organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­benzyl sulfoxide

aSchool of Chemistry and Environment, South China Normal University, Guangzhou 510006, People's Republic of China, and bDepartment of Chemistry, South China University of Technology, Guangzhou,510641, People's Republic of China
*Correspondence e-mail: chzgxu@scnu.edu.cn

(Received 12 December 2010; accepted 13 December 2010; online 18 December 2010)

There are two independent mol­ecules in the asymmetric unit of the title compound, C14H14OS, which have asymmetric S—C bonds [1.791 (5) and 1.804 (5) Å in one mol­ecule and 1.798 (5) and 1.804 (5) Å in the other]. The long axes of the mol­ecules are directed along the crystallographic b axis.

Related literature

For related structures, see: Li et al. (2003[Li, J. R., Du, M., Bu, X. H. & Zhang, R. H. (2003). J. Solid State Chem. 173, 20-26.]); Iitaka et al. (1986[Iitaka, Y., Itai, A., Tomioka, N., Kodama, Y., Ichikawa, K., Nishihata, K., Nishio, M., Izumi, M. & Doi, K. (1986). Bull. Chem. Soc. Jpn, 59, 2801-2806.]). For the preparation, see: Shriner et al. (1930[Shriner, R. L., Struck, H. C. & Jorison, W. J. (1930). J. Am. Chem. Soc. 52, 2060-2069.]). For the use of sulfoxides in the separation of palladium from other platinum-group metals by solvent extraction, see: Xu et al. (2006[Xu, Z. G., Gu, G. B., Liu, H. Y., Jiang, H. F. & Chang, C. K. (2006). Chin. J. Struct. Chem. 25, 1524-1530.]).

[Scheme 1]

Experimental

Crystal data
  • C14H14OS

  • Mr = 230.32

  • Orthorhombic, F d d 2

  • a = 17.882 (5) Å

  • b = 53.150 (14) Å

  • c = 10.233 (3) Å

  • V = 9726 (5) Å3

  • Z = 32

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 298 K

  • 0.36 × 0.28 × 0.15 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • 14310 measured reflections

  • 5111 independent reflections

  • 2563 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.183

  • S = 0.97

  • 5111 reflections

  • 289 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.56 e Å−3

  • Δρmin = −0.19 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1074 Friedel pairs

  • Flack parameter: 0.00 (12)

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Sulfoxides have been widely used in the separation of palladium from other platinum-group metals by solvent extraction (Xu et al., 2006).A similar disulfoxide ligand 1,6-bis(benzylsulfinyl)hexane and its Copper(II) and Cadmium(II) dimeric complexes were obtained (Li et al.,2003). Crystals of dibenzyl sulfoxide show two independent molecules in the unit. There are asymmetry S—C bonds in a same molecule. The long axe of the crystals is directed along the b axis.

Related literature top

For related structures, see: Li et al. (2003); Iitaka et al. (1986)

For related literature, see: Shriner et al. (1930); Xu et al. (2006).

Experimental top

The title compound was prepared refering to the literature method (Shriner et al., 1930) with little modification. Sodium sulfide(99%, 0.312 g, 0.0040 mol) and benzylchloride (1.000 g, 0.0079 mol) were dissolved in anhydrous ethanol (50 ml) at 70°C, and then was stirred over 1 h. The solution was extracted with CH2Cl2 after addition 400 ml of water. Dibenzyl sulfide(0.736 g, 0.0034 mol) was obtained after evaporation of CH2Cl2. Yield: 86%. Hydrogen peroxide (30%, 0.0028 mol) was added dropwise to a solution of dibenzyl sulfide (0.600 g, 0.0028 mol) in acetic acid (60 ml) on ice bath with a vigorously stir for 1 h. 500 ml of water was added. The solution was extracted with CH2Cl2, and the product of dibenzyl sulfoxide(0.552 g, 0.0024 mol) was obtained after evaporation of CH2Cl2. Yield: 86%. It was characterized by recording its infrared and NMR spectra. White single crystals of the title compound were obtained by slow evaporation of its mixed solution including n-hexane and dichloromethane.)

Refinement top

(All H atoms were placed in calculated positions and subsequently constrained to ride on their parent atoms, with C–H distances of 0.93 Å (C-aromatic) and 0.97 Å (C-methyl). The Uiso(H) values were set at 1.2 Ueq(C aromatic) and 1.5 Ueq(C methylene).)

Structure description top

Sulfoxides have been widely used in the separation of palladium from other platinum-group metals by solvent extraction (Xu et al., 2006).A similar disulfoxide ligand 1,6-bis(benzylsulfinyl)hexane and its Copper(II) and Cadmium(II) dimeric complexes were obtained (Li et al.,2003). Crystals of dibenzyl sulfoxide show two independent molecules in the unit. There are asymmetry S—C bonds in a same molecule. The long axe of the crystals is directed along the b axis.

For related structures, see: Li et al. (2003); Iitaka et al. (1986)

For related literature, see: Shriner et al. (1930); Xu et al. (2006).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Molecule structure of with displacement ellipsoids drawn at the 50% probability level.
Dibenzyl sulfoxide top
Crystal data top
C14H14OSF(000) = 3904
Mr = 230.32Dx = 1.258 Mg m3
Orthorhombic, Fdd2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: F 2 -2dCell parameters from 2370 reflections
a = 17.882 (5) Åθ = 2.3–23.7°
b = 53.150 (14) ŵ = 0.24 mm1
c = 10.233 (3) ÅT = 298 K
V = 9726 (5) Å3Block, white
Z = 320.36 × 0.28 × 0.15 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2563 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.042
Graphite monochromatorθmax = 28.3°, θmin = 2.3°
phi and ω scansh = 2322
14310 measured reflectionsk = 5669
5111 independent reflectionsl = 1113
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.057H-atom parameters constrained
wR(F2) = 0.183 w = 1/[σ2(Fo2) + (0.0957P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.97(Δ/σ)max = 0.061
5111 reflectionsΔρmax = 0.56 e Å3
289 parametersΔρmin = 0.19 e Å3
1 restraintAbsolute structure: Flack (1983), 1074 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.00 (12)
Crystal data top
C14H14OSV = 9726 (5) Å3
Mr = 230.32Z = 32
Orthorhombic, Fdd2Mo Kα radiation
a = 17.882 (5) ŵ = 0.24 mm1
b = 53.150 (14) ÅT = 298 K
c = 10.233 (3) Å0.36 × 0.28 × 0.15 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2563 reflections with I > 2σ(I)
14310 measured reflectionsRint = 0.042
5111 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.057H-atom parameters constrained
wR(F2) = 0.183Δρmax = 0.56 e Å3
S = 0.97Δρmin = 0.19 e Å3
5111 reflectionsAbsolute structure: Flack (1983), 1074 Friedel pairs
289 parametersAbsolute structure parameter: 0.00 (12)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)

are estimated using the full covariance matrix. The cell e.s.d.'s are taken

into account individually in the estimation of e.s.d.'s in distances, angles

and torsion angles; correlations between e.s.d.'s in cell parameters are only

used when they are defined by crystal symmetry. An approximate (isotropic)

treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.40616 (7)0.12486 (3)0.42542 (10)0.0541 (3)
C60.1374 (2)0.07435 (9)0.7186 (5)0.0511 (13)
C90.1385 (3)0.17549 (9)0.7183 (5)0.0547 (13)
C70.1315 (3)0.10024 (9)0.7775 (5)0.0657 (13)
H7A0.17130.10240.84100.079*
H7B0.08420.10170.82330.079*
C80.1322 (3)0.14959 (9)0.7780 (5)0.0637 (13)
H8A0.08500.14830.82410.076*
H8B0.17200.14740.84120.076*
C40.0819 (3)0.03513 (11)0.6580 (6)0.0878 (18)
H40.04000.02480.65110.105*
C130.2163 (3)0.20854 (11)0.6307 (6)0.0814 (16)
H130.26300.21440.60450.098*
C10.2051 (3)0.06488 (10)0.6809 (6)0.0693 (13)
H10.24750.07490.68940.083*
C20.2122 (3)0.04126 (10)0.6312 (6)0.0796 (16)
H20.25900.03550.60500.096*
C50.0754 (3)0.05917 (11)0.7057 (6)0.0747 (15)
H50.02860.06530.72970.090*
C30.1526 (4)0.02621 (10)0.6196 (6)0.0782 (17)
H30.15780.01000.58650.094*
C110.0846 (3)0.21459 (11)0.6523 (6)0.0790 (17)
H110.04250.22470.64140.095*
C140.2086 (3)0.18479 (9)0.6809 (6)0.0697 (14)
H140.25070.17470.69030.084*
C120.1542 (3)0.22363 (10)0.6195 (6)0.0774 (17)
H120.15930.24010.58960.093*
C100.0773 (3)0.19068 (10)0.7010 (5)0.0707 (15)
H100.03010.18470.72270.085*
C170.4166 (3)0.02607 (10)0.3893 (7)0.0738 (16)
H170.42940.00960.36780.089*
C260.4207 (3)0.22365 (10)0.3836 (7)0.0742 (16)
H260.43540.23990.36090.089*
C150.4119 (3)0.05920 (10)0.5446 (6)0.0726 (15)
H150.42250.06530.62770.087*
C220.3498 (3)0.14955 (10)0.4925 (6)0.0674 (14)
H22A0.29870.14740.46300.081*
H22B0.35010.14820.58700.081*
C240.3599 (3)0.18525 (10)0.3314 (6)0.0695 (15)
H240.33340.17550.27180.083*
C280.4160 (3)0.19012 (10)0.5414 (6)0.0737 (15)
H280.42830.18390.62360.088*
C190.3607 (3)0.06475 (10)0.3319 (6)0.0697 (14)
H190.33660.07490.27100.084*
C200.3754 (3)0.07420 (9)0.4574 (5)0.0525 (13)
C160.4335 (3)0.03512 (10)0.5121 (6)0.0823 (17)
H160.45890.02510.57200.099*
C270.4374 (3)0.21400 (10)0.5059 (7)0.0844 (18)
H270.46360.22390.56520.101*
C210.3494 (3)0.10017 (9)0.4944 (6)0.0655 (14)
H21A0.34980.10170.58880.079*
H21B0.29820.10230.46520.079*
C230.3763 (3)0.17547 (9)0.4545 (5)0.0537 (13)
C250.3822 (3)0.20898 (11)0.2968 (6)0.0818 (16)
H250.37110.21510.21400.098*
C180.3813 (3)0.04094 (12)0.2979 (6)0.0823 (16)
H180.37160.03480.21440.099*
O10.47890 (18)0.12488 (7)0.4984 (4)0.0831 (11)
O20.0644 (2)0.12505 (7)0.5840 (4)0.0850 (11)
S20.13762 (7)0.12488 (3)0.65757 (9)0.0548 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0557 (6)0.0490 (6)0.0575 (8)0.0010 (6)0.0076 (5)0.0000 (7)
C60.057 (3)0.044 (3)0.053 (3)0.003 (2)0.002 (2)0.007 (2)
C90.064 (3)0.048 (3)0.052 (3)0.005 (2)0.010 (2)0.010 (3)
C70.080 (3)0.064 (3)0.053 (3)0.005 (3)0.002 (3)0.006 (3)
C80.083 (3)0.061 (3)0.047 (3)0.000 (2)0.004 (3)0.006 (2)
C40.100 (4)0.077 (4)0.086 (4)0.037 (3)0.024 (4)0.003 (4)
C130.082 (4)0.076 (4)0.087 (4)0.009 (3)0.000 (3)0.002 (3)
C10.064 (3)0.066 (3)0.078 (4)0.005 (2)0.002 (3)0.009 (3)
C20.088 (4)0.066 (4)0.085 (4)0.009 (3)0.007 (3)0.007 (3)
C50.063 (3)0.079 (4)0.082 (4)0.002 (3)0.017 (3)0.006 (3)
C30.121 (5)0.048 (4)0.066 (4)0.007 (3)0.004 (4)0.003 (3)
C110.079 (4)0.070 (4)0.088 (4)0.022 (3)0.019 (4)0.015 (3)
C140.061 (3)0.068 (3)0.080 (4)0.009 (2)0.007 (3)0.009 (3)
C120.114 (5)0.050 (4)0.068 (4)0.005 (3)0.006 (3)0.007 (3)
C100.057 (3)0.077 (4)0.079 (4)0.004 (2)0.008 (3)0.011 (3)
C170.073 (3)0.054 (4)0.094 (5)0.002 (3)0.010 (3)0.001 (3)
C260.074 (3)0.051 (4)0.098 (5)0.002 (3)0.009 (3)0.005 (3)
C150.072 (3)0.080 (4)0.065 (3)0.001 (3)0.014 (3)0.008 (3)
C220.061 (3)0.066 (4)0.074 (4)0.005 (2)0.014 (3)0.008 (3)
C240.072 (3)0.059 (3)0.077 (4)0.004 (2)0.007 (3)0.011 (3)
C280.074 (3)0.069 (4)0.078 (4)0.011 (3)0.014 (3)0.014 (3)
C190.075 (3)0.064 (3)0.070 (4)0.002 (3)0.013 (3)0.009 (3)
C200.051 (3)0.048 (3)0.058 (3)0.005 (2)0.004 (2)0.006 (3)
C160.081 (4)0.072 (4)0.094 (5)0.008 (3)0.010 (4)0.021 (3)
C270.074 (4)0.069 (4)0.110 (5)0.001 (3)0.016 (4)0.033 (3)
C210.063 (3)0.063 (3)0.071 (4)0.002 (2)0.013 (3)0.001 (3)
C230.052 (3)0.046 (3)0.063 (3)0.007 (2)0.006 (2)0.007 (3)
C250.091 (4)0.074 (4)0.080 (4)0.015 (3)0.002 (3)0.005 (3)
C180.096 (4)0.077 (4)0.073 (4)0.008 (3)0.003 (3)0.006 (3)
O10.0486 (17)0.083 (2)0.117 (3)0.0017 (15)0.011 (2)0.004 (3)
O20.088 (3)0.099 (3)0.067 (2)0.001 (2)0.034 (2)0.003 (2)
S20.0703 (8)0.0508 (6)0.0434 (6)0.0005 (6)0.0020 (6)0.0014 (7)
Geometric parameters (Å, º) top
S1—O11.500 (3)C10—H100.9300
S1—C221.791 (5)C17—C181.378 (8)
S1—C211.804 (5)C17—C161.379 (8)
C6—C11.367 (6)C17—H170.9300
C6—C51.378 (6)C26—C251.368 (8)
C6—C71.506 (6)C26—C271.385 (8)
C9—C101.371 (6)C26—H260.9300
C9—C141.401 (6)C15—C201.363 (7)
C9—C81.510 (6)C15—C161.377 (7)
C7—S21.798 (5)C15—H150.9300
C7—H7A0.9700C22—C231.508 (7)
C7—H7B0.9700C22—H22A0.9700
C8—S21.804 (5)C22—H22B0.9700
C8—H8A0.9700C24—C251.369 (7)
C8—H8B0.9700C24—C231.395 (7)
C4—C51.373 (8)C24—H240.9300
C4—C31.405 (8)C28—C271.374 (8)
C4—H40.9300C28—C231.379 (7)
C13—C141.370 (7)C28—H280.9300
C13—C121.375 (7)C19—C181.363 (7)
C13—H130.9300C19—C201.404 (7)
C1—C21.360 (7)C19—H190.9300
C1—H10.9300C20—C211.505 (6)
C2—C31.338 (7)C16—H160.9300
C2—H20.9300C27—H270.9300
C5—H50.9300C21—H21A0.9700
C3—H30.9300C21—H21B0.9700
C11—C101.371 (8)C25—H250.9300
C11—C121.376 (8)C18—H180.9300
C11—H110.9300O2—S21.511 (3)
C14—H140.9300S2—C71.798 (5)
C12—H120.9300S2—C81.804 (5)
O1—S1—C22107.2 (2)C18—C17—C16121.3 (6)
O1—S1—C21107.1 (2)C18—C17—H17119.4
C22—S1—C2193.8 (2)C16—C17—H17119.4
C1—C6—C5118.1 (5)C25—C26—C27119.0 (5)
C1—C6—C7120.8 (5)C25—C26—H26120.5
C5—C6—C7121.1 (5)C27—C26—H26120.5
C10—C9—C14118.1 (5)C20—C15—C16121.3 (6)
C10—C9—C8122.0 (5)C20—C15—H15119.3
C14—C9—C8119.9 (4)C16—C15—H15119.3
C6—C7—S2112.8 (4)C23—C22—S1113.2 (3)
C6—C7—H7A109.0C23—C22—H22A108.9
S2—C7—H7A109.0S1—C22—H22A108.9
C6—C7—H7B109.0C23—C22—H22B108.9
S2—C7—H7B109.0S1—C22—H22B108.9
H7A—C7—H7B107.8H22A—C22—H22B107.7
C9—C8—S2112.6 (4)C25—C24—C23121.0 (6)
C9—C8—H8A109.1C25—C24—H24119.5
S2—C8—H8A109.1C23—C24—H24119.5
C9—C8—H8B109.1C27—C28—C23119.6 (6)
S2—C8—H8B109.1C27—C28—H28120.2
H8A—C8—H8B107.8C23—C28—H28120.2
C5—C4—C3119.4 (5)C18—C19—C20121.0 (5)
C5—C4—H4120.3C18—C19—H19119.5
C3—C4—H4120.3C20—C19—H19119.5
C14—C13—C12119.2 (5)C15—C20—C19118.6 (5)
C14—C13—H13120.4C15—C20—C21121.3 (5)
C12—C13—H13120.4C19—C20—C21120.0 (5)
C2—C1—C6121.9 (5)C15—C16—C17118.9 (5)
C2—C1—H1119.1C15—C16—H16120.6
C6—C1—H1119.1C17—C16—H16120.6
C3—C2—C1120.7 (5)C28—C27—C26121.4 (5)
C3—C2—H2119.7C28—C27—H27119.3
C1—C2—H2119.7C26—C27—H27119.3
C4—C5—C6120.7 (5)C20—C21—S1113.2 (3)
C4—C5—H5119.7C20—C21—H21A108.9
C6—C5—H5119.7S1—C21—H21A108.9
C2—C3—C4119.3 (5)C20—C21—H21B108.9
C2—C3—H3120.3S1—C21—H21B108.9
C4—C3—H3120.3H21A—C21—H21B107.7
C10—C11—C12119.8 (5)C28—C23—C24118.7 (5)
C10—C11—H11120.1C28—C23—C22120.8 (5)
C12—C11—H11120.1C24—C23—C22120.5 (5)
C13—C14—C9121.1 (5)C26—C25—C24120.2 (6)
C13—C14—H14119.4C26—C25—H25119.9
C9—C14—H14119.4C24—C25—H25119.9
C13—C12—C11120.5 (6)C19—C18—C17118.9 (6)
C13—C12—H12119.8C19—C18—H18120.6
C11—C12—H12119.8C17—C18—H18120.6
C11—C10—C9121.1 (5)O2—S2—C7107.0 (2)
C11—C10—H10119.4O2—S2—C8106.8 (2)
C9—C10—H10119.4C7—S2—C893.5 (2)
C1—C6—C7—S277.1 (6)C18—C19—C20—C151.0 (8)
C5—C6—C7—S2105.4 (5)C18—C19—C20—C21177.4 (5)
C10—C9—C8—S2103.3 (5)C20—C15—C16—C170.9 (8)
C14—C9—C8—S277.8 (6)C18—C17—C16—C152.3 (9)
C5—C6—C1—C20.4 (8)C23—C28—C27—C260.8 (8)
C7—C6—C1—C2177.9 (5)C25—C26—C27—C280.1 (9)
C6—C1—C2—C31.2 (9)C15—C20—C21—S1105.3 (5)
C3—C4—C5—C61.2 (9)C19—C20—C21—S176.3 (6)
C1—C6—C5—C40.8 (8)O1—S1—C21—C2072.8 (5)
C7—C6—C5—C4176.7 (5)C22—S1—C21—C20177.8 (4)
C1—C2—C3—C40.7 (9)C27—C28—C23—C241.0 (8)
C5—C4—C3—C20.5 (9)C27—C28—C23—C22177.9 (4)
C12—C13—C14—C91.4 (9)C25—C24—C23—C280.4 (8)
C10—C9—C14—C131.2 (8)C25—C24—C23—C22178.5 (5)
C8—C9—C14—C13177.7 (5)S1—C22—C23—C28102.4 (5)
C14—C13—C12—C113.2 (9)S1—C22—C23—C2478.7 (6)
C10—C11—C12—C132.4 (9)C27—C26—C25—C240.7 (9)
C12—C11—C10—C90.2 (8)C23—C24—C25—C260.5 (8)
C14—C9—C10—C111.9 (8)C20—C19—C18—C170.3 (8)
C8—C9—C10—C11176.9 (5)C16—C17—C18—C192.0 (9)
O1—S1—C22—C2372.7 (5)C6—C7—S2—O273.7 (4)
C21—S1—C22—C23178.1 (5)C6—C7—S2—C8177.5 (4)
C16—C15—C20—C190.7 (8)C9—C8—S2—O273.3 (4)
C16—C15—C20—C21177.7 (5)C9—C8—S2—C7177.8 (4)

Experimental details

Crystal data
Chemical formulaC14H14OS
Mr230.32
Crystal system, space groupOrthorhombic, Fdd2
Temperature (K)298
a, b, c (Å)17.882 (5), 53.150 (14), 10.233 (3)
V3)9726 (5)
Z32
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.36 × 0.28 × 0.15
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
14310, 5111, 2563
Rint0.042
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.183, 0.97
No. of reflections5111
No. of parameters289
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.56, 0.19
Absolute structureFlack (1983), 1074 Friedel pairs
Absolute structure parameter0.00 (12)

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

 

Acknowledgements

This work was supported by the Natural Science Foundation of Guangdong Province (No. 8451063101000731), the Breeding Project of the Department of Education of Guangdong Province (LYM09053) and the NNSFC (No. 20971046).

References

First citationBruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationIitaka, Y., Itai, A., Tomioka, N., Kodama, Y., Ichikawa, K., Nishihata, K., Nishio, M., Izumi, M. & Doi, K. (1986). Bull. Chem. Soc. Jpn, 59, 2801–2806.  CrossRef CAS Web of Science Google Scholar
First citationLi, J. R., Du, M., Bu, X. H. & Zhang, R. H. (2003). J. Solid State Chem. 173, 20–26.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShriner, R. L., Struck, H. C. & Jorison, W. J. (1930). J. Am. Chem. Soc. 52, 2060–2069.  CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, Z. G., Gu, G. B., Liu, H. Y., Jiang, H. F. & Chang, C. K. (2006). Chin. J. Struct. Chem. 25, 1524–1530.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds