organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(3,4-Di­methyl-5,5-dioxo-2H,4H-pyrazolo­[4,3-c][1,2]benzo­thia­zin-2-yl)-N′-(3-meth­­oxy­benzyl­­idene)aceto­hydrazide di­methyl­formamide hemisolvate

aInstitute of Chemistry, University of the Punjab, Lahore 54590, Pakistan, bApplied Chemistry Research Centre, PCSIR Laboratories Complex, Lahore 54600, Pakistan, cDepartment of Chemistry, University of Baluchistan, Quetta 6700, Pakistan, dDepartment of Chemistry, Gomal University, Dera Ismail Khan, Pakistan, and eDepartment of Chemistry, The University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4
*Correspondence e-mail: drhamidlatif@yahoo.com

(Received 7 December 2010; accepted 13 December 2010; online 24 December 2010)

In the title compound, C21H21N5O4S·0.5C3H7NO, the heterocyclic thia­zine ring adopts a half-chair conformation, with the S and N atoms displaced by −0.451 (5) and 0.233 (5) Å, respectively, from the plane formed by the remaining ring atoms. The asymmetric unit contains a disordered half-mol­ecule of solvent lying close to inversion centers. The crystal structure is stabilized by weak inter­molecular N—H⋯O and C—H⋯O inter­actions.

Related literature

For related structures, see: Ahmad et al. (2008[Ahmad, M., Siddiqui, H. L., Zia-ur-Rehman, M., Ashiq, M. I. & Tizzard, G. J. (2008). Acta Cryst. E64, o788.]; 2009[Ahmad, M., Siddiqui, H. L., Azam, M., Siddiqui, W. A. & Parvez, M. (2009). Acta Cryst. E65, o2185.], 2011[Ahmad, M., Siddiqui, H. L., Aslam, S., Ahmad, S. & Parvez, M. (2011). Acta Cryst. E67, o218-o219.]); Siddiqui et al. (2008[Siddiqui, W. A., Ahmad, S., Tariq, M. I., Siddiqui, H. L. & Parvez, M. (2008). Acta Cryst. C64, o4-o6.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C21H21N5O4S·0.5C3H7NO

  • Mr = 476.04

  • Orthorhombic, P b c a

  • a = 18.3806 (5) Å

  • b = 8.1155 (2) Å

  • c = 30.4715 (5) Å

  • V = 4545.37 (18) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.19 mm−1

  • T = 173 K

  • 0.16 × 0.14 × 0.06 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SORTAV; Blessing, 1997[Blessing, R. H. (1997). J. Appl. Cryst. 30, 421-426.]) Tmin = 0.971, Tmax = 0.989

  • 7438 measured reflections

  • 3997 independent reflections

  • 2747 reflections with I > 2σ(I)

  • Rint = 0.052

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.125

  • S = 1.09

  • 3997 reflections

  • 328 parameters

  • 35 restraints

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4N⋯O3i 0.88 2.06 2.878 (3) 155
C14—H14⋯O5i 0.95 2.49 3.287 (10) 142
C16—H16⋯O5i 0.95 2.35 3.145 (11) 140
C21—H21C⋯O2ii 0.98 2.53 3.497 (5) 169
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z].

Data collection: COLLECT (Hooft, 1998[Hooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In continuation to our research exploring potential biologically active derivatives of benzothiazines (Ahmad et al., 2008; 2009), we have devised the fusion of the pyrazole moiety with 1,2-benzothiazine nucleus in an attempt to synthesize novel bioactive molecules. In this paper, we report the synthesis and crystal structure of the title compound, (I).

In the title molecule (Fig. 1), the heterocyclic thiazine ring adopts a half-chair conformation, with atoms S1 and N1 displaced from the plane formed by atoms C1/C6/C7/C8 by -0.451 (5) and 0.233 (5) Å, respectively. The pertinent puckering parameters (Cremer & Pople, 1975) are: Q = 0.445 (2) Å, θ = 61.8 (4)° and φ = 20.6 (4)°. Similar conformations of the corresponding rings have been reported in some closely related molecules (Siddiqui et al., 2008; (Ahmad et al., 2011). The mean-plane formed by the atoms C1–C8/C10/N2/N3 (atoms of the three fused rings excluding S1 and N1) is quite planar (maximum deviation being 0.171 (2) Å for N2) and forms an angle of 80.19 (8)° with the side chain comprised of atoms C12–C14/O3/N4/N5 which links the phenyl ring C14–C16 with the pyrazolobenzothiazin moiety; the angle between the chain atoms and the phenyl ring is 20.3 (2)°.

The intermolecular hydrogen bonds N4—H4N···O3 and C21—H21C···O1 stabilize the crystal structure. Moreover, O5 of the solvate exhibits hydrogen bonding interactions with phenyl H14 and H16 atoms (Tab. 1 and Fig. 2).

Related literature top

For related structures, see: Ahmad et al. (2008; 2009, 2011); Siddiqui et al. (2008). For puckering parameters, see: Cremer & Pople (1975).

Experimental top

A mixture of 2-(3,4-dimethyl-5,5-dioxidopyrazolo[4,3-c][1,2]benzothiazin -2(4H)-yl)acetohydrazide (1.0 g, 3.12 mmol) and 3-methoxybenzaldehyde (0.42 g, 3.12 mmol) were dissolved in ethanol (50 ml) followed by the addition of 2 drops of glacial acetic acid. The mixture was subjected to reflux for 4 - 5 h. The completion of reaction was monitored with the help of thin layer chromatography (TLC). The precipitates formed were collected and washed with methanol (yield = 80%). The crystals of (I) suitable for crystallographic analysis were grown from its solution in dimethylformamide at room temperature by slow evaporation.

Refinement top

All the H atoms were discernible in the difference electron density map. However, they were positioned at the idealized positions and refined by the riding-model approximation using constraints: N—H = 0.88 Å, C—H = 0.98, 0.99 and 0.95 Å for methyl, methylene and aryl H-atoms, respectively, and Uiso(H) = 1.5Ueq(methyl C-atoms) and 1.2Ueq(non-methyl C and N-atoms). The methyl groups were allowed to rotate about their axes during the refinement.

Structure description top

In continuation to our research exploring potential biologically active derivatives of benzothiazines (Ahmad et al., 2008; 2009), we have devised the fusion of the pyrazole moiety with 1,2-benzothiazine nucleus in an attempt to synthesize novel bioactive molecules. In this paper, we report the synthesis and crystal structure of the title compound, (I).

In the title molecule (Fig. 1), the heterocyclic thiazine ring adopts a half-chair conformation, with atoms S1 and N1 displaced from the plane formed by atoms C1/C6/C7/C8 by -0.451 (5) and 0.233 (5) Å, respectively. The pertinent puckering parameters (Cremer & Pople, 1975) are: Q = 0.445 (2) Å, θ = 61.8 (4)° and φ = 20.6 (4)°. Similar conformations of the corresponding rings have been reported in some closely related molecules (Siddiqui et al., 2008; (Ahmad et al., 2011). The mean-plane formed by the atoms C1–C8/C10/N2/N3 (atoms of the three fused rings excluding S1 and N1) is quite planar (maximum deviation being 0.171 (2) Å for N2) and forms an angle of 80.19 (8)° with the side chain comprised of atoms C12–C14/O3/N4/N5 which links the phenyl ring C14–C16 with the pyrazolobenzothiazin moiety; the angle between the chain atoms and the phenyl ring is 20.3 (2)°.

The intermolecular hydrogen bonds N4—H4N···O3 and C21—H21C···O1 stabilize the crystal structure. Moreover, O5 of the solvate exhibits hydrogen bonding interactions with phenyl H14 and H16 atoms (Tab. 1 and Fig. 2).

For related structures, see: Ahmad et al. (2008; 2009, 2011); Siddiqui et al. (2008). For puckering parameters, see: Cremer & Pople (1975).

Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997); data reduction: SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The title molecule plotted with the displacement ellipsoids at 50% probability level (Farrugia, 1997).
[Figure 2] Fig. 2. A partial packing diagram of the unit cell showing intermolecular hydrogen bonding interactions; H-atoms not involved in H-bonds have been excluded for clarity.
2-(3,4-Dimethyl-5,5-dioxo-2H,4H- pyrazolo[4,3-c][1,2]benzothiazin-2-yl)-N'-(3- methoxybenzylidene)acetohydrazide dimethylformamide hemisolvate top
Crystal data top
C21H21N5O4S·0.5C3H7NOF(000) = 2000
Mr = 476.04Dx = 1.391 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 5739 reflections
a = 18.3806 (5) Åθ = 1.0–27.5°
b = 8.1155 (2) ŵ = 0.19 mm1
c = 30.4715 (5) ÅT = 173 K
V = 4545.37 (18) Å3Plate, colorless
Z = 80.16 × 0.14 × 0.06 mm
Data collection top
Nonius KappaCCD
diffractometer
3997 independent reflections
Radiation source: fine-focus sealed tube2747 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.052
ω and φ scansθmax = 25.0°, θmin = 1.7°
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
h = 2121
Tmin = 0.971, Tmax = 0.989k = 99
7438 measured reflectionsl = 3636
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.125H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0337P)2 + 4.9015P]
where P = (Fo2 + 2Fc2)/3
3997 reflections(Δ/σ)max < 0.001
328 parametersΔρmax = 0.21 e Å3
35 restraintsΔρmin = 0.34 e Å3
Crystal data top
C21H21N5O4S·0.5C3H7NOV = 4545.37 (18) Å3
Mr = 476.04Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 18.3806 (5) ŵ = 0.19 mm1
b = 8.1155 (2) ÅT = 173 K
c = 30.4715 (5) Å0.16 × 0.14 × 0.06 mm
Data collection top
Nonius KappaCCD
diffractometer
3997 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
2747 reflections with I > 2σ(I)
Tmin = 0.971, Tmax = 0.989Rint = 0.052
7438 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05635 restraints
wR(F2) = 0.125H-atom parameters constrained
S = 1.09Δρmax = 0.21 e Å3
3997 reflectionsΔρmin = 0.34 e Å3
328 parameters
Special details top

Experimental. N'-[(3-Methoxyphenyl)methylidene]-2-(3,4-dimethyl-5,5- dioxidopyrazolo[4,3-c][1,2]benzothiazin-1(4H)-yl)acetohydrazide: White powder; mp 495–496 K. IR (KBr) cm-1: 3449; 3364; 3033; 1692; 1616; 1310; 1164. 1H-NMR (DMSO-d6) (500 MHz) δ: 2.32 (3H, s, CCH3), 2.78 (3H, s, OCH3), 2.98 (3H, s, NCH3), 5.52 (2H, s, NCH2), 6.99–7.02 (1H, dd, J = 8.2, 2.0 Hz, ArH), 7.26–7.38 (3H, m, ArH), 7.63 (1H, t, J = 7.8 Hz, ArH), 7.76 (1H, t, J = 7.6 Hz, ArH), 7.87 (1H, d, J = 7.8 Hz, ArH), 7.93 (1H, d, J = 7.7 Hz, ArH), 8.03 (1H, s, NCH), 11.79 (1H, br s, NH). 13C NMR: 8.5, 38.9, 47.3, 51.6, 110.5, 113.6, 117.8, 123.1, 124.1, 124.5, 126.2, 126.7, 127.5, 128.3, 130.1, 131.8, 133.4, 134.2, 136.9, 139.3, 157.6, 165.7. MS m/z: 439.0(M+).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.11871 (4)0.35139 (10)0.21689 (2)0.0292 (2)
O10.17406 (11)0.3405 (3)0.24982 (7)0.0414 (6)
O20.10532 (11)0.2115 (3)0.18941 (7)0.0354 (5)
O30.18352 (11)0.3040 (3)0.13232 (7)0.0337 (5)
O40.49365 (13)0.4478 (3)0.07548 (7)0.0526 (7)
N10.04176 (13)0.3984 (3)0.24142 (7)0.0284 (6)
N20.05545 (13)0.6057 (3)0.15386 (8)0.0296 (6)
N30.10980 (13)0.5444 (3)0.17947 (8)0.0294 (6)
N40.25112 (15)0.5050 (3)0.10038 (8)0.0360 (6)
H4N0.26680.60720.10210.043*
N50.27351 (14)0.4044 (3)0.06600 (8)0.0355 (7)
C10.13703 (16)0.5190 (4)0.18165 (9)0.0260 (7)
C20.20868 (17)0.5616 (4)0.17262 (10)0.0318 (7)
H20.24750.50850.18750.038*
C30.22292 (18)0.6821 (4)0.14170 (10)0.0372 (8)
H30.27180.71000.13480.045*
C40.16594 (18)0.7623 (4)0.12073 (10)0.0382 (8)
H40.17610.84420.09930.046*
C50.09438 (17)0.7241 (4)0.13074 (9)0.0329 (8)
H50.05580.78200.11690.040*
C60.07912 (16)0.6004 (4)0.16124 (9)0.0261 (7)
C70.00550 (16)0.5566 (4)0.17436 (9)0.0255 (7)
C80.01144 (16)0.4621 (4)0.21164 (9)0.0257 (7)
C90.04416 (17)0.4735 (4)0.28542 (9)0.0341 (8)
H9A0.00440.46900.29870.051*
H9B0.07870.41280.30390.051*
H9C0.05980.58850.28300.051*
C100.08623 (16)0.4549 (4)0.21424 (9)0.0283 (7)
C110.13593 (17)0.3754 (4)0.24619 (11)0.0394 (8)
H11A0.16970.30270.23060.059*
H11B0.10740.31070.26720.059*
H11C0.16350.46030.26190.059*
C120.18383 (16)0.5714 (4)0.16510 (10)0.0350 (8)
H12A0.21700.56340.19060.042*
H12B0.18830.68360.15260.042*
C130.20561 (16)0.4462 (4)0.13096 (9)0.0282 (7)
C140.31843 (18)0.4724 (4)0.03961 (10)0.0369 (8)
H140.33530.58070.04570.044*
C150.34450 (19)0.3878 (4)0.00032 (10)0.0374 (8)
C160.40459 (19)0.4517 (4)0.02106 (10)0.0404 (9)
H160.42650.54990.01040.048*
C170.43339 (18)0.3744 (4)0.05791 (10)0.0386 (8)
C180.4008 (2)0.2342 (5)0.07389 (10)0.0452 (9)
H180.42000.18070.09910.054*
C190.3398 (2)0.1714 (5)0.05311 (11)0.0507 (10)
H190.31710.07510.06450.061*
C200.3111 (2)0.2460 (5)0.01617 (11)0.0467 (9)
H200.26930.20160.00220.056*
C210.5293 (2)0.3652 (6)0.11094 (11)0.0629 (12)
H21A0.54490.25550.10130.094*
H21B0.57190.42910.12010.094*
H21C0.49560.35430.13570.094*
O50.1045 (7)0.3207 (11)0.0100 (4)0.161 (5)0.50
N60.0164 (11)0.498 (3)0.0059 (7)0.089 (5)0.50
C220.0794 (11)0.4396 (18)0.0258 (4)0.130 (5)0.50
H220.10060.49250.05050.156*0.50
C230.0119 (7)0.401 (2)0.0349 (5)0.078 (3)0.50
H23A0.05560.45480.04650.117*0.50
H23B0.02380.28760.02630.117*0.50
H23C0.02590.39880.05760.117*0.50
C240.0275 (10)0.6312 (17)0.0173 (7)0.159 (8)0.50
H24A0.06740.64100.00390.239*0.50
H24B0.00160.73240.01700.239*0.50
H24C0.04740.61380.04670.239*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0220 (4)0.0321 (4)0.0333 (4)0.0047 (4)0.0012 (3)0.0040 (3)
O10.0275 (12)0.0564 (15)0.0402 (12)0.0078 (12)0.0080 (10)0.0124 (11)
O20.0345 (13)0.0265 (12)0.0451 (13)0.0030 (10)0.0045 (10)0.0017 (10)
O30.0305 (12)0.0252 (13)0.0455 (13)0.0014 (10)0.0076 (10)0.0047 (10)
O40.0473 (16)0.0686 (19)0.0421 (13)0.0044 (14)0.0185 (12)0.0017 (13)
N10.0229 (14)0.0368 (15)0.0256 (13)0.0031 (12)0.0010 (10)0.0006 (11)
N20.0238 (15)0.0303 (15)0.0346 (14)0.0017 (12)0.0051 (11)0.0032 (12)
N30.0205 (14)0.0300 (15)0.0377 (14)0.0013 (12)0.0052 (11)0.0047 (12)
N40.0389 (16)0.0227 (14)0.0463 (15)0.0037 (13)0.0149 (13)0.0102 (12)
N50.0354 (17)0.0310 (16)0.0400 (15)0.0041 (13)0.0079 (12)0.0083 (12)
C10.0223 (17)0.0307 (18)0.0249 (15)0.0032 (14)0.0007 (12)0.0020 (13)
C20.0256 (18)0.0358 (19)0.0338 (17)0.0008 (15)0.0040 (13)0.0047 (15)
C30.0298 (18)0.041 (2)0.0408 (19)0.0104 (16)0.0015 (14)0.0012 (16)
C40.042 (2)0.039 (2)0.0342 (18)0.0098 (17)0.0012 (15)0.0057 (15)
C50.0327 (19)0.0325 (19)0.0336 (17)0.0010 (16)0.0063 (14)0.0010 (14)
C60.0244 (17)0.0272 (17)0.0267 (16)0.0011 (14)0.0029 (12)0.0050 (13)
C70.0222 (17)0.0253 (17)0.0289 (16)0.0019 (14)0.0048 (12)0.0049 (13)
C80.0225 (17)0.0266 (17)0.0279 (16)0.0011 (14)0.0009 (12)0.0007 (13)
C90.037 (2)0.0392 (19)0.0262 (16)0.0007 (16)0.0005 (14)0.0034 (14)
C100.0238 (17)0.0263 (17)0.0348 (17)0.0010 (14)0.0018 (13)0.0068 (14)
C110.0276 (18)0.042 (2)0.0482 (19)0.0034 (17)0.0077 (14)0.0043 (17)
C120.0200 (18)0.0377 (19)0.0474 (19)0.0050 (15)0.0113 (14)0.0116 (15)
C130.0201 (17)0.0284 (18)0.0362 (17)0.0007 (14)0.0000 (13)0.0033 (14)
C140.039 (2)0.0326 (19)0.0396 (19)0.0006 (17)0.0089 (15)0.0040 (15)
C150.038 (2)0.037 (2)0.0371 (18)0.0060 (17)0.0049 (15)0.0006 (15)
C160.041 (2)0.040 (2)0.0399 (19)0.0023 (17)0.0062 (16)0.0011 (16)
C170.039 (2)0.045 (2)0.0317 (18)0.0109 (18)0.0045 (15)0.0038 (16)
C180.050 (2)0.055 (2)0.0301 (18)0.012 (2)0.0006 (16)0.0068 (17)
C190.056 (3)0.056 (3)0.040 (2)0.004 (2)0.0008 (18)0.0129 (18)
C200.046 (2)0.054 (2)0.040 (2)0.006 (2)0.0046 (16)0.0066 (18)
C210.056 (3)0.094 (3)0.038 (2)0.013 (3)0.0173 (18)0.002 (2)
O50.238 (13)0.067 (6)0.178 (10)0.008 (7)0.069 (9)0.021 (6)
N60.149 (15)0.046 (4)0.071 (10)0.037 (9)0.058 (8)0.009 (6)
C220.226 (16)0.069 (8)0.094 (9)0.058 (9)0.033 (8)0.025 (7)
C230.077 (9)0.067 (7)0.090 (8)0.001 (6)0.021 (6)0.011 (5)
C240.207 (19)0.052 (9)0.22 (2)0.043 (9)0.168 (16)0.024 (11)
Geometric parameters (Å, º) top
S1—O11.432 (2)C10—C111.483 (4)
S1—O21.432 (2)C11—H11A0.9800
S1—N11.645 (2)C11—H11B0.9800
S1—C11.765 (3)C11—H11C0.9800
O3—C131.224 (4)C12—C131.508 (4)
O4—C171.367 (4)C12—H12A0.9900
O4—C211.431 (4)C12—H12B0.9900
N1—C81.431 (4)C14—C151.461 (4)
N1—C91.473 (4)C14—H140.9500
N2—C71.343 (4)C15—C161.383 (5)
N2—N31.362 (3)C15—C201.398 (5)
N3—C101.356 (4)C16—C171.391 (4)
N3—C121.446 (4)C16—H160.9500
N4—C131.340 (4)C17—C181.375 (5)
N4—N51.390 (3)C18—C191.386 (5)
N4—H4N0.8800C18—H180.9500
N5—C141.278 (4)C19—C201.382 (5)
C1—C21.389 (4)C19—H190.9500
C1—C61.399 (4)C20—H200.9500
C2—C31.383 (4)C21—H21A0.9800
C2—H20.9500C21—H21B0.9800
C3—C41.389 (5)C21—H21C0.9800
C3—H30.9500O5—C221.173 (18)
C4—C51.385 (4)N6—C221.39 (2)
C4—H40.9500N6—C241.39 (3)
C5—C61.397 (4)N6—C231.56 (3)
C5—H50.9500C22—H220.9500
C6—C71.455 (4)C23—H23A0.9800
C7—C81.405 (4)C23—H23B0.9800
C8—C101.378 (4)C23—H23C0.9800
C9—H9A0.9800C24—H24A0.9800
C9—H9B0.9800C24—H24B0.9800
C9—H9C0.9800C24—H24C0.9800
O1—S1—O2118.88 (14)H11B—C11—H11C109.5
O1—S1—N1107.87 (13)N3—C12—C13110.9 (3)
O2—S1—N1107.57 (13)N3—C12—H12A109.5
O1—S1—C1109.78 (14)C13—C12—H12A109.5
O2—S1—C1106.74 (13)N3—C12—H12B109.5
N1—S1—C1105.18 (13)C13—C12—H12B109.5
C17—O4—C21117.6 (3)H12A—C12—H12B108.0
C8—N1—C9116.6 (2)O3—C13—N4124.5 (3)
C8—N1—S1112.53 (18)O3—C13—C12121.6 (3)
C9—N1—S1118.9 (2)N4—C13—C12113.9 (3)
C7—N2—N3103.7 (2)N5—C14—C15121.6 (3)
C10—N3—N2114.1 (2)N5—C14—H14119.2
C10—N3—C12128.2 (3)C15—C14—H14119.2
N2—N3—C12117.5 (2)C16—C15—C20119.3 (3)
C13—N4—N5120.0 (3)C16—C15—C14118.2 (3)
C13—N4—H4N120.0C20—C15—C14122.5 (3)
N5—N4—H4N120.0C15—C16—C17121.0 (3)
C14—N5—N4114.3 (3)C15—C16—H16119.5
C2—C1—C6121.1 (3)C17—C16—H16119.5
C2—C1—S1119.5 (2)O4—C17—C18125.1 (3)
C6—C1—S1119.3 (2)O4—C17—C16115.3 (3)
C3—C2—C1119.4 (3)C18—C17—C16119.6 (3)
C3—C2—H2120.3C17—C18—C19119.7 (3)
C1—C2—H2120.3C17—C18—H18120.1
C2—C3—C4120.1 (3)C19—C18—H18120.1
C2—C3—H3119.9C20—C19—C18121.3 (4)
C4—C3—H3119.9C20—C19—H19119.4
C5—C4—C3120.6 (3)C18—C19—H19119.4
C5—C4—H4119.7C19—C20—C15119.1 (3)
C3—C4—H4119.7C19—C20—H20120.4
C4—C5—C6119.9 (3)C15—C20—H20120.4
C4—C5—H5120.1O4—C21—H21A109.5
C6—C5—H5120.1O4—C21—H21B109.5
C5—C6—C1118.9 (3)H21A—C21—H21B109.5
C5—C6—C7123.0 (3)O4—C21—H21C109.5
C1—C6—C7118.0 (3)H21A—C21—H21C109.5
N2—C7—C8110.7 (3)H21B—C21—H21C109.5
N2—C7—C6125.1 (3)C22—N6—C24130 (2)
C8—C7—C6124.1 (3)C22—N6—C23116.9 (19)
C10—C8—C7106.9 (3)C24—N6—C23113.4 (15)
C10—C8—N1129.0 (3)O5—C22—N6115.5 (16)
C7—C8—N1124.0 (3)O5—C22—H22122.3
N1—C9—H9A109.5N6—C22—H22122.3
N1—C9—H9B109.5N6—C23—H23A109.5
H9A—C9—H9B109.5N6—C23—H23B109.5
N1—C9—H9C109.5H23A—C23—H23B109.5
H9A—C9—H9C109.5N6—C23—H23C109.5
H9B—C9—H9C109.5H23A—C23—H23C109.5
N3—C10—C8104.5 (3)H23B—C23—H23C109.5
N3—C10—C11123.3 (3)N6—C24—H24A109.5
C8—C10—C11132.1 (3)N6—C24—H24B109.5
C10—C11—H11A109.5H24A—C24—H24B109.5
C10—C11—H11B109.5N6—C24—H24C109.5
H11A—C11—H11B109.5H24A—C24—H24C109.5
C10—C11—H11C109.5H24B—C24—H24C109.5
H11A—C11—H11C109.5
O1—S1—N1—C8161.7 (2)C9—N1—C8—C1065.6 (4)
O2—S1—N1—C868.9 (2)S1—N1—C8—C10151.9 (3)
C1—S1—N1—C844.6 (2)C9—N1—C8—C7110.0 (3)
O1—S1—N1—C920.2 (3)S1—N1—C8—C732.6 (4)
O2—S1—N1—C9149.5 (2)N2—N3—C10—C81.6 (3)
C1—S1—N1—C997.0 (2)C12—N3—C10—C8176.8 (3)
C7—N2—N3—C102.0 (3)N2—N3—C10—C11179.4 (3)
C7—N2—N3—C12177.7 (3)C12—N3—C10—C114.3 (5)
C13—N4—N5—C14178.1 (3)C7—C8—C10—N30.5 (3)
O1—S1—C1—C233.0 (3)N1—C8—C10—N3175.6 (3)
O2—S1—C1—C297.1 (2)C7—C8—C10—C11179.4 (3)
N1—S1—C1—C2148.9 (2)N1—C8—C10—C113.2 (6)
O1—S1—C1—C6150.8 (2)C10—N3—C12—C1393.3 (4)
O2—S1—C1—C679.1 (3)N2—N3—C12—C1381.7 (3)
N1—S1—C1—C634.9 (3)N5—N4—C13—O33.3 (5)
C6—C1—C2—C32.5 (5)N5—N4—C13—C12177.7 (3)
S1—C1—C2—C3173.6 (2)N3—C12—C13—O335.0 (4)
C1—C2—C3—C41.6 (5)N3—C12—C13—N4145.9 (3)
C2—C3—C4—C50.6 (5)N4—N5—C14—C15176.6 (3)
C3—C4—C5—C61.9 (5)N5—C14—C15—C16165.5 (3)
C4—C5—C6—C11.0 (4)N5—C14—C15—C2014.5 (5)
C4—C5—C6—C7178.2 (3)C20—C15—C16—C171.8 (5)
C2—C1—C6—C51.2 (4)C14—C15—C16—C17178.1 (3)
S1—C1—C6—C5174.9 (2)C21—O4—C17—C185.6 (5)
C2—C1—C6—C7176.1 (3)C21—O4—C17—C16174.5 (3)
S1—C1—C6—C77.7 (4)C15—C16—C17—O4178.7 (3)
N3—N2—C7—C81.6 (3)C15—C16—C17—C181.4 (5)
N3—N2—C7—C6175.9 (3)O4—C17—C18—C19179.9 (3)
C5—C6—C7—N212.6 (5)C16—C17—C18—C190.1 (5)
C1—C6—C7—N2170.1 (3)C17—C18—C19—C200.6 (5)
C5—C6—C7—C8164.5 (3)C18—C19—C20—C150.2 (6)
C1—C6—C7—C812.7 (4)C16—C15—C20—C191.1 (5)
N2—C7—C8—C100.7 (3)C14—C15—C20—C19178.9 (3)
C6—C7—C8—C10176.8 (3)C24—N6—C22—O5178 (2)
N2—C7—C8—N1177.1 (3)C23—N6—C22—O51 (2)
C6—C7—C8—N10.4 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4N···O3i0.882.062.878 (3)155
C14—H14···O5i0.952.493.287 (10)142
C16—H16···O5i0.952.353.145 (11)140
C21—H21C···O2ii0.982.533.497 (5)169
C9—H9B···O10.982.482.836 (4)101
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x+1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC21H21N5O4S·0.5C3H7NO
Mr476.04
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)173
a, b, c (Å)18.3806 (5), 8.1155 (2), 30.4715 (5)
V3)4545.37 (18)
Z8
Radiation typeMo Kα
µ (mm1)0.19
Crystal size (mm)0.16 × 0.14 × 0.06
Data collection
DiffractometerNonius KappaCCD
Absorption correctionMulti-scan
(SORTAV; Blessing, 1997)
Tmin, Tmax0.971, 0.989
No. of measured, independent and
observed [I > 2σ(I)] reflections
7438, 3997, 2747
Rint0.052
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.125, 1.09
No. of reflections3997
No. of parameters328
No. of restraints35
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.34

Computer programs: COLLECT (Hooft, 1998), DENZO (Otwinowski & Minor, 1997), SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4N···O3i0.882.062.878 (3)155
C14—H14···O5i0.952.493.287 (10)142
C16—H16···O5i0.952.353.145 (11)140
C21—H21C···O2ii0.982.533.497 (5)169
C9—H9B···O10.982.482.836 (4)101
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x+1/2, y+1/2, z.
 

Acknowledgements

The authors are grateful to the Higher Education Commission, Pakistan, and the Institute of Chemistry, University of the Punjab, Lahore, Pakistan for financial assistance.

References

First citationAhmad, M., Siddiqui, H. L., Aslam, S., Ahmad, S. & Parvez, M. (2011). Acta Cryst. E67, o218–o219.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAhmad, M., Siddiqui, H. L., Azam, M., Siddiqui, W. A. & Parvez, M. (2009). Acta Cryst. E65, o2185.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAhmad, M., Siddiqui, H. L., Zia-ur-Rehman, M., Ashiq, M. I. & Tizzard, G. J. (2008). Acta Cryst. E64, o788.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBlessing, R. H. (1997). J. Appl. Cryst. 30, 421–426.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiddiqui, W. A., Ahmad, S., Tariq, M. I., Siddiqui, H. L. & Parvez, M. (2008). Acta Cryst. C64, o4–o6.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds