organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N′-(2-Chloro­benzyl­­idene)-2-(3,4-di­methyl-5,5-dioxo-2H,4H-pyrazolo­[4,3-c][1,2]benzo­thia­zin-2-yl)acetohydrazide

aInstitute of Chemistry, University of the Punjab, Lahore 54590, Pakistan, cDepartment of Chemistry, University of Baluchistan, Quetta 6700, Pakistan, bApplied Chemistry Research Centre, PCSIR Laboratories Complex, Lahore 54600, Pakistan, dDepartment of Chemistry, Gomal University, Dera Ismail Khan, Pakistan, and eDepartment of Chemistry, The University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4
*Correspondence e-mail: drhamidlatif@yahoo.com

(Received 7 December 2010; accepted 13 December 2010; online 24 December 2010)

The asymmetric unit of the title compound, C20H18ClN5O3S, contains two independent mol­ecules with significantly different conformations of the heterocyclic thia­zine rings. In both mol­ecules, the thia­zine rings adopt half-chair conformations, with the S atoms displaced by 0.382 (3) and 0.533 (3) Å and N atoms −0.351 and −0.275 Å, respectively, from the planes formed by the remaining ring atoms. The crystal structure is stabilized by weak inter­molecular N—H⋯O and C—H⋯O inter­actions.

Related literature

For related structures, see: Ahmad et al. (2008[Ahmad, M., Siddiqui, H. L., Zia-ur-Rehman, M., Ashiq, M. I. & Tizzard, G. J. (2008). Acta Cryst. E64, o788.], 2009[Ahmad, M., Siddiqui, H. L., Azam, M., Siddiqui, W. A. & Parvez, M. (2009). Acta Cryst. E65, o2185.], 2011[Ahmad, M., Siddiqui, H. L., Aslam, S., Ahmad, S. & Parvez, M. (2011). Acta Cryst. E67, o216-o217.]); Siddiqui et al. (2008[Siddiqui, W. A., Ahmad, S., Tariq, M. I., Siddiqui, H. L. & Parvez, M. (2008). Acta Cryst. C64, o4-o6.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C20H18ClN5O3S

  • Mr = 443.90

  • Triclinic, [P \overline 1]

  • a = 11.4881 (2) Å

  • b = 12.7518 (3) Å

  • c = 15.5690 (4) Å

  • α = 71.2778 (11)°

  • β = 78.6837 (13)°

  • γ = 70.4911 (12)°

  • V = 2025.92 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.33 mm−1

  • T = 173 K

  • 0.20 × 0.18 × 0.16 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SORTAV; Blessing, 1997[Blessing, R. H. (1997). J. Appl. Cryst. 30, 421-426.]) Tmin = 0.938, Tmax = 0.950

  • 13799 measured reflections

  • 7106 independent reflections

  • 5649 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.106

  • S = 1.00

  • 7106 reflections

  • 545 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H04⋯O3i 0.88 2.01 2.883 (2) 172
N9—H09⋯O6ii 0.88 1.96 2.837 (2) 173
C18—H18⋯O1iii 0.95 2.55 3.204 (3) 127
C29—H29A⋯O2iv 0.98 2.31 3.266 (3) 165
C38—H38⋯O4v 0.95 2.54 3.233 (2) 130
Symmetry codes: (i) -x, -y+1, -z; (ii) -x, -y-1, -z+1; (iii) x+1, y, z-1; (iv) x+1, y-1, z; (v) x-1, y, z+1.

Data collection: COLLECT (Hooft, 1998[Hooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In continuation to our research exploring potential biologically active derivatives of benzothiazines (Ahmad et al., 2008; 2009), we have devised the fusion of the pyrazole moiety with 1,2-benzothiazine nucleus in an attempt to synthesize novel bioactive molecules. In this paper, we report the synthesis and crystal structure of the title compound, (I).

In the structure of the title compound, there are two independent molecules (molecule a and molecule b) in an asymmetric unit with significantly different conformations of the heterocyclic thiazine rings (Figs. 1 and 2). In both molecules, the thiazine rings adopt half-chair conformations. In molecule a, S1 and N1 atoms are displaced by 0.382 (3) and -0.351 (3) Å, respectively, from the plane formed by the remaining ring atoms(C5–C8). In molecule b, S2 and N6 atoms are displaced by 0.533 (3) and -0.275 (3) Å, respectively, from the plane formed by the remaining ring atoms(C25–C28). The methyl groups attached to N1 and N6 are displaced by significantly different distances from the basal planes of the thiazine rings in the two molecules; 1.802 (4) and 1.694 (4) Å, respectively. The pertinent puckering parameters (Cremer & Pople, 1975) in molecules a and b are: Q = 0.475 (2) and 0.532 (4) Å, θ = 60.0 (4) and 63.4 (2)° and φ = 27.8 (3) and 20.0 (2)°, respectively. Similar conformations of the corresponding rings have been reported in some closely related molecules (Siddiqui et al., 2008; Ahmad et al., 2011).

The mean-planes defined by the pyrazolo and benzene rings of the benzothiazin fragment are inclined with respt to each other at 12.55 (7) and 18.04 (8)°, in the molecules a and b, respectively. The chlorophenyl-methylidene-acetohydrazide moieties in the two molecules display identical conformation. In the molecules labeled as a, intermolecular hydrogen bonds N4—H04···O3 result in the formation of dimmers and C18—H18···O1 link the molecules into chains. Similarly, the molecules b also exhibit intermolecular hydrogen bonds N9—H09···O6 resulting in the formation of dimmers while C38—H38···O4 link the molecules into chains. The molecules a and b are connected via C29—H29B···O2 hydrogen bonds further stabilizing the crystal structure (Tab. 1).

Related literature top

For related structures, see: Ahmad et al. (2008, 2009, 2011); Siddiqui et al. (2008). For puckering parameters, see: Cremer & Pople (1975).

Experimental top

A mixture of 2-(3,4-dimethyl-5,5-dioxidopyrazolo[4,3-c][1,2]benzothiazin- 2(4H)-yl)acetohydrazide (1.0 g, 3.12 mmol) and 2-chlorobenzaldehyde (0.44 g, 3.12 mmol) were dissolved in ethanol (50 ml) followed by the addition of 2 drops of glacial acetic acid. The mixture was subjected to reflux for 4 - 5 h. The completion of reaction was monitored with the help of thin layer chromatography (TLC). The precipitates formed were collected and washed with methanol (yield = 77%). The crystals of (I) suitable for crystallographic analysis were grown from its solution in dimethylamide at room temperature by slow evaporation.

Refinement top

All the H atoms were discernible in the difference electron density map. However, they were positioned at the idealized positions and refined by the riding-model approximation using constraints: N—H = 0.88 Å, C—H = 0.98, 0.99 and 0.95 Å for methyl, methylene and aryl H-atoms, respectively, and Uiso(H) = 1.2Ueq(parent atoms). The methyl groups were allowed to rotate about their axes during the refinement.

Structure description top

In continuation to our research exploring potential biologically active derivatives of benzothiazines (Ahmad et al., 2008; 2009), we have devised the fusion of the pyrazole moiety with 1,2-benzothiazine nucleus in an attempt to synthesize novel bioactive molecules. In this paper, we report the synthesis and crystal structure of the title compound, (I).

In the structure of the title compound, there are two independent molecules (molecule a and molecule b) in an asymmetric unit with significantly different conformations of the heterocyclic thiazine rings (Figs. 1 and 2). In both molecules, the thiazine rings adopt half-chair conformations. In molecule a, S1 and N1 atoms are displaced by 0.382 (3) and -0.351 (3) Å, respectively, from the plane formed by the remaining ring atoms(C5–C8). In molecule b, S2 and N6 atoms are displaced by 0.533 (3) and -0.275 (3) Å, respectively, from the plane formed by the remaining ring atoms(C25–C28). The methyl groups attached to N1 and N6 are displaced by significantly different distances from the basal planes of the thiazine rings in the two molecules; 1.802 (4) and 1.694 (4) Å, respectively. The pertinent puckering parameters (Cremer & Pople, 1975) in molecules a and b are: Q = 0.475 (2) and 0.532 (4) Å, θ = 60.0 (4) and 63.4 (2)° and φ = 27.8 (3) and 20.0 (2)°, respectively. Similar conformations of the corresponding rings have been reported in some closely related molecules (Siddiqui et al., 2008; Ahmad et al., 2011).

The mean-planes defined by the pyrazolo and benzene rings of the benzothiazin fragment are inclined with respt to each other at 12.55 (7) and 18.04 (8)°, in the molecules a and b, respectively. The chlorophenyl-methylidene-acetohydrazide moieties in the two molecules display identical conformation. In the molecules labeled as a, intermolecular hydrogen bonds N4—H04···O3 result in the formation of dimmers and C18—H18···O1 link the molecules into chains. Similarly, the molecules b also exhibit intermolecular hydrogen bonds N9—H09···O6 resulting in the formation of dimmers while C38—H38···O4 link the molecules into chains. The molecules a and b are connected via C29—H29B···O2 hydrogen bonds further stabilizing the crystal structure (Tab. 1).

For related structures, see: Ahmad et al. (2008, 2009, 2011); Siddiqui et al. (2008). For puckering parameters, see: Cremer & Pople (1975).

Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997); data reduction: SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecule a plotted with the displacement ellipsoids at 50% probability level (Farrugia, 1997).
[Figure 2] Fig. 2. The molecule b plotted with the displacement ellipsoids at 50% probability level (Farrugia, 1997).
N'-(2-Chlorobenzylidene)-2-(3,4-dimethyl-5,5-dioxo-2H,4H- pyrazolo[4,3-c][1,2]benzothiazin-2-yl)acetohydrazide top
Crystal data top
C20H18ClN5O3SZ = 4
Mr = 443.90F(000) = 920
Triclinic, P1Dx = 1.455 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 11.4881 (2) ÅCell parameters from 8973 reflections
b = 12.7518 (3) Åθ = 1.0–27.5°
c = 15.5690 (4) ŵ = 0.33 mm1
α = 71.2778 (11)°T = 173 K
β = 78.6837 (13)°Block, colorless
γ = 70.4911 (12)°0.20 × 0.18 × 0.16 mm
V = 2025.92 (8) Å3
Data collection top
Nonius KappaCCD
diffractometer
7106 independent reflections
Radiation source: fine-focus sealed tube5649 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ω and φ scansθmax = 25.0°, θmin = 1.4°
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
h = 1313
Tmin = 0.938, Tmax = 0.950k = 1515
13799 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: difference Fourier map
wR(F2) = 0.106H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.061P)2 + 0.760P]
where P = (Fo2 + 2Fc2)/3
7106 reflections(Δ/σ)max = 0.001
545 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.39 e Å3
Crystal data top
C20H18ClN5O3Sγ = 70.4911 (12)°
Mr = 443.90V = 2025.92 (8) Å3
Triclinic, P1Z = 4
a = 11.4881 (2) ÅMo Kα radiation
b = 12.7518 (3) ŵ = 0.33 mm1
c = 15.5690 (4) ÅT = 173 K
α = 71.2778 (11)°0.20 × 0.18 × 0.16 mm
β = 78.6837 (13)°
Data collection top
Nonius KappaCCD
diffractometer
7106 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
5649 reflections with I > 2σ(I)
Tmin = 0.938, Tmax = 0.950Rint = 0.024
13799 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.106H-atom parameters constrained
S = 1.00Δρmax = 0.25 e Å3
7106 reflectionsΔρmin = 0.39 e Å3
545 parameters
Special details top

Experimental. Colorless crystals; mp 482 - 484 K. IR (KBr) cm-1: 3478, 1699, 1595, 1340, 1155. 1H-NMR (DMSO– d6) (400 MHz) δ 2.32 (3H, s, CCH3), 2.98 (3H, s, NCH3), 5.52 (2H, s, NCH2), 7.63–7.69 (2H, m, ArH), 7.76–7.80 (2H, q, J = 17.9, 7.6 Hz, ArH), 7.86 (1H, d, J = 7.80 Hz, ArH), 7.93 (1H, d, J = 7.7 Hz, ArH), 8.08 (1H, d, J = 8.2 Hz, ArH), 8.16 (1H, d, J = 8.0 Hz, ArH), 8.46 (1H, s, NCH), 12.09 (1H, br s, NH). 13C NMR: 8.5, 38.9, 51.3, 121.4, 122.4, 123.1, 124.6, 124.7, 124.9, 126.2, 126.4, 127.5, 127.7, 127.8, 128.1, 130.6, 132.9, 134.2, 136.2, 136.8, 166.3. MS m/z: 444.0(M+).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.25790 (5)0.47702 (5)0.33819 (4)0.03347 (14)
Cl20.26345 (5)0.48073 (5)0.84350 (4)0.03564 (15)
S10.50025 (5)0.25138 (5)0.37138 (3)0.03121 (15)
S20.50831 (4)0.18110 (4)0.15070 (3)0.02402 (13)
O10.61045 (14)0.22302 (16)0.41864 (11)0.0472 (4)
O20.48908 (16)0.36345 (13)0.35969 (11)0.0462 (4)
O30.11061 (14)0.42389 (13)0.08697 (10)0.0364 (4)
O40.61488 (12)0.22162 (13)0.09197 (10)0.0330 (3)
O50.50899 (13)0.10151 (12)0.19769 (10)0.0305 (3)
O60.10093 (14)0.41879 (13)0.41403 (10)0.0336 (4)
N10.48174 (14)0.23141 (14)0.26951 (11)0.0256 (4)
N20.14910 (15)0.17558 (14)0.21567 (11)0.0257 (4)
N30.19344 (14)0.23215 (14)0.13286 (11)0.0235 (4)
N40.00120 (15)0.38951 (15)0.04161 (11)0.0271 (4)
H040.02810.45000.05260.033*
N50.03678 (15)0.32466 (14)0.10331 (11)0.0247 (4)
N60.47766 (14)0.29427 (14)0.22751 (11)0.0232 (4)
N70.15457 (14)0.16124 (14)0.29530 (11)0.0240 (4)
N80.19665 (14)0.23898 (14)0.37419 (11)0.0226 (4)
N90.00865 (15)0.38815 (15)0.54391 (11)0.0264 (4)
H090.03890.44610.55230.032*
N100.04085 (14)0.32727 (14)0.60840 (11)0.0235 (4)
C10.15139 (19)0.05007 (17)0.41734 (14)0.0271 (4)
H10.07290.03040.38340.033*
C20.1625 (2)0.00523 (19)0.51109 (14)0.0317 (5)
H20.09140.04500.54090.038*
C30.2761 (2)0.03255 (19)0.56234 (15)0.0339 (5)
H30.28220.00190.62680.041*
C40.3804 (2)0.10447 (18)0.51930 (14)0.0318 (5)
H40.45880.12260.55370.038*
C50.36949 (18)0.14994 (17)0.42513 (13)0.0259 (4)
C60.25467 (17)0.12395 (16)0.37233 (13)0.0234 (4)
C70.25122 (17)0.17367 (16)0.27358 (13)0.0214 (4)
C80.35875 (17)0.22887 (17)0.22753 (13)0.0226 (4)
C90.5213 (2)0.1342 (2)0.26466 (16)0.0358 (5)
H9A0.51540.13500.20080.043*
H9B0.60740.14260.29170.043*
H9C0.46740.06070.29830.043*
C100.31995 (17)0.26745 (17)0.13709 (13)0.0237 (4)
C110.3911 (2)0.3342 (2)0.05664 (14)0.0342 (5)
H11A0.48020.34970.07620.041*
H11B0.36860.28910.01220.041*
H11C0.37130.40760.02860.041*
C120.10719 (18)0.25138 (18)0.05219 (13)0.0264 (4)
H12A0.14460.25510.00120.032*
H12B0.03070.18520.05930.032*
C130.07352 (18)0.36260 (18)0.03483 (13)0.0256 (4)
C140.10219 (17)0.36567 (18)0.17459 (13)0.0257 (4)
H140.12290.43390.18010.031*
C150.14552 (17)0.30888 (17)0.24767 (13)0.0239 (4)
C160.21805 (17)0.35203 (18)0.32574 (14)0.0262 (4)
C170.25943 (19)0.2978 (2)0.39504 (15)0.0339 (5)
H170.30800.32890.44790.041*
C180.2294 (2)0.1983 (2)0.38658 (15)0.0375 (5)
H180.25840.16010.43340.045*
C190.1572 (2)0.1542 (2)0.31005 (15)0.0355 (5)
H190.13660.08590.30440.043*
C200.11527 (19)0.20949 (19)0.24212 (14)0.0300 (5)
H200.06460.17930.19040.036*
C210.15474 (18)0.05797 (17)0.08887 (14)0.0264 (4)
H210.07410.05370.12000.032*
C220.16845 (19)0.00809 (18)0.00436 (14)0.0301 (5)
H220.09670.03160.03620.036*
C230.28514 (19)0.01504 (18)0.05205 (14)0.0300 (5)
H230.29310.01840.11610.036*
C240.38999 (19)0.07118 (17)0.00546 (13)0.0262 (4)
H240.47030.07750.03750.031*
C250.37652 (17)0.11814 (16)0.08832 (13)0.0223 (4)
C260.25873 (17)0.11432 (16)0.13714 (13)0.0227 (4)
C270.25414 (17)0.17512 (16)0.23418 (13)0.0215 (4)
C280.35753 (17)0.25970 (17)0.27479 (13)0.0223 (4)
C290.5033 (2)0.39860 (18)0.19582 (15)0.0322 (5)
H29A0.48990.46310.24760.039*
H29B0.58950.41930.16890.039*
H29C0.44730.38230.15000.039*
C300.31849 (17)0.30032 (16)0.36504 (13)0.0225 (4)
C310.38679 (19)0.39090 (18)0.44001 (14)0.0311 (5)
H31A0.47560.41330.41940.037*
H31B0.35600.45870.45750.037*
H31C0.37390.36050.49260.037*
C320.11075 (18)0.25551 (17)0.45531 (13)0.0252 (4)
H32A0.03790.18580.45010.030*
H32B0.15160.26580.50910.030*
C330.06770 (17)0.36078 (17)0.46880 (13)0.0242 (4)
C340.10689 (17)0.36873 (17)0.67866 (13)0.0245 (4)
H340.13010.43500.68220.029*
C350.14732 (17)0.31510 (17)0.75402 (13)0.0227 (4)
C360.21890 (17)0.35873 (18)0.83283 (14)0.0262 (4)
C370.25619 (18)0.3068 (2)0.90357 (14)0.0316 (5)
H370.30260.33900.95730.038*
C380.22519 (19)0.2081 (2)0.89518 (15)0.0339 (5)
H380.25220.17100.94260.041*
C390.15498 (19)0.16290 (19)0.81798 (15)0.0318 (5)
H390.13390.09490.81250.038*
C400.11553 (18)0.21659 (18)0.74900 (14)0.0272 (4)
H400.06560.18590.69690.033*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0357 (3)0.0364 (3)0.0268 (3)0.0187 (2)0.0064 (2)0.0037 (2)
Cl20.0393 (3)0.0396 (3)0.0294 (3)0.0234 (2)0.0074 (2)0.0053 (2)
S10.0320 (3)0.0300 (3)0.0205 (3)0.0019 (2)0.0051 (2)0.0043 (2)
S20.0226 (2)0.0284 (3)0.0189 (3)0.0114 (2)0.00193 (19)0.0018 (2)
O10.0310 (8)0.0627 (11)0.0270 (9)0.0042 (8)0.0108 (7)0.0027 (8)
O20.0704 (11)0.0260 (8)0.0323 (9)0.0015 (8)0.0032 (8)0.0091 (7)
O30.0515 (9)0.0381 (9)0.0277 (8)0.0269 (7)0.0168 (7)0.0175 (7)
O40.0253 (7)0.0407 (9)0.0231 (8)0.0080 (6)0.0070 (6)0.0029 (7)
O50.0337 (8)0.0335 (8)0.0287 (8)0.0181 (6)0.0019 (6)0.0066 (7)
O60.0458 (9)0.0357 (8)0.0272 (8)0.0248 (7)0.0162 (7)0.0172 (7)
N10.0224 (8)0.0312 (9)0.0190 (9)0.0097 (7)0.0034 (7)0.0027 (7)
N20.0277 (9)0.0294 (9)0.0206 (9)0.0130 (7)0.0013 (7)0.0048 (7)
N30.0270 (8)0.0282 (9)0.0162 (8)0.0137 (7)0.0040 (7)0.0049 (7)
N40.0356 (9)0.0314 (10)0.0209 (9)0.0203 (8)0.0084 (7)0.0114 (8)
N50.0273 (8)0.0280 (9)0.0207 (9)0.0103 (7)0.0029 (7)0.0100 (7)
N60.0234 (8)0.0243 (9)0.0179 (8)0.0083 (7)0.0015 (7)0.0014 (7)
N70.0257 (8)0.0247 (9)0.0198 (9)0.0113 (7)0.0006 (7)0.0012 (7)
N80.0269 (8)0.0238 (9)0.0172 (8)0.0128 (7)0.0039 (7)0.0039 (7)
N90.0338 (9)0.0304 (9)0.0218 (9)0.0191 (8)0.0094 (7)0.0133 (8)
N100.0256 (8)0.0270 (9)0.0196 (9)0.0102 (7)0.0037 (7)0.0094 (7)
C10.0289 (10)0.0294 (11)0.0258 (11)0.0132 (9)0.0026 (8)0.0064 (9)
C20.0347 (11)0.0344 (12)0.0267 (12)0.0134 (9)0.0100 (9)0.0016 (10)
C30.0451 (13)0.0373 (13)0.0197 (11)0.0202 (10)0.0026 (9)0.0003 (9)
C40.0370 (12)0.0323 (12)0.0217 (11)0.0115 (9)0.0030 (9)0.0034 (9)
C50.0313 (11)0.0246 (11)0.0202 (11)0.0106 (8)0.0017 (8)0.0038 (9)
C60.0289 (10)0.0221 (10)0.0218 (10)0.0132 (8)0.0003 (8)0.0050 (8)
C70.0246 (10)0.0222 (10)0.0187 (10)0.0110 (8)0.0019 (8)0.0055 (8)
C80.0229 (10)0.0250 (10)0.0197 (10)0.0096 (8)0.0026 (8)0.0060 (8)
C90.0299 (11)0.0446 (14)0.0354 (13)0.0199 (10)0.0006 (10)0.0073 (11)
C100.0267 (10)0.0251 (10)0.0205 (10)0.0115 (8)0.0010 (8)0.0060 (8)
C110.0361 (12)0.0405 (13)0.0215 (11)0.0138 (10)0.0023 (9)0.0001 (10)
C120.0308 (10)0.0299 (11)0.0210 (11)0.0167 (9)0.0093 (8)0.0093 (9)
C130.0277 (10)0.0305 (11)0.0202 (10)0.0140 (9)0.0048 (8)0.0074 (9)
C140.0263 (10)0.0313 (11)0.0216 (11)0.0148 (9)0.0048 (8)0.0079 (9)
C150.0240 (10)0.0287 (11)0.0180 (10)0.0081 (8)0.0003 (8)0.0055 (8)
C160.0241 (10)0.0322 (11)0.0208 (10)0.0097 (8)0.0006 (8)0.0052 (9)
C170.0326 (11)0.0463 (14)0.0213 (11)0.0135 (10)0.0074 (9)0.0109 (10)
C180.0384 (12)0.0500 (15)0.0286 (12)0.0148 (11)0.0080 (10)0.0218 (11)
C190.0415 (12)0.0390 (13)0.0314 (12)0.0148 (10)0.0017 (10)0.0169 (10)
C200.0334 (11)0.0360 (12)0.0226 (11)0.0170 (9)0.0061 (9)0.0088 (9)
C210.0264 (10)0.0281 (11)0.0258 (11)0.0138 (8)0.0021 (8)0.0033 (9)
C220.0327 (11)0.0336 (12)0.0246 (11)0.0143 (9)0.0088 (9)0.0005 (9)
C230.0386 (12)0.0335 (12)0.0187 (10)0.0171 (9)0.0024 (9)0.0018 (9)
C240.0315 (10)0.0271 (11)0.0200 (10)0.0136 (9)0.0012 (8)0.0033 (9)
C250.0266 (10)0.0212 (10)0.0189 (10)0.0103 (8)0.0004 (8)0.0027 (8)
C260.0281 (10)0.0219 (10)0.0192 (10)0.0125 (8)0.0012 (8)0.0037 (8)
C270.0232 (9)0.0227 (10)0.0189 (10)0.0116 (8)0.0013 (8)0.0030 (8)
C280.0224 (9)0.0261 (10)0.0178 (10)0.0111 (8)0.0015 (8)0.0031 (8)
C290.0386 (12)0.0261 (11)0.0296 (12)0.0097 (9)0.0006 (9)0.0066 (9)
C300.0250 (10)0.0239 (10)0.0199 (10)0.0115 (8)0.0016 (8)0.0057 (8)
C310.0331 (11)0.0323 (12)0.0201 (11)0.0096 (9)0.0011 (9)0.0008 (9)
C320.0301 (10)0.0269 (11)0.0197 (10)0.0145 (8)0.0084 (8)0.0080 (9)
C330.0255 (10)0.0277 (11)0.0201 (10)0.0122 (8)0.0044 (8)0.0066 (9)
C340.0267 (10)0.0280 (11)0.0217 (10)0.0141 (8)0.0042 (8)0.0083 (9)
C350.0208 (9)0.0285 (11)0.0174 (10)0.0079 (8)0.0012 (8)0.0055 (8)
C360.0222 (10)0.0335 (12)0.0219 (11)0.0097 (8)0.0003 (8)0.0062 (9)
C370.0269 (10)0.0478 (14)0.0185 (11)0.0136 (10)0.0051 (8)0.0086 (10)
C380.0294 (11)0.0512 (14)0.0263 (12)0.0114 (10)0.0033 (9)0.0215 (11)
C390.0320 (11)0.0368 (12)0.0314 (12)0.0124 (9)0.0006 (9)0.0155 (10)
C400.0273 (10)0.0329 (11)0.0234 (11)0.0131 (9)0.0030 (8)0.0094 (9)
Geometric parameters (Å, º) top
Cl1—C161.744 (2)C11—H11C0.9800
Cl2—C361.744 (2)C12—C131.521 (3)
S1—O21.4276 (17)C12—H12A0.9900
S1—O11.4298 (17)C12—H12B0.9900
S1—N11.6481 (17)C14—C151.460 (3)
S1—C51.769 (2)C14—H140.9500
S2—O41.4295 (14)C15—C201.395 (3)
S2—O51.4315 (15)C15—C161.398 (3)
S2—N61.6440 (16)C16—C171.388 (3)
S2—C251.7734 (19)C17—C181.384 (3)
O3—C131.225 (2)C17—H170.9500
O6—C331.228 (2)C18—C191.384 (3)
N1—C81.430 (2)C18—H180.9500
N1—C91.483 (3)C19—C201.378 (3)
N2—C71.334 (2)C19—H190.9500
N2—N31.363 (2)C20—H200.9500
N3—C101.365 (2)C21—C221.386 (3)
N3—C121.448 (2)C21—C261.393 (3)
N4—C131.343 (2)C21—H210.9500
N4—N51.380 (2)C22—C231.389 (3)
N4—H040.8800C22—H220.9500
N5—C141.278 (2)C23—C241.387 (3)
N6—C281.430 (2)C23—H230.9500
N6—C291.484 (3)C24—C251.388 (3)
N7—C271.338 (2)C24—H240.9500
N7—N81.362 (2)C25—C261.410 (3)
N8—C301.361 (2)C26—C271.460 (3)
N8—C321.446 (2)C27—C281.405 (3)
N9—C331.341 (2)C28—C301.373 (3)
N9—N101.382 (2)C29—H29A0.9800
N9—H090.8800C29—H29B0.9800
N10—C341.274 (2)C29—H29C0.9800
C1—C21.383 (3)C30—C311.483 (3)
C1—C61.394 (3)C31—H31A0.9800
C1—H10.9500C31—H31B0.9800
C2—C31.388 (3)C31—H31C0.9800
C2—H20.9500C32—C331.521 (3)
C3—C41.383 (3)C32—H32A0.9900
C3—H30.9500C32—H32B0.9900
C4—C51.390 (3)C34—C351.466 (3)
C4—H40.9500C34—H340.9500
C5—C61.408 (3)C35—C401.396 (3)
C6—C71.461 (3)C35—C361.401 (3)
C7—C81.407 (3)C36—C371.388 (3)
C8—C101.371 (3)C37—C381.381 (3)
C9—H9A0.9800C37—H370.9500
C9—H9B0.9800C38—C391.383 (3)
C9—H9C0.9800C38—H380.9500
C10—C111.488 (3)C39—C401.379 (3)
C11—H11A0.9800C39—H390.9500
C11—H11B0.9800C40—H400.9500
O2—S1—O1119.67 (11)C20—C15—C14120.97 (18)
O2—S1—N1107.75 (9)C16—C15—C14121.48 (18)
O1—S1—N1107.62 (10)C17—C16—C15121.44 (19)
O2—S1—C5106.56 (10)C17—C16—Cl1118.40 (16)
O1—S1—C5109.55 (10)C15—C16—Cl1120.16 (15)
N1—S1—C5104.71 (9)C18—C17—C16119.5 (2)
O4—S2—O5119.73 (9)C18—C17—H17120.3
O4—S2—N6108.16 (9)C16—C17—H17120.3
O5—S2—N6107.65 (8)C17—C18—C19120.1 (2)
O4—S2—C25109.04 (9)C17—C18—H18119.9
O5—S2—C25107.54 (9)C19—C18—H18119.9
N6—S2—C25103.53 (8)C20—C19—C18120.0 (2)
C8—N1—C9113.18 (16)C20—C19—H19120.0
C8—N1—S1110.51 (12)C18—C19—H19120.0
C9—N1—S1115.83 (13)C19—C20—C15121.4 (2)
C7—N2—N3103.85 (15)C19—C20—H20119.3
N2—N3—C10113.56 (15)C15—C20—H20119.3
N2—N3—C12119.49 (15)C22—C21—C26120.25 (18)
C10—N3—C12126.94 (17)C22—C21—H21119.9
C13—N4—N5121.66 (16)C26—C21—H21119.9
C13—N4—H04119.2C21—C22—C23121.22 (19)
N5—N4—H04119.2C21—C22—H22119.4
C14—N5—N4113.66 (16)C23—C22—H22119.4
C28—N6—C29115.32 (15)C24—C23—C22119.52 (19)
C28—N6—S2109.81 (12)C24—C23—H23120.2
C29—N6—S2115.80 (13)C22—C23—H23120.2
C27—N7—N8103.62 (15)C23—C24—C25119.43 (19)
C30—N8—N7113.79 (15)C23—C24—H24120.3
C30—N8—C32126.45 (17)C25—C24—H24120.3
N7—N8—C32119.58 (15)C24—C25—C26121.56 (17)
C33—N9—N10121.36 (16)C24—C25—S2120.38 (15)
C33—N9—H09119.3C26—C25—S2118.03 (14)
N10—N9—H09119.3C21—C26—C25117.97 (17)
C34—N10—N9113.79 (16)C21—C26—C27124.23 (17)
C2—C1—C6120.39 (19)C25—C26—C27117.72 (17)
C2—C1—H1119.8N7—C27—C28111.17 (16)
C6—C1—H1119.8N7—C27—C26126.21 (17)
C1—C2—C3121.03 (19)C28—C27—C26122.61 (17)
C1—C2—H2119.5C30—C28—C27106.59 (16)
C3—C2—H2119.5C30—C28—N6128.76 (17)
C4—C3—C2119.8 (2)C27—C28—N6124.65 (17)
C4—C3—H3120.1N6—C29—H29A109.5
C2—C3—H3120.1N6—C29—H29B109.5
C3—C4—C5119.4 (2)H29A—C29—H29B109.5
C3—C4—H4120.3N6—C29—H29C109.5
C5—C4—H4120.3H29A—C29—H29C109.5
C4—C5—C6121.53 (19)H29B—C29—H29C109.5
C4—C5—S1119.17 (15)N8—C30—C28104.83 (16)
C6—C5—S1119.13 (15)N8—C30—C31124.68 (17)
C1—C6—C5117.93 (18)C28—C30—C31130.49 (17)
C1—C6—C7123.84 (18)C30—C31—H31A109.5
C5—C6—C7118.22 (17)C30—C31—H31B109.5
N2—C7—C8111.11 (16)H31A—C31—H31B109.5
N2—C7—C6125.81 (17)C30—C31—H31C109.5
C8—C7—C6123.06 (16)H31A—C31—H31C109.5
C10—C8—C7106.71 (16)H31B—C31—H31C109.5
C10—C8—N1128.69 (17)N8—C32—C33111.10 (15)
C7—C8—N1124.34 (17)N8—C32—H32A109.4
N1—C9—H9A109.5C33—C32—H32A109.4
N1—C9—H9B109.5N8—C32—H32B109.4
H9A—C9—H9B109.5C33—C32—H32B109.4
N1—C9—H9C109.5H32A—C32—H32B108.0
H9A—C9—H9C109.5O6—C33—N9121.04 (18)
H9B—C9—H9C109.5O6—C33—C32122.09 (17)
N3—C10—C8104.75 (17)N9—C33—C32116.87 (16)
N3—C10—C11124.02 (17)N10—C34—C35120.56 (18)
C8—C10—C11131.22 (18)N10—C34—H34119.7
C10—C11—H11A109.5C35—C34—H34119.7
C10—C11—H11B109.5C40—C35—C36117.36 (18)
H11A—C11—H11B109.5C40—C35—C34120.32 (18)
C10—C11—H11C109.5C36—C35—C34122.32 (18)
H11A—C11—H11C109.5C37—C36—C35121.51 (19)
H11B—C11—H11C109.5C37—C36—Cl2118.54 (16)
N3—C12—C13112.17 (16)C35—C36—Cl2119.96 (15)
N3—C12—H12A109.2C38—C37—C36119.40 (19)
C13—C12—H12A109.2C38—C37—H37120.3
N3—C12—H12B109.2C36—C37—H37120.3
C13—C12—H12B109.2C37—C38—C39120.28 (19)
H12A—C12—H12B107.9C37—C38—H38119.9
O3—C13—N4121.57 (18)C39—C38—H38119.9
O3—C13—C12122.80 (17)C40—C39—C38120.0 (2)
N4—C13—C12115.63 (17)C40—C39—H39120.0
N5—C14—C15120.76 (18)C38—C39—H39120.0
N5—C14—H14119.6C39—C40—C35121.42 (19)
C15—C14—H14119.6C39—C40—H40119.3
C20—C15—C16117.54 (18)C35—C40—H40119.3
O2—S1—N1—C864.64 (15)C20—C15—C16—Cl1179.16 (15)
O1—S1—N1—C8165.04 (13)C14—C15—C16—Cl10.5 (3)
C5—S1—N1—C848.53 (15)C15—C16—C17—C180.6 (3)
O2—S1—N1—C9164.98 (14)Cl1—C16—C17—C18179.75 (17)
O1—S1—N1—C934.66 (17)C16—C17—C18—C190.9 (3)
C5—S1—N1—C981.85 (15)C17—C18—C19—C200.1 (3)
C7—N2—N3—C101.0 (2)C18—C19—C20—C151.1 (3)
C7—N2—N3—C12179.57 (16)C16—C15—C20—C191.3 (3)
C13—N4—N5—C14176.32 (19)C14—C15—C20—C19179.00 (19)
O4—S2—N6—C28167.43 (12)C26—C21—C22—C231.4 (3)
O5—S2—N6—C2861.86 (14)C21—C22—C23—C241.1 (3)
C25—S2—N6—C2851.83 (14)C22—C23—C24—C250.9 (3)
O4—S2—N6—C2934.67 (16)C23—C24—C25—C262.6 (3)
O5—S2—N6—C29165.37 (13)C23—C24—C25—S2175.41 (15)
C25—S2—N6—C2980.94 (15)O4—S2—C25—C2426.45 (19)
C27—N7—N8—C300.4 (2)O5—S2—C25—C24104.80 (16)
C27—N7—N8—C32175.10 (15)N6—S2—C25—C24141.43 (16)
C33—N9—N10—C34175.35 (18)O4—S2—C25—C26155.45 (15)
C6—C1—C2—C30.0 (3)O5—S2—C25—C2673.30 (16)
C1—C2—C3—C40.8 (3)N6—S2—C25—C2640.48 (17)
C2—C3—C4—C51.0 (3)C22—C21—C26—C250.3 (3)
C3—C4—C5—C60.4 (3)C22—C21—C26—C27176.28 (18)
C3—C4—C5—S1174.74 (16)C24—C25—C26—C212.3 (3)
O2—S1—C5—C495.97 (18)S2—C25—C26—C21175.79 (14)
O1—S1—C5—C434.8 (2)C24—C25—C26—C27174.49 (17)
N1—S1—C5—C4150.01 (16)S2—C25—C26—C277.4 (2)
O2—S1—C5—C679.25 (17)N8—N7—C27—C280.7 (2)
O1—S1—C5—C6149.94 (16)N8—N7—C27—C26178.13 (17)
N1—S1—C5—C634.76 (18)C21—C26—C27—N719.1 (3)
C2—C1—C6—C50.6 (3)C25—C26—C27—N7164.35 (18)
C2—C1—C6—C7179.12 (18)C21—C26—C27—C28159.56 (19)
C4—C5—C6—C10.4 (3)C25—C26—C27—C2817.0 (3)
S1—C5—C6—C1175.55 (14)N7—C27—C28—C300.7 (2)
C4—C5—C6—C7179.03 (18)C26—C27—C28—C30178.12 (17)
S1—C5—C6—C75.9 (2)N7—C27—C28—N6179.99 (16)
N3—N2—C7—C80.2 (2)C26—C27—C28—N61.2 (3)
N3—N2—C7—C6178.90 (17)C29—N6—C28—C3083.4 (2)
C1—C6—C7—N214.4 (3)S2—N6—C28—C30143.56 (18)
C5—C6—C7—N2167.13 (18)C29—N6—C28—C2795.7 (2)
C1—C6—C7—C8167.05 (18)S2—N6—C28—C2737.3 (2)
C5—C6—C7—C811.5 (3)N7—N8—C30—C280.0 (2)
N2—C7—C8—C100.7 (2)C32—N8—C30—C28175.16 (17)
C6—C7—C8—C10178.07 (17)N7—N8—C30—C31179.45 (17)
N2—C7—C8—N1173.85 (17)C32—N8—C30—C314.3 (3)
C6—C7—C8—N17.4 (3)C27—C28—C30—N80.4 (2)
C9—N1—C8—C1082.0 (2)N6—C28—C30—N8179.69 (18)
S1—N1—C8—C10146.19 (18)C27—C28—C30—C31179.02 (19)
C9—N1—C8—C791.3 (2)N6—C28—C30—C310.2 (3)
S1—N1—C8—C740.5 (2)C30—N8—C32—C3376.9 (2)
N2—N3—C10—C81.5 (2)N7—N8—C32—C3397.98 (19)
C12—N3—C10—C8179.88 (17)N10—N9—C33—O6176.29 (17)
N2—N3—C10—C11177.98 (18)N10—N9—C33—C323.5 (3)
C12—N3—C10—C110.4 (3)N8—C32—C33—O62.4 (3)
C7—C8—C10—N31.2 (2)N8—C32—C33—N9177.41 (17)
N1—C8—C10—N3172.99 (18)N9—N10—C34—C35179.12 (16)
C7—C8—C10—C11178.1 (2)N10—C34—C35—C401.0 (3)
N1—C8—C10—C117.6 (4)N10—C34—C35—C36179.33 (19)
N2—N3—C12—C1387.3 (2)C40—C35—C36—C370.5 (3)
C10—N3—C12—C1391.0 (2)C34—C35—C36—C37179.91 (18)
N5—N4—C13—O3175.86 (18)C40—C35—C36—Cl2179.38 (14)
N5—N4—C13—C124.7 (3)C34—C35—C36—Cl20.3 (3)
N3—C12—C13—O33.9 (3)C35—C36—C37—C381.9 (3)
N3—C12—C13—N4176.66 (17)Cl2—C36—C37—C38177.96 (16)
N4—N5—C14—C15178.77 (16)C36—C37—C38—C391.6 (3)
N5—C14—C15—C200.9 (3)C37—C38—C39—C400.1 (3)
N5—C14—C15—C16179.43 (19)C38—C39—C40—C351.5 (3)
C20—C15—C16—C170.5 (3)C36—C35—C40—C391.3 (3)
C14—C15—C16—C17179.85 (18)C34—C35—C40—C39178.39 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14···Cl10.952.643.048 (2)106
C34—H34···Cl20.952.673.068 (2)106
N4—H04···O3i0.882.012.883 (2)172
N9—H09···O6ii0.881.962.837 (2)173
C18—H18···O1iii0.952.553.204 (3)127
C29—H29A···O2iv0.982.313.266 (3)165
C38—H38···O4v0.952.543.233 (2)130
C9—H9B···O10.982.492.843 (3)101
C29—H29B···O40.982.512.851 (3)100
Symmetry codes: (i) x, y+1, z; (ii) x, y1, z+1; (iii) x+1, y, z1; (iv) x+1, y1, z; (v) x1, y, z+1.

Experimental details

Crystal data
Chemical formulaC20H18ClN5O3S
Mr443.90
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)11.4881 (2), 12.7518 (3), 15.5690 (4)
α, β, γ (°)71.2778 (11), 78.6837 (13), 70.4911 (12)
V3)2025.92 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.33
Crystal size (mm)0.20 × 0.18 × 0.16
Data collection
DiffractometerNonius KappaCCD
Absorption correctionMulti-scan
(SORTAV; Blessing, 1997)
Tmin, Tmax0.938, 0.950
No. of measured, independent and
observed [I > 2σ(I)] reflections
13799, 7106, 5649
Rint0.024
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.106, 1.00
No. of reflections7106
No. of parameters545
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.39

Computer programs: COLLECT (Hooft, 1998), DENZO (Otwinowski & Minor, 1997), SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H04···O3i0.882.012.883 (2)172.0
N9—H09···O6ii0.881.962.837 (2)173.2
C18—H18···O1iii0.952.553.204 (3)126.6
C29—H29A···O2iv0.982.313.266 (3)165.4
C38—H38···O4v0.952.543.233 (2)129.9
Symmetry codes: (i) x, y+1, z; (ii) x, y1, z+1; (iii) x+1, y, z1; (iv) x+1, y1, z; (v) x1, y, z+1.
 

Acknowledgements

The authors are grateful to the Higher Education Commission, Pakistan and the Institute of Chemistry, University of the Punjab, Lahore, Pakistan for financial assistance.

References

First citationAhmad, M., Siddiqui, H. L., Aslam, S., Ahmad, S. & Parvez, M. (2011). Acta Cryst. E67, o216–o217.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAhmad, M., Siddiqui, H. L., Azam, M., Siddiqui, W. A. & Parvez, M. (2009). Acta Cryst. E65, o2185.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAhmad, M., Siddiqui, H. L., Zia-ur-Rehman, M., Ashiq, M. I. & Tizzard, G. J. (2008). Acta Cryst. E64, o788.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBlessing, R. H. (1997). J. Appl. Cryst. 30, 421–426.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiddiqui, W. A., Ahmad, S., Tariq, M. I., Siddiqui, H. L. & Parvez, M. (2008). Acta Cryst. C64, o4–o6.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds