176 (11)° | 0.20 × 0.04 × 0.01 mm |
V = 594.7 (7) Å3 |
Bruker APEXII CCD diffractometer | 2237 independent reflections |
Radiation source: Daresbury SRS station 9.8 | 1671 reflections with I > 2σ(I) |
Silicon 111 monochromator | Rint = 0.038 |
thin–slice ω scans | θmax = 25.0°, θmin = 2.0° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2002) | h = −9→9 |
Tmin = 0.905, Tmax = 0.990 | k = −9→9 |
4651 measured reflections | l = −12→12 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.065 | H-atom parameters constrained |
wR(F2) = 0.177 | w = 1/[σ2(Fo2) + (0.0319P)2 + 1.6618P] where P = (Fo2 + 2Fc2)/3 |
S = 1.02 | (Δ/σ)max < 0.001 |
2237 reflections | Δρmax = 1.29 e Å−3 |
167 parameters | Δρmin = −0.43 e Å−3 |
0 restraints | Extinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.084 (15) |
C11H12ClNO4S | γ = 84.176 (11)° |
Mr = 289.73 | V = 594.7 (7) Å3 |
Triclinic, P1 | Z = 2 |
a = 7.578 (5) Å | Synchrotron radiation, λ = 0.6937 Å |
b = 7.904 (6) Å | µ = 0.50 mm−1 |
c = 10.002 (7) Å | T = 120 K |
α = 88.875 (11)° | 0.20 × 0.04 × 0.01 mm |
β = 86.293 (10)° |
Bruker APEXII CCD diffractometer | 2237 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2002) | 1671 reflections with I > 2σ(I) |
Tmin = 0.905, Tmax = 0.990 | Rint = 0.038 |
4651 measured reflections |
R[F2 > 2σ(F2)] = 0.065 | 0 restraints |
wR(F2) = 0.177 | H-atom parameters constrained |
S = 1.02 | Δρmax = 1.29 e Å−3 |
2237 reflections | Δρmin = −0.43 e Å−3 |
167 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.20714 (16) | 0.29186 (15) | 0.38990 (10) | 0.0286 (4) | |
Cl1 | 0.72928 (18) | 0.01424 (17) | 0.14119 (11) | 0.0402 (4) | |
N1 | 0.3721 (5) | 0.2029 (5) | 0.2891 (3) | 0.0315 (9) | |
C1 | 0.3515 (8) | 0.2190 (8) | 0.1449 (4) | 0.0441 (14) | |
H1A | 0.4303 | 0.3002 | 0.1058 | 0.066* | |
H1B | 0.2279 | 0.2595 | 0.1290 | 0.066* | |
H1C | 0.3823 | 0.1079 | 0.1031 | 0.066* | |
C2 | 0.5330 (6) | 0.1725 (6) | 0.3483 (4) | 0.0277 (10) | |
C3 | 0.6901 (7) | 0.0988 (6) | 0.2982 (4) | 0.0353 (12) | |
H3 | 0.7873 | 0.0931 | 0.3541 | 0.042* | |
C4 | 0.5098 (6) | 0.2358 (5) | 0.4871 (4) | 0.0255 (10) | |
C5 | 0.6343 (6) | 0.2194 (6) | 0.5848 (4) | 0.0270 (10) | |
H5 | 0.7509 | 0.1660 | 0.5653 | 0.032* | |
C6 | 0.5834 (6) | 0.2829 (6) | 0.7102 (4) | 0.0268 (10) | |
C7 | 0.4134 (6) | 0.3697 (6) | 0.7387 (4) | 0.0255 (10) | |
C8 | 0.2894 (6) | 0.3844 (6) | 0.6435 (4) | 0.0271 (10) | |
H8 | 0.1733 | 0.4400 | 0.6615 | 0.033* | |
C9 | 0.3435 (6) | 0.3132 (6) | 0.5189 (4) | 0.0250 (10) | |
C10 | 0.8610 (6) | 0.1808 (6) | 0.7939 (5) | 0.0328 (11) | |
H10A | 0.8510 | 0.0663 | 0.7612 | 0.049* | |
H10B | 0.9205 | 0.1726 | 0.8782 | 0.049* | |
H10C | 0.9306 | 0.2431 | 0.7271 | 0.049* | |
C11 | 0.2152 (7) | 0.5175 (7) | 0.8980 (5) | 0.0354 (11) | |
H11A | 0.1882 | 0.6091 | 0.8329 | 0.053* | |
H11B | 0.2138 | 0.5654 | 0.9878 | 0.053* | |
H11C | 0.1258 | 0.4362 | 0.8971 | 0.053* | |
O1 | 0.0829 (5) | 0.1725 (4) | 0.4255 (3) | 0.0371 (8) | |
O2 | 0.1341 (5) | 0.4480 (4) | 0.3321 (3) | 0.0358 (8) | |
O3 | 0.6882 (4) | 0.2685 (4) | 0.8156 (3) | 0.0316 (8) | |
O4 | 0.3860 (4) | 0.4328 (4) | 0.8638 (3) | 0.0320 (8) |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0357 (7) | 0.0326 (7) | 0.0185 (6) | −0.0065 (5) | −0.0058 (5) | 0.0001 (4) |
Cl1 | 0.0493 (8) | 0.0498 (8) | 0.0204 (6) | 0.0003 (6) | −0.0013 (5) | −0.0052 (5) |
N1 | 0.039 (2) | 0.043 (2) | 0.0123 (17) | −0.0009 (18) | −0.0043 (16) | −0.0005 (16) |
C1 | 0.052 (3) | 0.068 (4) | 0.012 (2) | −0.006 (3) | −0.008 (2) | 0.002 (2) |
C2 | 0.036 (3) | 0.027 (2) | 0.020 (2) | −0.003 (2) | 0.0002 (18) | 0.0020 (18) |
C3 | 0.054 (3) | 0.036 (3) | 0.017 (2) | −0.010 (2) | −0.003 (2) | −0.0034 (19) |
C4 | 0.033 (2) | 0.026 (2) | 0.018 (2) | −0.0053 (19) | −0.0008 (18) | −0.0002 (17) |
C5 | 0.028 (2) | 0.032 (2) | 0.020 (2) | −0.0014 (19) | −0.0004 (18) | 0.0004 (18) |
C6 | 0.029 (2) | 0.034 (2) | 0.019 (2) | −0.0067 (19) | −0.0039 (17) | 0.0038 (18) |
C7 | 0.034 (2) | 0.029 (2) | 0.0132 (19) | −0.0050 (19) | 0.0020 (17) | −0.0001 (16) |
C8 | 0.030 (2) | 0.030 (2) | 0.022 (2) | −0.0059 (19) | −0.0021 (18) | 0.0008 (18) |
C9 | 0.029 (2) | 0.029 (2) | 0.017 (2) | −0.0033 (19) | −0.0032 (17) | 0.0023 (17) |
C10 | 0.034 (3) | 0.036 (3) | 0.029 (2) | −0.001 (2) | −0.011 (2) | 0.001 (2) |
C11 | 0.039 (3) | 0.042 (3) | 0.024 (2) | −0.002 (2) | 0.005 (2) | −0.006 (2) |
O1 | 0.041 (2) | 0.042 (2) | 0.0306 (18) | −0.0136 (16) | −0.0048 (15) | −0.0041 (15) |
O2 | 0.044 (2) | 0.0359 (19) | 0.0287 (17) | −0.0017 (15) | −0.0140 (15) | 0.0039 (14) |
O3 | 0.0333 (18) | 0.0432 (19) | 0.0182 (15) | −0.0007 (15) | −0.0065 (13) | −0.0009 (13) |
O4 | 0.0385 (19) | 0.0414 (19) | 0.0159 (15) | −0.0035 (15) | −0.0008 (13) | −0.0020 (13) |
S1—N1 | 1.661 (4) | C5—C6 | 1.377 (6) |
S1—C9 | 1.725 (4) | C6—C7 | 1.411 (7) |
S1—O1 | 1.424 (4) | C6—O3 | 1.357 (5) |
S1—O2 | 1.427 (3) | C7—C8 | 1.376 (6) |
Cl1—C3 | 1.715 (5) | C7—O4 | 1.352 (5) |
N1—C1 | 1.463 (5) | C8—H8 | 0.950 |
N1—C2 | 1.387 (6) | C8—C9 | 1.398 (6) |
C1—H1A | 0.980 | C10—H10A | 0.980 |
C1—H1B | 0.980 | C10—H10B | 0.980 |
C1—H1C | 0.980 | C10—H10C | 0.980 |
C2—C3 | 1.342 (7) | C10—O3 | 1.424 (6) |
C2—C4 | 1.478 (6) | C11—H11A | 0.980 |
C3—H3 | 0.950 | C11—H11B | 0.980 |
C4—C5 | 1.397 (6) | C11—H11C | 0.980 |
C4—C9 | 1.365 (6) | C11—O4 | 1.420 (6) |
C5—H5 | 0.950 | ||
N1—S1—C9 | 93.3 (2) | C5—C6—C7 | 121.5 (4) |
N1—S1—O1 | 110.3 (2) | C5—C6—O3 | 124.1 (4) |
N1—S1—O2 | 109.9 (2) | C7—C6—O3 | 114.4 (4) |
C9—S1—O1 | 110.6 (2) | C6—C7—C8 | 120.6 (4) |
C9—S1—O2 | 115.1 (2) | C6—C7—O4 | 114.7 (4) |
O1—S1—O2 | 115.4 (2) | C8—C7—O4 | 124.7 (4) |
S1—N1—C1 | 117.1 (3) | C7—C8—H8 | 121.8 |
S1—N1—C2 | 114.2 (3) | C7—C8—C9 | 116.3 (4) |
C1—N1—C2 | 125.1 (4) | H8—C8—C9 | 121.8 |
N1—C1—H1A | 109.5 | S1—C9—C4 | 110.2 (3) |
N1—C1—H1B | 109.5 | S1—C9—C8 | 125.5 (4) |
N1—C1—H1C | 109.5 | C4—C9—C8 | 124.1 (4) |
H1A—C1—H1B | 109.5 | H10A—C10—H10B | 109.5 |
H1A—C1—H1C | 109.5 | H10A—C10—H10C | 109.5 |
H1B—C1—H1C | 109.5 | H10A—C10—O3 | 109.5 |
N1—C2—C3 | 129.9 (4) | H10B—C10—H10C | 109.5 |
N1—C2—C4 | 108.7 (4) | H10B—C10—O3 | 109.5 |
C3—C2—C4 | 121.4 (4) | H10C—C10—O3 | 109.5 |
Cl1—C3—C2 | 125.2 (4) | H11A—C11—H11B | 109.5 |
Cl1—C3—H3 | 117.4 | H11A—C11—H11C | 109.5 |
C2—C3—H3 | 117.4 | H11A—C11—O4 | 109.5 |
C2—C4—C5 | 127.5 (4) | H11B—C11—H11C | 109.5 |
C2—C4—C9 | 113.3 (4) | H11B—C11—O4 | 109.5 |
C5—C4—C9 | 119.3 (4) | H11C—C11—O4 | 109.5 |
C4—C5—H5 | 120.9 | C6—O3—C10 | 117.2 (4) |
C4—C5—C6 | 118.2 (4) | C7—O4—C11 | 116.7 (4) |
H5—C5—C6 | 120.9 | ||
C9—S1—N1—C1 | −155.2 (4) | C5—C6—C7—O4 | −176.5 (4) |
C9—S1—N1—C2 | 4.6 (4) | O3—C6—C7—C8 | −176.0 (4) |
O1—S1—N1—C1 | 91.4 (4) | O3—C6—C7—O4 | 3.6 (6) |
O1—S1—N1—C2 | −108.8 (3) | C6—C7—C8—C9 | −1.5 (6) |
O2—S1—N1—C1 | −37.0 (4) | O4—C7—C8—C9 | 178.9 (4) |
O2—S1—N1—C2 | 122.8 (3) | C2—C4—C9—S1 | 6.2 (5) |
S1—N1—C2—C3 | 177.8 (4) | C2—C4—C9—C8 | −179.5 (4) |
S1—N1—C2—C4 | −1.8 (5) | C5—C4—C9—S1 | −171.9 (3) |
C1—N1—C2—C3 | −24.3 (8) | C5—C4—C9—C8 | 2.5 (7) |
C1—N1—C2—C4 | 156.1 (5) | C7—C8—C9—S1 | 171.8 (3) |
N1—C2—C3—Cl1 | −2.1 (7) | C7—C8—C9—C4 | −1.6 (7) |
C4—C2—C3—Cl1 | 177.5 (3) | N1—S1—C9—C4 | −6.2 (3) |
N1—C2—C4—C5 | 174.9 (4) | N1—S1—C9—C8 | 179.6 (4) |
N1—C2—C4—C9 | −2.9 (5) | O1—S1—C9—C4 | 107.0 (3) |
C3—C2—C4—C5 | −4.8 (7) | O1—S1—C9—C8 | −67.3 (4) |
C3—C2—C4—C9 | 177.4 (4) | O2—S1—C9—C4 | −120.0 (3) |
C2—C4—C5—C6 | −177.8 (4) | O2—S1—C9—C8 | 65.8 (4) |
C9—C4—C5—C6 | 0.0 (6) | C5—C6—O3—C10 | −0.5 (6) |
C4—C5—C6—C7 | −3.1 (7) | C7—C6—O3—C10 | 179.4 (4) |
C4—C5—C6—O3 | 176.8 (4) | C6—C7—O4—C11 | −178.5 (4) |
C5—C6—C7—C8 | 3.9 (7) | C8—C7—O4—C11 | 1.1 (6) |
Experimental details
Crystal data | |
Chemical formula | C11H12ClNO4S |
Mr | 289.73 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 120 |
a, b, c (Å) | 7.578 (5), 7.904 (6), 10.002 (7) |
α, β, γ (°) | 88.875 (11), 86.293 (10), 84.176 (11) |
V (Å3) | 594.7 (7) |
Z | 2 |
Radiation type | Synchrotron, λ = 0.6937 Å |
µ (mm−1) | 0.50 |
Crystal size (mm) | 0.20 × 0.04 × 0.01 |
Data collection | |
Diffractometer | Bruker APEXII CCD |
Absorption correction | Multi-scan (SADABS; Sheldrick, 2002) |
Tmin, Tmax | 0.905, 0.990 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 4651, 2237, 1671 |
Rint | 0.038 |
(sin θ/λ)max (Å−1) | 0.609 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.065, 0.177, 1.02 |
No. of reflections | 2237 |
No. of parameters | 167 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 1.29, −0.43 |
Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXTL (Sheldrick, 2008) and local programs.
Acknowledgements
We thank the EPSRC for funding the National Crystallography Service, and STFC (formerly CCLRC) for access to synchrotron facilities.
References
Bachman, G. L. J. C., Baker, J. W. & Roman, D. P. (1978). J. Pharm. Sci. 67, 1323–1325. CrossRef CAS PubMed Web of Science Google Scholar
Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chapman, R. F. & Peart, B. J. (1996). In Comprehensive Heterocyclic Chemistry, edited by A. R. Katritzky, C. W. Rees, E. F. Scriven & I Shinkai. Oxford: Pergamon Press. Google Scholar
Feit, P. W., Ole, B., Nielsen, T. & Anderson, N. R. (1973). J. Med. Chem. 16, 127–130. CrossRef CAS PubMed Web of Science Google Scholar
Hermann, C. K. F., Campbell, J. A., Greenwood, T. D., Lewis, J. A. & Wolfe, J. F. (1992). J. Org. Chem. 57, 5328–5334. CrossRef CAS Web of Science Google Scholar
Lombardino, J. G. (1971). J. Org. Chem. 36, 1843–1845. CrossRef CAS Web of Science Google Scholar
Sharmeen, L., McQuade, T., Heldsinger, A., Gogliotti, R., Domagala, J. & Gracheck, S. (2001). Antiviral Res. 49, 101–104. Web of Science CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2002). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Shutske, G. M., Allen, R. C., Foersch, M. F., Setescak, L. L. & Wilker, J. C. (1983). J. Med. Chem. 26, 1307–1311. CrossRef CAS PubMed Web of Science Google Scholar
Vicini, P., Geronikaki, A., Incerti, M., Busonera, B., Poni, G., Alba Cabras, C. & La Colla, P. (2003). Bioorg. Med. Chem. 11, 4785–4789. Web of Science CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.