metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di-μ-chlorido-bis­­{[2-(benzyl­imino­meth­yl)pyridine-κ2N,N′]chloridomercury(II)} di­chloridomercury(II)

aDepartment of Chemistry Education and Interdisciplinary Program of Advanced Information and Display Materials, Pusan National University, Busan 609-735, Republic of Korea, bDepartment of Chemistry, Pusan National University, Busan 609-735, Republic of Korea, and cDepartment of Chemistry, Chungnam National University, Daejeon 305-764, Republic of Korea
*Correspondence e-mail: skkang@cnu.ac.kr

(Received 22 November 2010; accepted 3 December 2010; online 8 December 2010)

The HgII ion in the title centrosymmetric dinuclear complex, [Hg2Cl4(C13H12N2)2]·[HgCl2], adopts a distorted square-pyramidal geometry, being coordinated by the bis-chelating N-heterocyclic ligand, two bridging Cl atoms and one terminal Cl atom. One of the bridging Hg—Cl bonds [2.8428 (11) Å] is significantly longer than the other [2.5327 (10) Å]. In the crystal, there are weak ππ inter­actions [centroid–centroid distance = 3.630 (3) Å] between the aromatic rings of the discrete units. The HgCl2 adduct molecule is located on an inversion centre and has an Hg—Cl bond length of 2.2875 (11) Å.

Related literature

For general background to luminescent mercury compounds, see: Elena et al. (2006[Elena, L.-T., Antoina, M. & Ceser, J. P. (2006). Polyhedron, 25, 1464-1470.]); Durantaye et al. (2006[Durantaye, L. D. L., McCormick, T., Liu, X.-Y. & Wang, S. (2006). Dalton Trans. pp. 5675-5682.]); Fan et al. (2009[Fan, R., Yang, Y., Yin, Y., Hasi, W. & Mu, Y. (2009). Inorg. Chem. 48, 6034-6943.]); He et al. (2008[He, G., Zhao, Y., He, C., Liu, Y. & Duan, C. (2008). Inorg. Chem. 47, 5169-5176.]). For syntheses and structures of Hg(II) complexes, see: Kim & Kang (2010[Kim, Y.-I. & Kang, S. K. (2010). Acta Cryst. E66, m1251.]); Kim et al. (2010[Kim, Y.-I., Seo, H.-J., Kim, J.-H., Lee, Y.-S. & Kang, S. K. (2010). Acta Cryst. E66, m124.]).

[Scheme 1]

Experimental

Crystal data
  • [Hg2Cl4(C13H12N2)2]·[HgCl2]

  • Mr = 1206.96

  • Monoclinic, P 21 /n

  • a = 10.1329 (2) Å

  • b = 8.1141 (1) Å

  • c = 19.0591 (2) Å

  • β = 92.939 (1)°

  • V = 1564.97 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 15.22 mm−1

  • T = 295 K

  • 0.17 × 0.13 × 0.12 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.104, Tmax = 0.158

  • 16269 measured reflections

  • 3892 independent reflections

  • 3279 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.025

  • wR(F2) = 0.055

  • S = 1.04

  • 3892 reflections

  • 178 parameters

  • H-atom parameters constrained

  • Δρmax = 1.21 e Å−3

  • Δρmin = −1.18 e Å−3

Table 1
Selected geometric parameters (Å, °)

Hg1—N8 2.347 (4)
Hg1—N1 2.373 (3)
Hg1—Cl1 2.4338 (12)
N8—Hg1—N1 70.74 (12)
N8—Hg1—Cl1 113.97 (9)
N1—Hg1—Cl1 106.32 (9)
N8—Hg1—Cl2 95.92 (9)
N1—Hg1—Cl2 138.01 (8)
Cl1—Hg1—Cl2 115.34 (4)
N8—Hg1—Cl2i 142.19 (9)
N1—Hg1—Cl2i 83.87 (8)
Cl1—Hg1—Cl2i 99.58 (4)
Cl2—Hg1—Cl2i 84.37 (3)
Symmetry code: (i) -x, -y+1, -z.

Data collection: SMART (Bruker, 2002[Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Much attention has been paid to the design and synthesis of luminescent mercury compounds for the detection and extraction of the mercury (Elena et al., 2006; Durantaye et al., 2006), among which, Hg(II) complexes with pyridine-containing ligands are of importance for their high luminescent efficiency (Fan et al., 2009). In a previous report (Kim & Kang, 2010), we presented a structure of white Hg(II) complex with benzyl(2-pyridylmethylene)amine(bpma), (bpma)HgCl2, concerning its luminescence behavior (Kim et al., 2010; He et al., 2008). The reported white crystals were obtained after recrystallization from methanol solution in a day. However, we could find another yellow crystals in 3–4 days in the same solution. Herein, we report the structure of separated yellow crystals, [(bpma)HgCl2]2 HgCl2.

In (I), Fig. 1, the Hg1II ion is coordinated by two N atoms of heterocyclic ligand, two bridging Cl atoms and one terminal Cl atom. The angles around Hg1 atoms are in the range of 70.74 (12) – 142.19 (9)°, suggesting the coordination geometry around the Hg1 atom is described as a distorted square pyrdmid with an apical position of Cl1 atom. One of the bridging Hg1—Cl bonds (2.843 (1) Å) is significantly longer than the other (2.533 (1) Å). The phenyl ring on the bpma ligand is twisted out of the pyridine plane, and form a dihedral angel of 81.21 (11)°. In the crystal structure, there are weak π-π interactions [centroid-centroid distance = 3.630 (3) Å] between the aromatic rings of the discrete units.

Related literature top

For general background to luminescent mercury compounds, see: Elena et al. (2006); Durantaye et al. (2006); Fan et al. (2009); He et al. (2008). For syntheses and structures of Hg(II) complexes, see: Kim & Kang (2010); Kim et al. (2010).

Experimental top

Benzyl(2-pyridylmethylene)amine (bpma) was synthesized from the reaction of 2-pyridinecarboxylaldehyde and benzylamine. And bpma reacted with mercury dichloride in methanol to yield the titled complex. The yellow crystals were separated from white crystals in 3–4 days from methanol solution. The detailed synthetic method was previously reported (Kim & Kang, 2010).

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 - 0.97 Å, and with Uiso(H) = 1.2Ueq(C). The maximum and minimum residual electron density peaks were located at 0.79 and 0.63 Å, respectively, from the Hg1 atom.

Structure description top

Much attention has been paid to the design and synthesis of luminescent mercury compounds for the detection and extraction of the mercury (Elena et al., 2006; Durantaye et al., 2006), among which, Hg(II) complexes with pyridine-containing ligands are of importance for their high luminescent efficiency (Fan et al., 2009). In a previous report (Kim & Kang, 2010), we presented a structure of white Hg(II) complex with benzyl(2-pyridylmethylene)amine(bpma), (bpma)HgCl2, concerning its luminescence behavior (Kim et al., 2010; He et al., 2008). The reported white crystals were obtained after recrystallization from methanol solution in a day. However, we could find another yellow crystals in 3–4 days in the same solution. Herein, we report the structure of separated yellow crystals, [(bpma)HgCl2]2 HgCl2.

In (I), Fig. 1, the Hg1II ion is coordinated by two N atoms of heterocyclic ligand, two bridging Cl atoms and one terminal Cl atom. The angles around Hg1 atoms are in the range of 70.74 (12) – 142.19 (9)°, suggesting the coordination geometry around the Hg1 atom is described as a distorted square pyrdmid with an apical position of Cl1 atom. One of the bridging Hg1—Cl bonds (2.843 (1) Å) is significantly longer than the other (2.533 (1) Å). The phenyl ring on the bpma ligand is twisted out of the pyridine plane, and form a dihedral angel of 81.21 (11)°. In the crystal structure, there are weak π-π interactions [centroid-centroid distance = 3.630 (3) Å] between the aromatic rings of the discrete units.

For general background to luminescent mercury compounds, see: Elena et al. (2006); Durantaye et al. (2006); Fan et al. (2009); He et al. (2008). For syntheses and structures of Hg(II) complexes, see: Kim & Kang (2010); Kim et al. (2010).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I), showing the atom-numbering scheme and 30% probability ellipsoids [symmetry code: (i) -x, -y + 1, -z; (ii) -x, -y + 2, -z].
Di-µ-chlorido-bis{[2-(benzyliminomethyl)pyridine- κ2N,N']chloridomercury(II)} dichloridomercury(II) top
Crystal data top
[Hg2Cl4(C13H12N2)2]·[HgCl2]F(000) = 1100
Mr = 1206.96Dx = 2.561 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 5840 reflections
a = 10.1329 (2) Åθ = 2.2–28.0°
b = 8.1141 (1) ŵ = 15.22 mm1
c = 19.0591 (2) ÅT = 295 K
β = 92.939 (1)°Block, yellow
V = 1564.97 (4) Å30.17 × 0.13 × 0.12 mm
Z = 2
Data collection top
Bruker SMART CCD area-detector
diffractometer
3279 reflections with I > 2σ(I)
φ and ω scansRint = 0.027
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
θmax = 28.3°, θmin = 2.1°
Tmin = 0.104, Tmax = 0.158h = 1310
16269 measured reflectionsk = 1010
3892 independent reflectionsl = 2525
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.025 w = 1/[σ2(Fo2) + (0.025P)2 + 1.1429P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.055(Δ/σ)max < 0.001
S = 1.04Δρmax = 1.21 e Å3
3892 reflectionsΔρmin = 1.18 e Å3
178 parameters
Crystal data top
[Hg2Cl4(C13H12N2)2]·[HgCl2]V = 1564.97 (4) Å3
Mr = 1206.96Z = 2
Monoclinic, P21/nMo Kα radiation
a = 10.1329 (2) ŵ = 15.22 mm1
b = 8.1141 (1) ÅT = 295 K
c = 19.0591 (2) Å0.17 × 0.13 × 0.12 mm
β = 92.939 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3892 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
3279 reflections with I > 2σ(I)
Tmin = 0.104, Tmax = 0.158Rint = 0.027
16269 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0250 restraints
wR(F2) = 0.055H-atom parameters constrained
S = 1.04Δρmax = 1.21 e Å3
3892 reflectionsΔρmin = 1.18 e Å3
178 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Hg10.092853 (16)0.45122 (2)0.092463 (9)0.04770 (6)
Cl10.02059 (13)0.19456 (15)0.14429 (6)0.0625 (3)
Cl20.09059 (10)0.64548 (14)0.05096 (6)0.0503 (3)
N10.3257 (3)0.4310 (4)0.08642 (17)0.0395 (7)
C20.3903 (5)0.3289 (6)0.0459 (2)0.0515 (11)
H20.34210.26360.01370.062*
C30.5252 (5)0.3161 (7)0.0498 (3)0.0637 (14)
H30.56710.24310.02060.076*
C40.5977 (5)0.4107 (8)0.0965 (3)0.0700 (17)
H40.68950.40350.09970.084*
C50.5319 (5)0.5178 (7)0.1392 (3)0.0623 (14)
H50.57890.58390.17160.075*
C60.3952 (4)0.5253 (5)0.1331 (2)0.0422 (9)
C70.3196 (4)0.6329 (5)0.1779 (2)0.0457 (10)
H70.36440.70150.21010.055*
N80.1950 (4)0.6345 (4)0.17363 (18)0.0451 (8)
C90.1223 (6)0.7461 (6)0.2188 (3)0.0658 (14)
H9A0.07340.82590.18990.079*
H9B0.18440.80570.24980.079*
C100.0277 (4)0.6506 (6)0.2621 (2)0.0495 (10)
C110.1060 (5)0.6560 (8)0.2474 (3)0.0740 (16)
H110.14040.71770.20960.089*
C120.1907 (5)0.5681 (11)0.2896 (3)0.090 (2)
H120.28160.57230.280.108*
C130.1409 (6)0.4767 (8)0.3446 (3)0.0747 (17)
H130.19750.41820.37240.09*
C140.0083 (6)0.4711 (6)0.3589 (3)0.0625 (13)
H140.02590.40810.39630.075*
C150.0756 (5)0.5576 (5)0.3184 (3)0.0531 (11)
H150.16620.55370.3290.064*
Hg20100.04776 (7)
Cl30.21296 (11)0.91503 (18)0.02343 (7)0.0664 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Hg10.03772 (9)0.05296 (12)0.05168 (11)0.00140 (7)0.00498 (7)0.00188 (7)
Cl10.0824 (8)0.0537 (7)0.0518 (6)0.0145 (6)0.0082 (6)0.0031 (5)
Cl20.0455 (6)0.0592 (7)0.0456 (6)0.0081 (5)0.0034 (4)0.0008 (5)
N10.0362 (17)0.0416 (19)0.0408 (18)0.0014 (14)0.0015 (14)0.0033 (15)
C20.058 (3)0.047 (3)0.050 (3)0.005 (2)0.009 (2)0.001 (2)
C30.063 (3)0.062 (3)0.068 (3)0.018 (3)0.024 (3)0.020 (3)
C40.037 (2)0.083 (4)0.091 (4)0.011 (3)0.014 (3)0.040 (3)
C50.046 (3)0.069 (3)0.071 (3)0.014 (2)0.012 (2)0.021 (3)
C60.037 (2)0.044 (2)0.045 (2)0.0056 (16)0.0036 (17)0.0101 (18)
C70.057 (3)0.041 (2)0.039 (2)0.0116 (19)0.0028 (18)0.0030 (17)
N80.058 (2)0.0355 (19)0.0425 (19)0.0052 (15)0.0057 (16)0.0015 (14)
C90.094 (4)0.043 (3)0.063 (3)0.011 (3)0.020 (3)0.008 (2)
C100.056 (3)0.045 (2)0.048 (2)0.010 (2)0.007 (2)0.0124 (19)
C110.065 (3)0.101 (4)0.054 (3)0.025 (3)0.008 (3)0.008 (3)
C120.043 (3)0.154 (7)0.071 (4)0.004 (3)0.000 (3)0.034 (4)
C130.073 (4)0.096 (5)0.056 (3)0.025 (3)0.013 (3)0.019 (3)
C140.073 (4)0.055 (3)0.060 (3)0.001 (2)0.006 (3)0.006 (2)
C150.049 (3)0.048 (3)0.063 (3)0.005 (2)0.002 (2)0.009 (2)
Hg20.03219 (11)0.05415 (15)0.05669 (15)0.00592 (9)0.00021 (10)0.00053 (11)
Cl30.0374 (6)0.0813 (9)0.0799 (9)0.0158 (6)0.0035 (5)0.0004 (7)
Geometric parameters (Å, º) top
Hg1—N82.347 (4)C7—H70.93
Hg1—N12.373 (3)N8—C91.473 (5)
Hg1—Cl12.4338 (12)C9—C101.510 (7)
Hg1—Cl22.5327 (10)C9—H9A0.97
Hg1—Cl2i2.8428 (11)C9—H9B0.97
Cl2—Hg1i2.8428 (11)C10—C111.370 (7)
N1—C21.328 (5)C10—C151.379 (6)
N1—C61.345 (5)C11—C121.402 (9)
C2—C31.369 (6)C11—H110.93
C2—H20.93C12—C131.360 (10)
C3—C41.363 (8)C12—H120.93
C3—H30.93C13—C141.359 (8)
C4—C51.385 (8)C13—H130.93
C4—H40.93C14—C151.371 (7)
C5—C61.385 (6)C14—H140.93
C5—H50.93C15—H150.93
C6—C71.465 (6)Hg2—Cl3ii2.2875 (11)
C7—N81.262 (5)Hg2—Cl32.2875 (11)
N8—Hg1—N170.74 (12)N8—C7—H7119.3
N8—Hg1—Cl1113.97 (9)C6—C7—H7119.3
N1—Hg1—Cl1106.32 (9)C7—N8—C9119.8 (4)
N8—Hg1—Cl295.92 (9)C7—N8—Hg1116.2 (3)
N1—Hg1—Cl2138.01 (8)C9—N8—Hg1123.9 (3)
Cl1—Hg1—Cl2115.34 (4)N8—C9—C10110.8 (4)
N8—Hg1—Cl2i142.19 (9)N8—C9—H9A109.5
N1—Hg1—Cl2i83.87 (8)C10—C9—H9A109.5
Cl1—Hg1—Cl2i99.58 (4)N8—C9—H9B109.5
Cl2—Hg1—Cl2i84.37 (3)C10—C9—H9B109.5
Hg1—Cl2—Hg1i95.63 (3)H9A—C9—H9B108.1
C2—N1—C6118.8 (4)C11—C10—C15118.8 (5)
C2—N1—Hg1126.3 (3)C11—C10—C9121.4 (5)
C6—N1—Hg1114.7 (3)C15—C10—C9119.8 (4)
N1—C2—C3122.5 (5)C10—C11—C12119.6 (5)
N1—C2—H2118.8C10—C11—H11120.2
C3—C2—H2118.8C12—C11—H11120.2
C4—C3—C2119.8 (5)C13—C12—C11120.4 (5)
C4—C3—H3120.1C13—C12—H12119.8
C2—C3—H3120.1C11—C12—H12119.8
C3—C4—C5118.5 (5)C14—C13—C12119.8 (6)
C3—C4—H4120.7C14—C13—H13120.1
C5—C4—H4120.7C12—C13—H13120.1
C4—C5—C6119.2 (5)C13—C14—C15120.4 (5)
C4—C5—H5120.4C13—C14—H14119.8
C6—C5—H5120.4C15—C14—H14119.8
N1—C6—C5121.2 (4)C14—C15—C10120.9 (5)
N1—C6—C7116.9 (4)C14—C15—H15119.5
C5—C6—C7121.8 (4)C10—C15—H15119.5
N8—C7—C6121.4 (4)Cl3ii—Hg2—Cl3180
Symmetry codes: (i) x, y+1, z; (ii) x, y+2, z.

Experimental details

Crystal data
Chemical formula[Hg2Cl4(C13H12N2)2]·[HgCl2]
Mr1206.96
Crystal system, space groupMonoclinic, P21/n
Temperature (K)295
a, b, c (Å)10.1329 (2), 8.1141 (1), 19.0591 (2)
β (°) 92.939 (1)
V3)1564.97 (4)
Z2
Radiation typeMo Kα
µ (mm1)15.22
Crystal size (mm)0.17 × 0.13 × 0.12
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.104, 0.158
No. of measured, independent and
observed [I > 2σ(I)] reflections
16269, 3892, 3279
Rint0.027
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.055, 1.04
No. of reflections3892
No. of parameters178
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.21, 1.18

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
Hg1—N82.347 (4)Hg1—Cl12.4338 (12)
Hg1—N12.373 (3)
N8—Hg1—N170.74 (12)Cl1—Hg1—Cl2115.34 (4)
N8—Hg1—Cl1113.97 (9)N8—Hg1—Cl2i142.19 (9)
N1—Hg1—Cl1106.32 (9)N1—Hg1—Cl2i83.87 (8)
N8—Hg1—Cl295.92 (9)Cl1—Hg1—Cl2i99.58 (4)
N1—Hg1—Cl2138.01 (8)Cl2—Hg1—Cl2i84.37 (3)
Symmetry code: (i) x, y+1, z.
 

Acknowledgements

This work was supported by a National Research Foundation of Korea (NRF) Grant funded by the Ministry of Education, Science and Technology (No. 2010–0017080).

References

First citationBruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDurantaye, L. D. L., McCormick, T., Liu, X.-Y. & Wang, S. (2006). Dalton Trans. pp. 5675–5682.  Google Scholar
First citationElena, L.-T., Antoina, M. & Ceser, J. P. (2006). Polyhedron, 25, 1464–1470.  Google Scholar
First citationFan, R., Yang, Y., Yin, Y., Hasi, W. & Mu, Y. (2009). Inorg. Chem. 48, 6034–6943.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHe, G., Zhao, Y., He, C., Liu, Y. & Duan, C. (2008). Inorg. Chem. 47, 5169–5176.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKim, Y.-I. & Kang, S. K. (2010). Acta Cryst. E66, m1251.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKim, Y.-I., Seo, H.-J., Kim, J.-H., Lee, Y.-S. & Kang, S. K. (2010). Acta Cryst. E66, m124.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds