organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Z)-3-Chloro­methyl­­idene-5,6-dimeth­­oxy-2-methyl-2,3-di­hydro-1,2-benzo­thia­zole 1,1-dioxide

aSchool of Pharmacy, University of Hertfordshire, College Lane, Hatfield AL10 9AB, England, and bSchool of Chemistry, Newcastle University, Newcastle upon Tyne NE1 7RU, England
*Correspondence e-mail: j.p.bassin@herts.ac.uk

(Received 17 November 2010; accepted 26 November 2010; online 4 December 2010)

The title compound, C11H12ClNO4S, adopts a Z configuration about the C=C double bond. The benzisothia­zole system is essentially planar [maximum deviation of 0.235 (2) Å for the S atom]. In the crystal, the mol­ecules stack parallel to each other in the b-axis direction, with inter­planar spacings for the benzene and thia­zole rings ranging from 3.402 (2) to 3.702 (2) Å.

Related literature

3-Substituted 1,2-benzisothia­zole-1,1-dioxides are an important class of heterocycles with a broad range of biological activity, see: Feit et al. (1973[Feit, P. W., Ole, B., Nielsen, T. & Anderson, N. R. (1973). J. Med. Chem. 16, 127-130.]); Shutske et al. (1983[Shutske, G. M., Allen, R. C., Foersch, M. F., Setescak, L. L. & Wilker, J. C. (1983). J. Med. Chem. 26, 1307-1311.]); Bachman et al. (1978[Bachman, G. L. J. C., Baker, J. W. & Roman, D. P. (1978). J. Pharm. Sci. 67, 1323-1325.]); Vicini et al. (2003[Vicini, P., Geronikaki, A., Incerti, M., Busonera, B., Poni, G., Alba Cabras, C. & La Colla, P. (2003). Bioorg. Med. Chem. 11, 4785-4789.]); Sharmeen et al. (2001[Sharmeen, L., McQuade, T., Heldsinger, A., Gogliotti, R., Domagala, J. & Gracheck, S. (2001). Antiviral Res. 49, 101-104.]). Various synthetic routes have been developed for the synthesis of 1,2-benzisothia­zole-1,1-dioxides, see: Chapman & Peart (1996[Chapman, R. F. & Peart, B. J. (1996). In Comprehensive Heterocyclic Chemistry, edited by A. R. Katritzky, C. W. Rees, E. F. Scriven & I Shinkai. Oxford: Pergamon Press.]). Carbonation of ortho-lithia­ted sulfonamides is the most common method for the preparation of substituted saccharins; however, this results in poor yields (Lombardino, 1971[Lombardino, J. G. (1971). J. Org. Chem. 36, 1843-1845.]) and is limited by the availability of starting materials. A recent improved synthesis of 1,2-benzisothia­zole-1,1-dioxides involved cyclization of N-acyl-benzene­sulfonamides using LDA, see: Hermann et al. (1992[Hermann, C. K. F., Campbell, J. A., Greenwood, T. D., Lewis, J. A. & Wolfe, J. F. (1992). J. Org. Chem. 57, 5328-5334.]).

[Scheme 1]

Experimental

Crystal data
  • C11H12ClNO4S

  • Mr = 289.73

  • Triclinic, [P \overline 1]

  • a = 7.578 (5) Å

  • b = 7.904 (6) Å

  • c = 10.002 (7) Å

  • α = 88.875 (11)°

  • β = 86.293 (10)°

  • γ = 84.176 (11)°

  • V = 594.7 (7) Å3

  • Z = 2

  • Synchrotron radiation

  • λ = 0.6937 Å

  • μ = 0.50 mm−1

  • T = 120 K

  • 0.20 × 0.04 × 0.01 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2002[Sheldrick, G. M. (2002). SADABS. University of Göttingen, Germany.]) Tmin = 0.905, Tmax = 0.990

  • 4651 measured reflections

  • 2237 independent reflections

  • 1671 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.065

  • wR(F2) = 0.177

  • S = 1.02

  • 2237 reflections

  • 167 parameters

  • H-atom parameters constrained

  • Δρmax = 1.29 e Å−3

  • Δρmin = −0.43 e Å−3

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and local programs.

Supporting information


Related literature top

3-Substituted 1,2-benzisothiazole-1,1-dioxides are an important class of heterocycles with a broad range of biological activity, see: Feit et al. (1973); Shutske et al. (1983); Bachman et al. (1978); Vicini et al. (2003); Sharmeen et al. (2001). Various synthetic routes have been developed for the synthesis of 1,2-benzisothiazole-1,1-dioxides, see: Chapman & Peart (1996). Carbonation of ortho-lithiated sulfonamides is the most common method for the preparation of substituted saccharins; however, this results in poor yields (Lombardino, 1971) and is limited by the availability of starting materials. A recent improved synthesis of 1,2-benzisothiazole-1,1-dioxides involved cyclization of N-acyl-benzenesulfonamides using LDA, see: Hermann et al. (1992).

Experimental top

The title compound was synthesized by reacting 2-(5,6-dimethoxy-2-methyl-1,1-dioxido-2,3-dihydrobenzo [d]isothiazol-3-yl)-1-phenylethanone (1 g; 2.77 mmol), dissolved in pyridine (10 ml), with sodium hypochlorite (10 ml). An exothermic reaction occurred and with time the solution became turbid. The reaction mixture was stirred for a total of 30 minutes and then poured onto crushed ice. The resulting light yellow solid was filtered by suction filtration and air dried. It was re-crystallized from ethanol to afford a creamy white solid which was re-crystallized a second time to give 1 as a colourless crystalline product [yield: 87%, m.p.: 457 K].

Refinement top

H atoms were constrained with a riding model, having C—H = 0.95–0.98 Å and Uiso(H) = 1.5eq(H) for methyl groups and 1.2Ueq(C) for other atoms. The largest residual electron density peak lies 1.81 Å from Cl1 and 1.04 Å from C3, but has no structural chemical significance.

Structure description top

3-Substituted 1,2-benzisothiazole-1,1-dioxides are an important class of heterocycles with a broad range of biological activity, see: Feit et al. (1973); Shutske et al. (1983); Bachman et al. (1978); Vicini et al. (2003); Sharmeen et al. (2001). Various synthetic routes have been developed for the synthesis of 1,2-benzisothiazole-1,1-dioxides, see: Chapman & Peart (1996). Carbonation of ortho-lithiated sulfonamides is the most common method for the preparation of substituted saccharins; however, this results in poor yields (Lombardino, 1971) and is limited by the availability of starting materials. A recent improved synthesis of 1,2-benzisothiazole-1,1-dioxides involved cyclization of N-acyl-benzenesulfonamides using LDA, see: Hermann et al. (1992).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and local programs.

Figures top
[Figure 1] Fig. 1. Ellipsoid plot.
(Z)-3-Chloromethylidene-5,6-dimethoxy-2-methyl-2,3- dihydro-1,2-benzothiazole 1,1-dioxide top
Crystal data top
C11H12ClNO4SZ = 2
Mr = 289.73F(000) = 300
Triclinic, P1Dx = 1.618 Mg m3
Hall symbol: -P 1Synchrotron radiation, λ = 0.6937 Å
a = 7.578 (5) ÅCell parameters from 974 reflections
b = 7.904 (6) Åθ = 2.6–24.5°
c = 10.002 (7) ŵ = 0.50 mm1
α = 88.875 (11)°T = 120 K
β = 86.293 (10)°Needle, colourless
γ = 84.176 (11)°0.20 × 0.04 × 0.01 mm
V = 594.7 (7) Å3
Data collection top
Bruker APEXII CCD
diffractometer
2237 independent reflections
Radiation source: Daresbury SRS station 9.81671 reflections with I > 2σ(I)
Silicon 111 monochromatorRint = 0.038
thin–slice ω scansθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
h = 99
Tmin = 0.905, Tmax = 0.990k = 99
4651 measured reflectionsl = 1212
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.065H-atom parameters constrained
wR(F2) = 0.177 w = 1/[σ2(Fo2) + (0.0319P)2 + 1.6618P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
2237 reflectionsΔρmax = 1.29 e Å3
167 parametersΔρmin = 0.43 e Å3
0 restraintsExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.084 (15)
Crystal data top
C11H12ClNO4Sγ = 84.176 (11)°
Mr = 289.73V = 594.7 (7) Å3
Triclinic, P1Z = 2
a = 7.578 (5) ÅSynchrotron radiation, λ = 0.6937 Å
b = 7.904 (6) ŵ = 0.50 mm1
c = 10.002 (7) ÅT = 120 K
α = 88.875 (11)°0.20 × 0.04 × 0.01 mm
β = 86.293 (10)°
Data collection top
Bruker APEXII CCD
diffractometer
2237 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
1671 reflections with I > 2σ(I)
Tmin = 0.905, Tmax = 0.990Rint = 0.038
4651 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0650 restraints
wR(F2) = 0.177H-atom parameters constrained
S = 1.02Δρmax = 1.29 e Å3
2237 reflectionsΔρmin = 0.43 e Å3
167 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.20714 (16)0.29186 (15)0.38990 (10)0.0286 (4)
Cl10.72928 (18)0.01424 (17)0.14119 (11)0.0402 (4)
N10.3721 (5)0.2029 (5)0.2891 (3)0.0315 (9)
C10.3515 (8)0.2190 (8)0.1449 (4)0.0441 (14)
H1A0.43030.30020.10580.066*
H1B0.22790.25950.12900.066*
H1C0.38230.10790.10310.066*
C20.5330 (6)0.1725 (6)0.3483 (4)0.0277 (10)
C30.6901 (7)0.0988 (6)0.2982 (4)0.0353 (12)
H30.78730.09310.35410.042*
C40.5098 (6)0.2358 (5)0.4871 (4)0.0255 (10)
C50.6343 (6)0.2194 (6)0.5848 (4)0.0270 (10)
H50.75090.16600.56530.032*
C60.5834 (6)0.2829 (6)0.7102 (4)0.0268 (10)
C70.4134 (6)0.3697 (6)0.7387 (4)0.0255 (10)
C80.2894 (6)0.3844 (6)0.6435 (4)0.0271 (10)
H80.17330.44000.66150.033*
C90.3435 (6)0.3132 (6)0.5189 (4)0.0250 (10)
C100.8610 (6)0.1808 (6)0.7939 (5)0.0328 (11)
H10A0.85100.06630.76120.049*
H10B0.92050.17260.87820.049*
H10C0.93060.24310.72710.049*
C110.2152 (7)0.5175 (7)0.8980 (5)0.0354 (11)
H11A0.18820.60910.83290.053*
H11B0.21380.56540.98780.053*
H11C0.12580.43620.89710.053*
O10.0829 (5)0.1725 (4)0.4255 (3)0.0371 (8)
O20.1341 (5)0.4480 (4)0.3321 (3)0.0358 (8)
O30.6882 (4)0.2685 (4)0.8156 (3)0.0316 (8)
O40.3860 (4)0.4328 (4)0.8638 (3)0.0320 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0357 (7)0.0326 (7)0.0185 (6)0.0065 (5)0.0058 (5)0.0001 (4)
Cl10.0493 (8)0.0498 (8)0.0204 (6)0.0003 (6)0.0013 (5)0.0052 (5)
N10.039 (2)0.043 (2)0.0123 (17)0.0009 (18)0.0043 (16)0.0005 (16)
C10.052 (3)0.068 (4)0.012 (2)0.006 (3)0.008 (2)0.002 (2)
C20.036 (3)0.027 (2)0.020 (2)0.003 (2)0.0002 (18)0.0020 (18)
C30.054 (3)0.036 (3)0.017 (2)0.010 (2)0.003 (2)0.0034 (19)
C40.033 (2)0.026 (2)0.018 (2)0.0053 (19)0.0008 (18)0.0002 (17)
C50.028 (2)0.032 (2)0.020 (2)0.0014 (19)0.0004 (18)0.0004 (18)
C60.029 (2)0.034 (2)0.019 (2)0.0067 (19)0.0039 (17)0.0038 (18)
C70.034 (2)0.029 (2)0.0132 (19)0.0050 (19)0.0020 (17)0.0001 (16)
C80.030 (2)0.030 (2)0.022 (2)0.0059 (19)0.0021 (18)0.0008 (18)
C90.029 (2)0.029 (2)0.017 (2)0.0033 (19)0.0032 (17)0.0023 (17)
C100.034 (3)0.036 (3)0.029 (2)0.001 (2)0.011 (2)0.001 (2)
C110.039 (3)0.042 (3)0.024 (2)0.002 (2)0.005 (2)0.006 (2)
O10.041 (2)0.042 (2)0.0306 (18)0.0136 (16)0.0048 (15)0.0041 (15)
O20.044 (2)0.0359 (19)0.0287 (17)0.0017 (15)0.0140 (15)0.0039 (14)
O30.0333 (18)0.0432 (19)0.0182 (15)0.0007 (15)0.0065 (13)0.0009 (13)
O40.0385 (19)0.0414 (19)0.0159 (15)0.0035 (15)0.0008 (13)0.0020 (13)
Geometric parameters (Å, º) top
S1—N11.661 (4)C5—C61.377 (6)
S1—C91.725 (4)C6—C71.411 (7)
S1—O11.424 (4)C6—O31.357 (5)
S1—O21.427 (3)C7—C81.376 (6)
Cl1—C31.715 (5)C7—O41.352 (5)
N1—C11.463 (5)C8—H80.950
N1—C21.387 (6)C8—C91.398 (6)
C1—H1A0.980C10—H10A0.980
C1—H1B0.980C10—H10B0.980
C1—H1C0.980C10—H10C0.980
C2—C31.342 (7)C10—O31.424 (6)
C2—C41.478 (6)C11—H11A0.980
C3—H30.950C11—H11B0.980
C4—C51.397 (6)C11—H11C0.980
C4—C91.365 (6)C11—O41.420 (6)
C5—H50.950
N1—S1—C993.3 (2)C5—C6—C7121.5 (4)
N1—S1—O1110.3 (2)C5—C6—O3124.1 (4)
N1—S1—O2109.9 (2)C7—C6—O3114.4 (4)
C9—S1—O1110.6 (2)C6—C7—C8120.6 (4)
C9—S1—O2115.1 (2)C6—C7—O4114.7 (4)
O1—S1—O2115.4 (2)C8—C7—O4124.7 (4)
S1—N1—C1117.1 (3)C7—C8—H8121.8
S1—N1—C2114.2 (3)C7—C8—C9116.3 (4)
C1—N1—C2125.1 (4)H8—C8—C9121.8
N1—C1—H1A109.5S1—C9—C4110.2 (3)
N1—C1—H1B109.5S1—C9—C8125.5 (4)
N1—C1—H1C109.5C4—C9—C8124.1 (4)
H1A—C1—H1B109.5H10A—C10—H10B109.5
H1A—C1—H1C109.5H10A—C10—H10C109.5
H1B—C1—H1C109.5H10A—C10—O3109.5
N1—C2—C3129.9 (4)H10B—C10—H10C109.5
N1—C2—C4108.7 (4)H10B—C10—O3109.5
C3—C2—C4121.4 (4)H10C—C10—O3109.5
Cl1—C3—C2125.2 (4)H11A—C11—H11B109.5
Cl1—C3—H3117.4H11A—C11—H11C109.5
C2—C3—H3117.4H11A—C11—O4109.5
C2—C4—C5127.5 (4)H11B—C11—H11C109.5
C2—C4—C9113.3 (4)H11B—C11—O4109.5
C5—C4—C9119.3 (4)H11C—C11—O4109.5
C4—C5—H5120.9C6—O3—C10117.2 (4)
C4—C5—C6118.2 (4)C7—O4—C11116.7 (4)
H5—C5—C6120.9
C9—S1—N1—C1155.2 (4)C5—C6—C7—O4176.5 (4)
C9—S1—N1—C24.6 (4)O3—C6—C7—C8176.0 (4)
O1—S1—N1—C191.4 (4)O3—C6—C7—O43.6 (6)
O1—S1—N1—C2108.8 (3)C6—C7—C8—C91.5 (6)
O2—S1—N1—C137.0 (4)O4—C7—C8—C9178.9 (4)
O2—S1—N1—C2122.8 (3)C2—C4—C9—S16.2 (5)
S1—N1—C2—C3177.8 (4)C2—C4—C9—C8179.5 (4)
S1—N1—C2—C41.8 (5)C5—C4—C9—S1171.9 (3)
C1—N1—C2—C324.3 (8)C5—C4—C9—C82.5 (7)
C1—N1—C2—C4156.1 (5)C7—C8—C9—S1171.8 (3)
N1—C2—C3—Cl12.1 (7)C7—C8—C9—C41.6 (7)
C4—C2—C3—Cl1177.5 (3)N1—S1—C9—C46.2 (3)
N1—C2—C4—C5174.9 (4)N1—S1—C9—C8179.6 (4)
N1—C2—C4—C92.9 (5)O1—S1—C9—C4107.0 (3)
C3—C2—C4—C54.8 (7)O1—S1—C9—C867.3 (4)
C3—C2—C4—C9177.4 (4)O2—S1—C9—C4120.0 (3)
C2—C4—C5—C6177.8 (4)O2—S1—C9—C865.8 (4)
C9—C4—C5—C60.0 (6)C5—C6—O3—C100.5 (6)
C4—C5—C6—C73.1 (7)C7—C6—O3—C10179.4 (4)
C4—C5—C6—O3176.8 (4)C6—C7—O4—C11178.5 (4)
C5—C6—C7—C83.9 (7)C8—C7—O4—C111.1 (6)

Experimental details

Crystal data
Chemical formulaC11H12ClNO4S
Mr289.73
Crystal system, space groupTriclinic, P1
Temperature (K)120
a, b, c (Å)7.578 (5), 7.904 (6), 10.002 (7)
α, β, γ (°)88.875 (11), 86.293 (10), 84.176 (11)
V3)594.7 (7)
Z2
Radiation typeSynchrotron, λ = 0.6937 Å
µ (mm1)0.50
Crystal size (mm)0.20 × 0.04 × 0.01
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2002)
Tmin, Tmax0.905, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
4651, 2237, 1671
Rint0.038
(sin θ/λ)max1)0.609
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.065, 0.177, 1.02
No. of reflections2237
No. of parameters167
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.29, 0.43

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXTL (Sheldrick, 2008) and local programs.

 

Acknowledgements

We thank the EPSRC for funding the National Crystallography Service, and STFC (formerly CCLRC) for access to synchrotron facilities.

References

First citationBachman, G. L. J. C., Baker, J. W. & Roman, D. P. (1978). J. Pharm. Sci. 67, 1323–1325.  CrossRef CAS PubMed Web of Science Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChapman, R. F. & Peart, B. J. (1996). In Comprehensive Heterocyclic Chemistry, edited by A. R. Katritzky, C. W. Rees, E. F. Scriven & I Shinkai. Oxford: Pergamon Press.  Google Scholar
First citationFeit, P. W., Ole, B., Nielsen, T. & Anderson, N. R. (1973). J. Med. Chem. 16, 127–130.  CrossRef CAS PubMed Web of Science Google Scholar
First citationHermann, C. K. F., Campbell, J. A., Greenwood, T. D., Lewis, J. A. & Wolfe, J. F. (1992). J. Org. Chem. 57, 5328–5334.  CrossRef CAS Web of Science Google Scholar
First citationLombardino, J. G. (1971). J. Org. Chem. 36, 1843–1845.  CrossRef CAS Web of Science Google Scholar
First citationSharmeen, L., McQuade, T., Heldsinger, A., Gogliotti, R., Domagala, J. & Gracheck, S. (2001). Antiviral Res. 49, 101–104.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2002). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShutske, G. M., Allen, R. C., Foersch, M. F., Setescak, L. L. & Wilker, J. C. (1983). J. Med. Chem. 26, 1307–1311.  CrossRef CAS PubMed Web of Science Google Scholar
First citationVicini, P., Geronikaki, A., Incerti, M., Busonera, B., Poni, G., Alba Cabras, C. & La Colla, P. (2003). Bioorg. Med. Chem. 11, 4785–4789.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds