metal-organic compounds
Di-μ-chlorido-bis{[2-(benzyliminomethyl)pyridine-κ2N,N′]chloridomercury(II)} dichloridomercury(II)
aDepartment of Chemistry Education and Interdisciplinary Program of Advanced Information and Display Materials, Pusan National University, Busan 609-735, Republic of Korea, bDepartment of Chemistry, Pusan National University, Busan 609-735, Republic of Korea, and cDepartment of Chemistry, Chungnam National University, Daejeon 305-764, Republic of Korea
*Correspondence e-mail: skkang@cnu.ac.kr
The HgII ion in the title centrosymmetric dinuclear complex, [Hg2Cl4(C13H12N2)2]·[HgCl2], adopts a distorted square-pyramidal geometry, being coordinated by the bis-chelating N-heterocyclic ligand, two bridging Cl atoms and one terminal Cl atom. One of the bridging Hg—Cl bonds [2.8428 (11) Å] is significantly longer than the other [2.5327 (10) Å]. In the crystal, there are weak π–π interactions [centroid–centroid distance = 3.630 (3) Å] between the aromatic rings of the discrete units. The HgCl2 adduct molecule is located on an inversion centre and has an Hg—Cl bond length of 2.2875 (11) Å.
Related literature
For general background to luminescent mercury compounds, see: Elena et al. (2006); Durantaye et al. (2006); Fan et al. (2009); He et al. (2008). For syntheses and structures of Hg(II) complexes, see: Kim & Kang (2010); Kim et al. (2010).
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Bruker, 2002); cell SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
https://doi.org/10.1107/S1600536810050725/jh2236sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810050725/jh2236Isup2.hkl
Benzyl(2-pyridylmethylene)amine (bpma) was synthesized from the reaction of 2-pyridinecarboxylaldehyde and benzylamine. And bpma reacted with mercury dichloride in methanol to yield the titled complex. The yellow crystals were separated from white crystals in 3–4 days from methanol solution. The detailed synthetic method was previously reported (Kim & Kang, 2010).
All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 - 0.97 Å, and with Uiso(H) = 1.2Ueq(C). The maximum and minimum residual electron density peaks were located at 0.79 and 0.63 Å, respectively, from the Hg1 atom.
Much attention has been paid to the design and synthesis of luminescent mercury compounds for the detection and extraction of the mercury (Elena et al., 2006; Durantaye et al., 2006), among which, Hg(II) complexes with pyridine-containing ligands are of importance for their high luminescent efficiency (Fan et al., 2009). In a previous report (Kim & Kang, 2010), we presented a structure of white Hg(II) complex with benzyl(2-pyridylmethylene)amine(bpma), (bpma)HgCl2, concerning its luminescence behavior (Kim et al., 2010; He et al., 2008). The reported white crystals were obtained after recrystallization from methanol solution in a day. However, we could find another yellow crystals in 3–4 days in the same solution. Herein, we report the structure of separated yellow crystals, [(bpma)HgCl2]2 HgCl2.
In (I), Fig. 1, the Hg1II ion is coordinated by two N atoms of heterocyclic ligand, two bridging Cl atoms and one terminal Cl atom. The angles around Hg1 atoms are in the range of 70.74 (12) – 142.19 (9)°, suggesting the coordination geometry around the Hg1 atom is described as a distorted square pyrdmid with an apical position of Cl1 atom. One of the bridging Hg1—Cl bonds (2.843 (1) Å) is significantly longer than the other (2.533 (1) Å). The phenyl ring on the bpma ligand is twisted out of the pyridine plane, and form a dihedral angel of 81.21 (11)°. In the π-π interactions [centroid-centroid distance = 3.630 (3) Å] between the aromatic rings of the discrete units.
there are weakFor general background to luminescent mercury compounds, see: Elena et al. (2006); Durantaye et al. (2006); Fan et al. (2009); He et al. (2008). For syntheses and structures of Hg(II) complexes, see: Kim & Kang (2010); Kim et al. (2010).
Data collection: SMART (Bruker, 2002); cell
SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).Fig. 1. Molecular structure of (I), showing the atom-numbering scheme and 30% probability ellipsoids [symmetry code: (i) -x, -y + 1, -z; (ii) -x, -y + 2, -z]. |
[Hg2Cl4(C13H12N2)2]·[HgCl2] | F(000) = 1100 |
Mr = 1206.96 | Dx = 2.561 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 5840 reflections |
a = 10.1329 (2) Å | θ = 2.2–28.0° |
b = 8.1141 (1) Å | µ = 15.22 mm−1 |
c = 19.0591 (2) Å | T = 295 K |
β = 92.939 (1)° | Block, yellow |
V = 1564.97 (4) Å3 | 0.17 × 0.13 × 0.12 mm |
Z = 2 |
Bruker SMART CCD area-detector diffractometer | 3279 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.027 |
Absorption correction: multi-scan (SADABS; Bruker, 2002) | θmax = 28.3°, θmin = 2.1° |
Tmin = 0.104, Tmax = 0.158 | h = −13→10 |
16269 measured reflections | k = −10→10 |
3892 independent reflections | l = −25→25 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.025 | w = 1/[σ2(Fo2) + (0.025P)2 + 1.1429P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.055 | (Δ/σ)max < 0.001 |
S = 1.04 | Δρmax = 1.21 e Å−3 |
3892 reflections | Δρmin = −1.18 e Å−3 |
178 parameters |
[Hg2Cl4(C13H12N2)2]·[HgCl2] | V = 1564.97 (4) Å3 |
Mr = 1206.96 | Z = 2 |
Monoclinic, P21/n | Mo Kα radiation |
a = 10.1329 (2) Å | µ = 15.22 mm−1 |
b = 8.1141 (1) Å | T = 295 K |
c = 19.0591 (2) Å | 0.17 × 0.13 × 0.12 mm |
β = 92.939 (1)° |
Bruker SMART CCD area-detector diffractometer | 3892 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2002) | 3279 reflections with I > 2σ(I) |
Tmin = 0.104, Tmax = 0.158 | Rint = 0.027 |
16269 measured reflections |
R[F2 > 2σ(F2)] = 0.025 | 0 restraints |
wR(F2) = 0.055 | H-atom parameters constrained |
S = 1.04 | Δρmax = 1.21 e Å−3 |
3892 reflections | Δρmin = −1.18 e Å−3 |
178 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Hg1 | 0.092853 (16) | 0.45122 (2) | 0.092463 (9) | 0.04770 (6) | |
Cl1 | 0.02059 (13) | 0.19456 (15) | 0.14429 (6) | 0.0625 (3) | |
Cl2 | −0.09059 (10) | 0.64548 (14) | 0.05096 (6) | 0.0503 (3) | |
N1 | 0.3257 (3) | 0.4310 (4) | 0.08642 (17) | 0.0395 (7) | |
C2 | 0.3903 (5) | 0.3289 (6) | 0.0459 (2) | 0.0515 (11) | |
H2 | 0.3421 | 0.2636 | 0.0137 | 0.062* | |
C3 | 0.5252 (5) | 0.3161 (7) | 0.0498 (3) | 0.0637 (14) | |
H3 | 0.5671 | 0.2431 | 0.0206 | 0.076* | |
C4 | 0.5977 (5) | 0.4107 (8) | 0.0965 (3) | 0.0700 (17) | |
H4 | 0.6895 | 0.4035 | 0.0997 | 0.084* | |
C5 | 0.5319 (5) | 0.5178 (7) | 0.1392 (3) | 0.0623 (14) | |
H5 | 0.5789 | 0.5839 | 0.1716 | 0.075* | |
C6 | 0.3952 (4) | 0.5253 (5) | 0.1331 (2) | 0.0422 (9) | |
C7 | 0.3196 (4) | 0.6329 (5) | 0.1779 (2) | 0.0457 (10) | |
H7 | 0.3644 | 0.7015 | 0.2101 | 0.055* | |
N8 | 0.1950 (4) | 0.6345 (4) | 0.17363 (18) | 0.0451 (8) | |
C9 | 0.1223 (6) | 0.7461 (6) | 0.2188 (3) | 0.0658 (14) | |
H9A | 0.0734 | 0.8259 | 0.1899 | 0.079* | |
H9B | 0.1844 | 0.8057 | 0.2498 | 0.079* | |
C10 | 0.0277 (4) | 0.6506 (6) | 0.2621 (2) | 0.0495 (10) | |
C11 | −0.1060 (5) | 0.6560 (8) | 0.2474 (3) | 0.0740 (16) | |
H11 | −0.1404 | 0.7177 | 0.2096 | 0.089* | |
C12 | −0.1907 (5) | 0.5681 (11) | 0.2896 (3) | 0.090 (2) | |
H12 | −0.2816 | 0.5723 | 0.28 | 0.108* | |
C13 | −0.1409 (6) | 0.4767 (8) | 0.3446 (3) | 0.0747 (17) | |
H13 | −0.1975 | 0.4182 | 0.3724 | 0.09* | |
C14 | −0.0083 (6) | 0.4711 (6) | 0.3589 (3) | 0.0625 (13) | |
H14 | 0.0259 | 0.4081 | 0.3963 | 0.075* | |
C15 | 0.0756 (5) | 0.5576 (5) | 0.3184 (3) | 0.0531 (11) | |
H15 | 0.1662 | 0.5537 | 0.329 | 0.064* | |
Hg2 | 0 | 1 | 0 | 0.04776 (7) | |
Cl3 | 0.21296 (11) | 0.91503 (18) | 0.02343 (7) | 0.0664 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Hg1 | 0.03772 (9) | 0.05296 (12) | 0.05168 (11) | −0.00140 (7) | −0.00498 (7) | 0.00188 (7) |
Cl1 | 0.0824 (8) | 0.0537 (7) | 0.0518 (6) | −0.0145 (6) | 0.0082 (6) | 0.0031 (5) |
Cl2 | 0.0455 (6) | 0.0592 (7) | 0.0456 (6) | 0.0081 (5) | −0.0034 (4) | 0.0008 (5) |
N1 | 0.0362 (17) | 0.0416 (19) | 0.0408 (18) | −0.0014 (14) | 0.0015 (14) | 0.0033 (15) |
C2 | 0.058 (3) | 0.047 (3) | 0.050 (3) | 0.005 (2) | 0.009 (2) | 0.001 (2) |
C3 | 0.063 (3) | 0.062 (3) | 0.068 (3) | 0.018 (3) | 0.024 (3) | 0.020 (3) |
C4 | 0.037 (2) | 0.083 (4) | 0.091 (4) | 0.011 (3) | 0.014 (3) | 0.040 (3) |
C5 | 0.046 (3) | 0.069 (3) | 0.071 (3) | −0.014 (2) | −0.012 (2) | 0.021 (3) |
C6 | 0.037 (2) | 0.044 (2) | 0.045 (2) | −0.0056 (16) | −0.0036 (17) | 0.0101 (18) |
C7 | 0.057 (3) | 0.041 (2) | 0.039 (2) | −0.0116 (19) | −0.0028 (18) | 0.0030 (17) |
N8 | 0.058 (2) | 0.0355 (19) | 0.0425 (19) | 0.0052 (15) | 0.0057 (16) | −0.0015 (14) |
C9 | 0.094 (4) | 0.043 (3) | 0.063 (3) | 0.011 (3) | 0.020 (3) | −0.008 (2) |
C10 | 0.056 (3) | 0.045 (2) | 0.048 (2) | 0.010 (2) | 0.007 (2) | −0.0124 (19) |
C11 | 0.065 (3) | 0.101 (4) | 0.054 (3) | 0.025 (3) | −0.008 (3) | −0.008 (3) |
C12 | 0.043 (3) | 0.154 (7) | 0.071 (4) | −0.004 (3) | 0.000 (3) | −0.034 (4) |
C13 | 0.073 (4) | 0.096 (5) | 0.056 (3) | −0.025 (3) | 0.013 (3) | −0.019 (3) |
C14 | 0.073 (4) | 0.055 (3) | 0.060 (3) | −0.001 (2) | 0.006 (3) | −0.006 (2) |
C15 | 0.049 (3) | 0.048 (3) | 0.063 (3) | 0.005 (2) | 0.002 (2) | −0.009 (2) |
Hg2 | 0.03219 (11) | 0.05415 (15) | 0.05669 (15) | 0.00592 (9) | −0.00021 (10) | 0.00053 (11) |
Cl3 | 0.0374 (6) | 0.0813 (9) | 0.0799 (9) | 0.0158 (6) | −0.0035 (5) | 0.0004 (7) |
Hg1—N8 | 2.347 (4) | C7—H7 | 0.93 |
Hg1—N1 | 2.373 (3) | N8—C9 | 1.473 (5) |
Hg1—Cl1 | 2.4338 (12) | C9—C10 | 1.510 (7) |
Hg1—Cl2 | 2.5327 (10) | C9—H9A | 0.97 |
Hg1—Cl2i | 2.8428 (11) | C9—H9B | 0.97 |
Cl2—Hg1i | 2.8428 (11) | C10—C11 | 1.370 (7) |
N1—C2 | 1.328 (5) | C10—C15 | 1.379 (6) |
N1—C6 | 1.345 (5) | C11—C12 | 1.402 (9) |
C2—C3 | 1.369 (6) | C11—H11 | 0.93 |
C2—H2 | 0.93 | C12—C13 | 1.360 (10) |
C3—C4 | 1.363 (8) | C12—H12 | 0.93 |
C3—H3 | 0.93 | C13—C14 | 1.359 (8) |
C4—C5 | 1.385 (8) | C13—H13 | 0.93 |
C4—H4 | 0.93 | C14—C15 | 1.371 (7) |
C5—C6 | 1.385 (6) | C14—H14 | 0.93 |
C5—H5 | 0.93 | C15—H15 | 0.93 |
C6—C7 | 1.465 (6) | Hg2—Cl3ii | 2.2875 (11) |
C7—N8 | 1.262 (5) | Hg2—Cl3 | 2.2875 (11) |
N8—Hg1—N1 | 70.74 (12) | N8—C7—H7 | 119.3 |
N8—Hg1—Cl1 | 113.97 (9) | C6—C7—H7 | 119.3 |
N1—Hg1—Cl1 | 106.32 (9) | C7—N8—C9 | 119.8 (4) |
N8—Hg1—Cl2 | 95.92 (9) | C7—N8—Hg1 | 116.2 (3) |
N1—Hg1—Cl2 | 138.01 (8) | C9—N8—Hg1 | 123.9 (3) |
Cl1—Hg1—Cl2 | 115.34 (4) | N8—C9—C10 | 110.8 (4) |
N8—Hg1—Cl2i | 142.19 (9) | N8—C9—H9A | 109.5 |
N1—Hg1—Cl2i | 83.87 (8) | C10—C9—H9A | 109.5 |
Cl1—Hg1—Cl2i | 99.58 (4) | N8—C9—H9B | 109.5 |
Cl2—Hg1—Cl2i | 84.37 (3) | C10—C9—H9B | 109.5 |
Hg1—Cl2—Hg1i | 95.63 (3) | H9A—C9—H9B | 108.1 |
C2—N1—C6 | 118.8 (4) | C11—C10—C15 | 118.8 (5) |
C2—N1—Hg1 | 126.3 (3) | C11—C10—C9 | 121.4 (5) |
C6—N1—Hg1 | 114.7 (3) | C15—C10—C9 | 119.8 (4) |
N1—C2—C3 | 122.5 (5) | C10—C11—C12 | 119.6 (5) |
N1—C2—H2 | 118.8 | C10—C11—H11 | 120.2 |
C3—C2—H2 | 118.8 | C12—C11—H11 | 120.2 |
C4—C3—C2 | 119.8 (5) | C13—C12—C11 | 120.4 (5) |
C4—C3—H3 | 120.1 | C13—C12—H12 | 119.8 |
C2—C3—H3 | 120.1 | C11—C12—H12 | 119.8 |
C3—C4—C5 | 118.5 (5) | C14—C13—C12 | 119.8 (6) |
C3—C4—H4 | 120.7 | C14—C13—H13 | 120.1 |
C5—C4—H4 | 120.7 | C12—C13—H13 | 120.1 |
C4—C5—C6 | 119.2 (5) | C13—C14—C15 | 120.4 (5) |
C4—C5—H5 | 120.4 | C13—C14—H14 | 119.8 |
C6—C5—H5 | 120.4 | C15—C14—H14 | 119.8 |
N1—C6—C5 | 121.2 (4) | C14—C15—C10 | 120.9 (5) |
N1—C6—C7 | 116.9 (4) | C14—C15—H15 | 119.5 |
C5—C6—C7 | 121.8 (4) | C10—C15—H15 | 119.5 |
N8—C7—C6 | 121.4 (4) | Cl3ii—Hg2—Cl3 | 180 |
Symmetry codes: (i) −x, −y+1, −z; (ii) −x, −y+2, −z. |
Experimental details
Crystal data | |
Chemical formula | [Hg2Cl4(C13H12N2)2]·[HgCl2] |
Mr | 1206.96 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 295 |
a, b, c (Å) | 10.1329 (2), 8.1141 (1), 19.0591 (2) |
β (°) | 92.939 (1) |
V (Å3) | 1564.97 (4) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 15.22 |
Crystal size (mm) | 0.17 × 0.13 × 0.12 |
Data collection | |
Diffractometer | Bruker SMART CCD area-detector |
Absorption correction | Multi-scan (SADABS; Bruker, 2002) |
Tmin, Tmax | 0.104, 0.158 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 16269, 3892, 3279 |
Rint | 0.027 |
(sin θ/λ)max (Å−1) | 0.667 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.025, 0.055, 1.04 |
No. of reflections | 3892 |
No. of parameters | 178 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 1.21, −1.18 |
Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).
Hg1—N8 | 2.347 (4) | Hg1—Cl1 | 2.4338 (12) |
Hg1—N1 | 2.373 (3) | ||
N8—Hg1—N1 | 70.74 (12) | Cl1—Hg1—Cl2 | 115.34 (4) |
N8—Hg1—Cl1 | 113.97 (9) | N8—Hg1—Cl2i | 142.19 (9) |
N1—Hg1—Cl1 | 106.32 (9) | N1—Hg1—Cl2i | 83.87 (8) |
N8—Hg1—Cl2 | 95.92 (9) | Cl1—Hg1—Cl2i | 99.58 (4) |
N1—Hg1—Cl2 | 138.01 (8) | Cl2—Hg1—Cl2i | 84.37 (3) |
Symmetry code: (i) −x, −y+1, −z. |
Acknowledgements
This work was supported by a National Research Foundation of Korea (NRF) Grant funded by the Ministry of Education, Science and Technology (No. 2010–0017080).
References
Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Durantaye, L. D. L., McCormick, T., Liu, X.-Y. & Wang, S. (2006). Dalton Trans. pp. 5675–5682. Google Scholar
Elena, L.-T., Antoina, M. & Ceser, J. P. (2006). Polyhedron, 25, 1464–1470. Google Scholar
Fan, R., Yang, Y., Yin, Y., Hasi, W. & Mu, Y. (2009). Inorg. Chem. 48, 6034–6943. Web of Science CSD CrossRef PubMed CAS Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
He, G., Zhao, Y., He, C., Liu, Y. & Duan, C. (2008). Inorg. Chem. 47, 5169–5176. Web of Science CrossRef PubMed CAS Google Scholar
Kim, Y.-I. & Kang, S. K. (2010). Acta Cryst. E66, m1251. Web of Science CSD CrossRef IUCr Journals Google Scholar
Kim, Y.-I., Seo, H.-J., Kim, J.-H., Lee, Y.-S. & Kang, S. K. (2010). Acta Cryst. E66, m124. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Much attention has been paid to the design and synthesis of luminescent mercury compounds for the detection and extraction of the mercury (Elena et al., 2006; Durantaye et al., 2006), among which, Hg(II) complexes with pyridine-containing ligands are of importance for their high luminescent efficiency (Fan et al., 2009). In a previous report (Kim & Kang, 2010), we presented a structure of white Hg(II) complex with benzyl(2-pyridylmethylene)amine(bpma), (bpma)HgCl2, concerning its luminescence behavior (Kim et al., 2010; He et al., 2008). The reported white crystals were obtained after recrystallization from methanol solution in a day. However, we could find another yellow crystals in 3–4 days in the same solution. Herein, we report the structure of separated yellow crystals, [(bpma)HgCl2]2 HgCl2.
In (I), Fig. 1, the Hg1II ion is coordinated by two N atoms of heterocyclic ligand, two bridging Cl atoms and one terminal Cl atom. The angles around Hg1 atoms are in the range of 70.74 (12) – 142.19 (9)°, suggesting the coordination geometry around the Hg1 atom is described as a distorted square pyrdmid with an apical position of Cl1 atom. One of the bridging Hg1—Cl bonds (2.843 (1) Å) is significantly longer than the other (2.533 (1) Å). The phenyl ring on the bpma ligand is twisted out of the pyridine plane, and form a dihedral angel of 81.21 (11)°. In the crystal structure, there are weak π-π interactions [centroid-centroid distance = 3.630 (3) Å] between the aromatic rings of the discrete units.