metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(tetra­butyl­ammonium) bis­­(3,4,5-trioxo­cyclo­pent-1-ene-1,2-di­thiol­ato-κ2S,S′)cadmate(II) 0.25-hydrate

aSchool of Chemistry and Chemical Engineering, TaiShan Medical University, Tai'an 271016, People's Republic of China, and bShandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, School of Chemistry and Chemical Engineering, University of Jinan, Ji'nan 250022, People's Republic of China
*Correspondence e-mail: Binboll@126.com

(Received 1 October 2010; accepted 29 November 2010; online 4 December 2010)

The title compound, (C16H36N)2[Cd(C5O3S2)2]·0.25H2O, contains two disordered tetra­butyl­ammonium cations, a complex [Cd(C5O3S2)2]2− anion and a 0.25-hydrate water. The anion is composed of a bidentate coordinated 3,4,5-trioxocyclo­pent-1-ene-1,2-dithiol­ate (dtcroc) group forming a distorted tetra­hedral configuration around the CdII ion. The dihedral angle between the least-squares planes of the ten-atom sulfur-substituted croconate groups in the anion is 84.10 (8)°. The crystal packing is stabilized by weak C—H⋯O and C—H⋯S cation–anion hydrogen-bond inter­actions. In each of the two cations one butyl group is disordered over two positions in the ratios 0.589 (11):0.411 (11) and 0.796 (12):0.204 (12).

Related literature

For the delocalized electronic structures, redox chemistry and range of coordination geometries of metal complexes of chelating ethyl­ene-1,2-dithiol­ato ligands, see: Eisenberg (1970[Eisenberg, R. (1970). Prog. Inorg. Chem. 12, 295-327.]); Kato (2004[Kato, R. (2004). Chem. Rev. 11, 5319-5346.]). For the coordination behavior of the dtcroc dianion, see: Deplano et al. (2005[Deplano, P., Mercuri, M. L., Marchio, L., Pilia, L., Salidu, M., Serpe, A., Congiu, F. & Sanna, S. (2005). Eur. J. Inorg. Chem. pp. 1829-1835.], 2006[Deplano, P., Mercuri, M. L., Marchio, L., Pilia, L., Salidu, M. & Serpe, A. (2006). Dalton Trans. pp. 2456-2462.]). For related structures, see: Dunitz et al. (2001[Dunitz, J. D., Seiler, P. & Czechtizky, W. (2001). Angew. Chem. Int. Ed. 40, 1779-1780.]); Castro et al. (2002[Castro, I., Calatayud, M. L., Lloret, F., Sletten, J. & Julve, M. (2002). J. Chem. Soc. Dalton Trans. pp. 2397-2403]); Maji et al. (2004[Maji, T. K., Ghoshal, D., Zangrando, E., Ribas, J. & Chaudhuri, N. R. (2004). CrystEngComm, 6, 623-626.]).

[Scheme 1]

Experimental

Crystal data
  • (C16H36N)2[Cd(C5O3S2)2]·0.25H2O

  • Mr = 946.16

  • Triclinic, [P \overline 1]

  • a = 9.820 (5) Å

  • b = 15.002 (5) Å

  • c = 17.406 (5) Å

  • α = 74.853 (5)°

  • β = 86.898 (5)°

  • γ = 87.705 (5)°

  • V = 2470.6 (17) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.65 mm−1

  • T = 293 K

  • 0.24 × 0.18 × 0.15 mm

Data collection
  • Oxford Diffraction CCD area-detector diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England]) Tmin = 0.775, Tmax = 0.858

  • 30150 measured reflections

  • 10069 independent reflections

  • 6510 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.144

  • S = 1.04

  • 10069 reflections

  • 534 parameters

  • 54 restraints

  • H-atom parameters constrained

  • Δρmax = 0.72 e Å−3

  • Δρmin = −0.42 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12A⋯O6i 0.97 2.48 3.412 (6) 161
C14—H14C⋯S2ii 0.97 2.70 3.472 (10) 137
C16—H16B⋯O2iii 0.97 2.54 3.483 (7) 163
Symmetry codes: (i) -x, -y+1, -z+2; (ii) -x+1, -y+1, -z+2; (iii) x-1, y+1, z.

Data collection: CrysAlis PRO (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England]); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Metal complexes of chelating ethylene-1,2-dithiolato ligands (metal dithiolene)are of continuing interest owing to their delocalized electronic structures, rich redox chemistry and range of coordination geometries (Eisenberg,1970; Kato, 2004). They have also proven useful as precursors for the preparation ofnovel molecular conductors, non-linear optical materials and magnetic charge-transfer salts. Accordingly, we have interests in investigating the solid chemistry based on the 3,4,5-trioxo-cyclopent-1 ene-ene-1, 2-dithiolate ion (C5O3S22-), also abbreviated as dtcroc (alternative name sulfur-substituted croconate). The coordination behavior of the dtcroc dianion (C5O3S22-) towards d8 transition metal ions, such as Pt2+(Deplano, et al. 2005) and Ni2+(Deplano, et al. 2006), have been investigated and all show a planar configuration. We present here the synthesis and characterization of a new Cd(II) coordination compound of dtcroc, which shows a distorted tetrahedral coordination conformation.

The asymmetric unit of title compound, (C16H36N)2, [C10CdO6S4], 0.25(H2O) contains two disordered tetrabutylammonium cations, a coordinated [Cd(C5O3S2)2]2- anion, and a 0.25 hydrate water (Fig. 1). The [Cd(C5O3S2)2]2- anion is composed of a bidentate coordinated dtcroc group forming a distorted tetrahedral configuration around a Cd (II) ion with Cd—S bonds between 2.5254 (13)–2.5413 (12)Å and six S—Cd—S angles between adjacent sulfur atoms in the coordination sphere close to 109.5°. The dihedral angle between the least-square-planes of the ten atom sulfur-substituted croconate group in the (C5O3S22-) anion is 84.10 (8)°.

Deviations of oxygen atoms, sulfur atoms and the cyclic five-membered ring in C5O3S22- are less than 0.09 Å, indicating a planar molecular geometry for both ligands. The CO bonds in the title compound, vary by 1.209 (5)–1.224 (5)Å and show typical Csp2 double bond character, while the CS bonds are in the range of 1.683 (4)–1.699 (4) Å, which are intermediate between the lengths of typical single C—S and double CS bonds. The difference among C—C distances within the ligands are in the range of 1.402 (5)–1.505 (6) Å, establishing a π-electron localized C2v molecular symmetry which compares well with similar structure croconate anions (Dunitz, et al., 2001; Castro, et al., 2002; Maji, et al.2004).

The tetrabutlyammionium cations are disordered in the title crystal and a few solvent water molecules were cocrystalized to stabilize the structure. The [Cd(C5O3S2)2]2- units form stacks along [1 0 0], surrounded by tetrabutylamonium cations (Fig.2). Crystal packing is stabilized by weak C—H···O, C—H···S cation–anion hydrogen bond interactions (Table 1).

Related literature top

For the delocalized electronic structures, redox chemistry and range of coordination geometries of metal complexes of chelating ethylene-1,2-dithiolato ligands, see: Eisenberg (1970); Kato (2004). For the coordination behavior of the dtcroc dianion, see: Deplano et al. (2005, 2006). For related structures, see: Dunitz et al. (2001); Castro et al. (2002); Maji et al. (2004).

Experimental top

To a solution containing K2dtcroc (0.2 g, 0.8 mmol) in H2O (20 mL) was addedto a solution containing Cd(NO3).4H2O (0.12 g, 0.4 mmol) in H2O (5 mL). The resulting mixture was heated to 70 °C for 1 h, then filtered into a solution of NBu4Br (0.40 g, 0.95 mmol) in ethanol (5 mL). Solid product was collected by suction filtration, washed with water and dried in air. Red block crystals were obtained by recrystallization from acetone.

Refinement top

All H atoms were geometrically fixed and allowed to ride on their attached atoms, which O—H = 0.85Å with Uiso(H)= 1.5Ueq(O) and C—H = 0.96–0.97Å with Uiso(H)= 1.2–1.5Ueq(C). Butyl groups are disordered in title structure. Some butyl groups were refined as a rigid body, which C—C bond are fixed to 1.54Å and the distances between alternate C atom are fixed to 2.54 Å. Terminal ethyl group C13—C14 is refined to a rigid model around the bond C11—C12 with ethyl group C13'-C14' in the ratio 0.59:0.41 and C41—C42 is refined to a rigid model around the bond C39—C40 with ethyl group C41'-C42' in the ratio 0.80:0.20.

Structure description top

Metal complexes of chelating ethylene-1,2-dithiolato ligands (metal dithiolene)are of continuing interest owing to their delocalized electronic structures, rich redox chemistry and range of coordination geometries (Eisenberg,1970; Kato, 2004). They have also proven useful as precursors for the preparation ofnovel molecular conductors, non-linear optical materials and magnetic charge-transfer salts. Accordingly, we have interests in investigating the solid chemistry based on the 3,4,5-trioxo-cyclopent-1 ene-ene-1, 2-dithiolate ion (C5O3S22-), also abbreviated as dtcroc (alternative name sulfur-substituted croconate). The coordination behavior of the dtcroc dianion (C5O3S22-) towards d8 transition metal ions, such as Pt2+(Deplano, et al. 2005) and Ni2+(Deplano, et al. 2006), have been investigated and all show a planar configuration. We present here the synthesis and characterization of a new Cd(II) coordination compound of dtcroc, which shows a distorted tetrahedral coordination conformation.

The asymmetric unit of title compound, (C16H36N)2, [C10CdO6S4], 0.25(H2O) contains two disordered tetrabutylammonium cations, a coordinated [Cd(C5O3S2)2]2- anion, and a 0.25 hydrate water (Fig. 1). The [Cd(C5O3S2)2]2- anion is composed of a bidentate coordinated dtcroc group forming a distorted tetrahedral configuration around a Cd (II) ion with Cd—S bonds between 2.5254 (13)–2.5413 (12)Å and six S—Cd—S angles between adjacent sulfur atoms in the coordination sphere close to 109.5°. The dihedral angle between the least-square-planes of the ten atom sulfur-substituted croconate group in the (C5O3S22-) anion is 84.10 (8)°.

Deviations of oxygen atoms, sulfur atoms and the cyclic five-membered ring in C5O3S22- are less than 0.09 Å, indicating a planar molecular geometry for both ligands. The CO bonds in the title compound, vary by 1.209 (5)–1.224 (5)Å and show typical Csp2 double bond character, while the CS bonds are in the range of 1.683 (4)–1.699 (4) Å, which are intermediate between the lengths of typical single C—S and double CS bonds. The difference among C—C distances within the ligands are in the range of 1.402 (5)–1.505 (6) Å, establishing a π-electron localized C2v molecular symmetry which compares well with similar structure croconate anions (Dunitz, et al., 2001; Castro, et al., 2002; Maji, et al.2004).

The tetrabutlyammionium cations are disordered in the title crystal and a few solvent water molecules were cocrystalized to stabilize the structure. The [Cd(C5O3S2)2]2- units form stacks along [1 0 0], surrounded by tetrabutylamonium cations (Fig.2). Crystal packing is stabilized by weak C—H···O, C—H···S cation–anion hydrogen bond interactions (Table 1).

For the delocalized electronic structures, redox chemistry and range of coordination geometries of metal complexes of chelating ethylene-1,2-dithiolato ligands, see: Eisenberg (1970); Kato (2004). For the coordination behavior of the dtcroc dianion, see: Deplano et al. (2005, 2006). For related structures, see: Dunitz et al. (2001); Castro et al. (2002); Maji et al. (2004).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2007); cell refinement: CrysAlis PRO (Oxford Diffraction, 2007); data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Coordination configuration of the title compound with thermal ellipsoids at 30% probability levels. Hydrogen atoms have been omiitted for clarity. Dashed lines indicate disordered butyl groups.
[Figure 2] Fig. 2. A packing diagram viewed down the b axis. symmetry code: a(-x, 1-y, 2-z); b(1-x, 1-y, 2-z); c(-1+x, 1+y, z);
Bis(tetrabutylammonium) bis(3,4,5-trioxocyclopent-1-ene-1,2-dithiolato- κ2S,S')cadmate(II) 0.25-hydrate top
Crystal data top
(C16H36N)2[Cd(C5O3S2)2]·0.25H2OZ = 2
Mr = 946.16F(000) = 1001
Triclinic, P1Dx = 1.272 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71069 Å
a = 9.820 (5) ÅCell parameters from 6268 reflections
b = 15.002 (5) Åθ = 2.5–27.5°
c = 17.406 (5) ŵ = 0.65 mm1
α = 74.853 (5)°T = 293 K
β = 86.898 (5)°Prism, red
γ = 87.705 (5)°0.24 × 0.18 × 0.15 mm
V = 2470.6 (17) Å3
Data collection top
Oxford Diffraction CCD area-detector
diffractometer
10069 independent reflections
Radiation source: fine-focus sealed tube6510 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
φ and ω scansθmax = 26.4°, θmin = 3.1°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
h = 1212
Tmin = 0.775, Tmax = 0.858k = 1818
30150 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.144H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0756P)2 + 0.4766P]
where P = (Fo2 + 2Fc2)/3
10069 reflections(Δ/σ)max = 0.001
534 parametersΔρmax = 0.72 e Å3
54 restraintsΔρmin = 0.42 e Å3
Crystal data top
(C16H36N)2[Cd(C5O3S2)2]·0.25H2Oγ = 87.705 (5)°
Mr = 946.16V = 2470.6 (17) Å3
Triclinic, P1Z = 2
a = 9.820 (5) ÅMo Kα radiation
b = 15.002 (5) ŵ = 0.65 mm1
c = 17.406 (5) ÅT = 293 K
α = 74.853 (5)°0.24 × 0.18 × 0.15 mm
β = 86.898 (5)°
Data collection top
Oxford Diffraction CCD area-detector
diffractometer
10069 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
6510 reflections with I > 2σ(I)
Tmin = 0.775, Tmax = 0.858Rint = 0.032
30150 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05054 restraints
wR(F2) = 0.144H-atom parameters constrained
S = 1.04Δρmax = 0.72 e Å3
10069 reflectionsΔρmin = 0.42 e Å3
534 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.5036 (3)0.0335 (2)0.73690 (19)0.0507 (8)
C20.6118 (4)0.0659 (2)0.7719 (2)0.0542 (8)
C30.7159 (4)0.0061 (3)0.7956 (2)0.0673 (10)
C40.6686 (4)0.0890 (3)0.7720 (3)0.0670 (10)
C50.5340 (4)0.0624 (3)0.7358 (2)0.0607 (9)
C60.1825 (4)0.3965 (2)0.7705 (2)0.0564 (9)
C70.2513 (4)0.4415 (2)0.6991 (2)0.0537 (8)
C80.1950 (5)0.5367 (3)0.6716 (3)0.0703 (11)
C90.0873 (4)0.5494 (3)0.7309 (3)0.0723 (11)
C100.0816 (4)0.4599 (3)0.7949 (3)0.0733 (11)
C110.2345 (4)0.7393 (3)0.9656 (2)0.0725 (11)
H11A0.23220.68100.95150.087*
H11B0.32400.76450.94890.087*
C120.2188 (5)0.7200 (3)1.0553 (2)0.0859 (13)0.589 (11)
H12A0.13850.68381.07490.103*0.589 (11)
H12B0.20860.77761.07090.103*0.589 (11)
C130.3488 (11)0.6657 (10)1.0910 (6)0.090 (5)0.589 (11)
H13A0.37740.62181.06080.108*0.589 (11)
H13B0.42220.70821.08720.108*0.589 (11)
C140.3200 (11)0.6145 (6)1.1781 (5)0.111 (4)0.589 (11)
H14A0.40010.57961.19880.167*0.589 (11)
H14B0.24610.57341.18180.167*0.589 (11)
H14C0.29580.65841.20830.167*0.589 (11)
C12'0.2188 (5)0.7200 (3)1.0553 (2)0.0859 (13)0.411 (11)
H12C0.12660.70041.07230.103*0.411 (11)
H12D0.23200.77671.07060.103*0.411 (11)
C13'0.3202 (16)0.6453 (13)1.0989 (11)0.098 (8)0.411 (11)
H13C0.30600.63541.15600.117*0.411 (11)
H13D0.30580.58741.08580.117*0.411 (11)
C14'0.4663 (15)0.6772 (11)1.0729 (10)0.133 (6)0.411 (11)
H14D0.53010.63421.10390.199*0.411 (11)
H14E0.47700.73731.08120.199*0.411 (11)
H14F0.48290.68011.01750.199*0.411 (11)
C150.1684 (4)0.8095 (3)0.8315 (2)0.0765 (11)
H15A0.26040.83220.82000.092*
H15B0.16990.74740.82470.092*
C160.0772 (5)0.8692 (4)0.7713 (2)0.0898 (13)
H16A0.08370.93310.77270.108*
H16B0.01660.85120.78490.108*
C170.1165 (5)0.8606 (4)0.6879 (2)0.0952 (15)
H17A0.20690.88460.67230.114*
H17B0.11940.79590.68790.114*
C180.0166 (6)0.9124 (5)0.6283 (3)0.130 (2)
H18A0.04220.90370.57670.195*
H18B0.01720.97710.62600.195*
H18C0.07330.88960.64420.195*
C190.1267 (4)0.8979 (3)0.9364 (3)0.0771 (11)
H19A0.08850.89060.99020.093*
H19B0.06500.93870.90060.093*
C200.2627 (5)0.9453 (3)0.9295 (3)0.1104 (18)
H20A0.30120.95760.87540.133*
H20B0.32700.90670.96500.133*
C210.2321 (7)1.0370 (3)0.9532 (4)0.144 (2)
H21A0.19111.08070.90860.173*
H21B0.16461.02530.99720.173*
C220.3502 (7)1.0818 (5)0.9768 (5)0.164 (3)
H22A0.31891.13640.99210.246*
H22B0.41541.09820.93260.246*
H22C0.39251.03961.02090.246*
C230.0140 (4)0.7709 (3)0.9402 (2)0.0715 (11)
H23A0.03600.77200.99490.086*
H23B0.07630.81410.90690.086*
C240.0399 (5)0.6756 (3)0.9323 (3)0.0910 (13)
H24A0.01770.63020.96710.109*
H24B0.02010.67240.87780.109*
C250.1950 (5)0.6563 (4)0.9565 (3)0.1045 (16)
H25A0.21750.67111.00680.125*
H25B0.25140.69550.91640.125*
C260.2239 (7)0.5585 (4)0.9642 (4)0.138 (2)
H26A0.31900.54820.97800.206*
H26B0.17020.51991.00510.206*
H26C0.20130.54390.91450.206*
C270.3573 (4)0.3164 (3)0.3344 (2)0.0645 (10)
H27A0.36490.25270.33150.077*
H27B0.27660.34380.30680.077*
C280.4794 (5)0.3661 (3)0.2909 (2)0.0745 (11)
H28A0.56180.33510.31400.089*
H28B0.47720.42870.29670.089*
C290.4815 (6)0.3686 (3)0.2038 (2)0.0891 (14)
H29A0.39590.39560.18210.107*
H29B0.48860.30580.19840.107*
C300.5983 (6)0.4233 (4)0.1554 (3)0.1052 (17)
H30A0.59350.42330.10050.158*
H30B0.68360.39560.17510.158*
H30C0.59160.48580.16000.158*
C310.4608 (4)0.2796 (2)0.4680 (2)0.0594 (9)
H31A0.53690.31840.44470.071*
H31B0.44370.28560.52190.071*
C320.5039 (4)0.1803 (3)0.4729 (2)0.0671 (10)
H32A0.43280.13970.50110.081*
H32B0.51610.17190.41950.081*
C330.6347 (4)0.1550 (3)0.5153 (3)0.0787 (12)
H33A0.62390.16780.56710.094*
H33B0.70660.19340.48510.094*
C340.6773 (5)0.0538 (3)0.5263 (3)0.1035 (16)
H34A0.76080.04120.55390.155*
H34B0.69080.04100.47510.155*
H34C0.60720.01530.55690.155*
C350.2118 (4)0.2592 (3)0.4525 (2)0.0656 (10)
H35A0.13660.28460.41880.079*
H35B0.23110.19710.44740.079*
C360.1655 (4)0.2532 (3)0.5383 (2)0.0748 (11)
H36A0.23960.22840.57300.090*
H36B0.14150.31460.54400.090*
C370.0430 (5)0.1918 (4)0.5630 (3)0.0986 (15)
H37A0.03190.21890.52970.118*
H37B0.06590.13200.55340.118*
C380.0033 (5)0.1781 (4)0.6488 (3)0.1113 (18)
H38A0.07980.13800.66070.167*
H38B0.02970.23670.65840.167*
H38C0.06990.15070.68230.167*
C390.3117 (4)0.4152 (2)0.4294 (2)0.0673 (10)
H39A0.30000.41230.48570.081*
H39B0.39310.45000.40920.081*
C400.1907 (5)0.4686 (3)0.3877 (3)0.0908 (14)0.796 (12)
H40A0.11400.42800.39480.109*0.796 (12)
H40B0.21340.48990.33110.109*0.796 (12)
C410.1492 (7)0.5537 (4)0.4212 (5)0.109 (3)0.796 (12)
H41A0.07210.58610.39260.131*0.796 (12)
H41B0.11960.53140.47680.131*0.796 (12)
C420.2576 (7)0.6183 (4)0.4149 (5)0.146 (2)0.796 (12)
H42A0.22520.66830.43660.219*0.796 (12)
H42B0.28590.64220.36000.219*0.796 (12)
H42C0.33360.58730.44410.219*0.796 (12)
C40'0.1907 (5)0.4686 (3)0.3877 (3)0.0908 (14)0.204 (12)
H40C0.11250.46030.42510.109*0.204 (12)
H40D0.16930.44260.34450.109*0.204 (12)
C41'0.213 (3)0.5728 (7)0.3538 (9)0.091 (9)0.204 (12)
H41C0.28110.58190.31030.110*0.204 (12)
H41D0.12830.60240.33240.110*0.204 (12)
C42'0.2576 (7)0.6183 (4)0.4149 (5)0.146 (2)0.204 (12)
H42D0.26770.68320.39120.219*0.204 (12)
H42E0.34340.59130.43460.219*0.204 (12)
H42F0.19050.60950.45830.219*0.204 (12)
Cd10.39579 (3)0.238778 (19)0.740476 (17)0.06795 (13)
N10.1294 (3)0.8046 (2)0.91830 (17)0.0630 (8)
N20.3363 (3)0.31687 (19)0.42099 (16)0.0562 (7)
O10.8225 (3)0.0030 (2)0.8281 (2)0.0990 (10)
O20.7269 (4)0.1637 (2)0.7821 (3)0.1111 (12)
O30.4656 (3)0.11311 (19)0.7096 (2)0.0877 (9)
O40.2312 (4)0.5948 (2)0.6119 (2)0.1084 (11)
O50.0145 (4)0.6179 (2)0.7289 (2)0.1106 (11)
O60.0088 (4)0.4455 (3)0.8549 (2)0.1246 (14)
S10.35964 (11)0.09033 (7)0.70076 (7)0.0724 (3)
S20.62646 (11)0.17189 (7)0.78798 (7)0.0771 (3)
S30.20701 (14)0.28767 (7)0.82643 (7)0.0834 (3)
S40.38097 (11)0.40010 (7)0.64893 (6)0.0682 (3)
O70.9700 (12)0.1218 (8)0.8742 (7)0.086 (3)0.25
H1O70.93670.11260.83300.128*0.25
H2O71.01530.17100.85970.128*0.25
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0465 (19)0.0484 (19)0.0585 (19)0.0012 (15)0.0009 (15)0.0173 (15)
C20.052 (2)0.054 (2)0.058 (2)0.0052 (17)0.0039 (16)0.0180 (16)
C30.052 (2)0.063 (2)0.086 (3)0.0056 (19)0.005 (2)0.020 (2)
C40.057 (2)0.048 (2)0.094 (3)0.0105 (18)0.002 (2)0.0159 (19)
C50.060 (2)0.051 (2)0.073 (2)0.0023 (18)0.0017 (18)0.0209 (18)
C60.059 (2)0.052 (2)0.061 (2)0.0002 (17)0.0034 (17)0.0198 (17)
C70.060 (2)0.050 (2)0.054 (2)0.0004 (17)0.0085 (16)0.0176 (16)
C80.081 (3)0.054 (2)0.075 (3)0.004 (2)0.019 (2)0.013 (2)
C90.073 (3)0.057 (2)0.094 (3)0.013 (2)0.017 (2)0.031 (2)
C100.067 (3)0.068 (3)0.087 (3)0.008 (2)0.004 (2)0.029 (2)
C110.069 (3)0.066 (2)0.084 (3)0.015 (2)0.020 (2)0.020 (2)
C120.099 (4)0.072 (3)0.079 (3)0.001 (3)0.028 (3)0.001 (2)
C130.132 (13)0.042 (6)0.102 (9)0.000 (7)0.036 (8)0.023 (5)
C140.166 (9)0.072 (5)0.095 (7)0.012 (5)0.066 (6)0.010 (4)
C12'0.099 (4)0.072 (3)0.079 (3)0.001 (3)0.028 (3)0.001 (2)
C13'0.114 (13)0.055 (11)0.111 (14)0.006 (10)0.054 (10)0.012 (8)
C14'0.112 (11)0.130 (12)0.166 (13)0.038 (9)0.047 (10)0.053 (10)
C150.069 (3)0.089 (3)0.069 (3)0.011 (2)0.004 (2)0.017 (2)
C160.084 (3)0.102 (4)0.076 (3)0.016 (3)0.013 (2)0.010 (2)
C170.098 (4)0.116 (4)0.068 (3)0.003 (3)0.009 (2)0.017 (3)
C180.142 (6)0.160 (6)0.083 (3)0.009 (5)0.032 (4)0.016 (4)
C190.087 (3)0.062 (3)0.079 (3)0.014 (2)0.018 (2)0.011 (2)
C200.118 (4)0.062 (3)0.139 (5)0.003 (3)0.039 (4)0.002 (3)
C210.143 (5)0.068 (3)0.210 (6)0.001 (3)0.044 (5)0.008 (4)
C220.184 (7)0.128 (6)0.191 (7)0.034 (5)0.057 (6)0.058 (5)
C230.063 (2)0.080 (3)0.068 (2)0.006 (2)0.0034 (19)0.012 (2)
C240.082 (3)0.088 (3)0.100 (3)0.005 (3)0.013 (3)0.015 (3)
C250.109 (4)0.103 (4)0.101 (4)0.004 (3)0.015 (3)0.023 (3)
C260.134 (6)0.118 (5)0.156 (6)0.018 (4)0.019 (4)0.021 (4)
C270.081 (3)0.055 (2)0.061 (2)0.001 (2)0.0143 (19)0.0174 (17)
C280.095 (3)0.065 (3)0.065 (2)0.006 (2)0.008 (2)0.019 (2)
C290.120 (4)0.081 (3)0.068 (3)0.008 (3)0.007 (3)0.020 (2)
C300.138 (5)0.094 (4)0.082 (3)0.002 (3)0.013 (3)0.024 (3)
C310.064 (2)0.056 (2)0.059 (2)0.0021 (18)0.0103 (17)0.0147 (17)
C320.074 (3)0.056 (2)0.071 (2)0.003 (2)0.010 (2)0.0138 (18)
C330.062 (3)0.070 (3)0.097 (3)0.007 (2)0.010 (2)0.008 (2)
C340.091 (4)0.084 (3)0.122 (4)0.025 (3)0.005 (3)0.008 (3)
C350.065 (2)0.056 (2)0.077 (3)0.0050 (19)0.0149 (19)0.0164 (19)
C360.070 (3)0.076 (3)0.077 (3)0.001 (2)0.009 (2)0.016 (2)
C370.074 (3)0.103 (4)0.117 (4)0.012 (3)0.006 (3)0.026 (3)
C380.085 (4)0.127 (5)0.106 (4)0.004 (3)0.015 (3)0.007 (3)
C390.083 (3)0.047 (2)0.078 (2)0.000 (2)0.014 (2)0.0242 (18)
C400.106 (4)0.062 (3)0.112 (4)0.021 (3)0.038 (3)0.031 (2)
C410.105 (5)0.066 (4)0.159 (8)0.018 (3)0.028 (5)0.035 (4)
C420.136 (6)0.108 (5)0.197 (7)0.012 (4)0.011 (5)0.046 (5)
C40'0.106 (4)0.062 (3)0.112 (4)0.021 (3)0.038 (3)0.031 (2)
C41'0.095 (19)0.083 (17)0.11 (2)0.002 (14)0.006 (15)0.047 (15)
C42'0.136 (6)0.108 (5)0.197 (7)0.012 (4)0.011 (5)0.046 (5)
Cd10.0753 (2)0.05395 (19)0.0784 (2)0.01462 (14)0.00680 (15)0.02569 (14)
N10.0611 (19)0.065 (2)0.0605 (18)0.0078 (16)0.0078 (14)0.0123 (15)
N20.0654 (19)0.0466 (16)0.0599 (17)0.0005 (14)0.0146 (14)0.0176 (13)
O10.067 (2)0.091 (2)0.150 (3)0.0213 (17)0.0410 (19)0.047 (2)
O20.090 (2)0.0582 (19)0.186 (4)0.0213 (17)0.031 (2)0.030 (2)
O30.078 (2)0.0613 (17)0.138 (3)0.0057 (15)0.0235 (18)0.0479 (18)
O40.142 (3)0.068 (2)0.098 (2)0.007 (2)0.000 (2)0.0061 (18)
O50.115 (3)0.075 (2)0.148 (3)0.037 (2)0.024 (2)0.041 (2)
O60.124 (3)0.103 (3)0.136 (3)0.025 (2)0.056 (3)0.028 (2)
S10.0659 (6)0.0606 (6)0.0998 (7)0.0167 (5)0.0315 (5)0.0341 (5)
S20.0676 (7)0.0607 (6)0.1173 (9)0.0053 (5)0.0214 (6)0.0461 (6)
S30.1071 (9)0.0572 (6)0.0749 (7)0.0133 (6)0.0228 (6)0.0051 (5)
S40.0782 (7)0.0620 (6)0.0644 (6)0.0001 (5)0.0105 (5)0.0193 (5)
O70.080 (8)0.082 (8)0.097 (8)0.018 (7)0.012 (6)0.023 (7)
Geometric parameters (Å, º) top
C1—C21.415 (5)C24—C251.577 (6)
C1—C51.463 (5)C24—H24A0.9700
C1—S11.685 (4)C24—H24B0.9700
C2—C31.451 (5)C25—C261.475 (6)
C2—S21.699 (4)C25—H25A0.9700
C3—O11.224 (5)C25—H25B0.9700
C3—C41.504 (6)C26—H26A0.9600
C4—O21.214 (4)C26—H26B0.9600
C4—C51.490 (5)C26—H26C0.9600
C5—O31.222 (4)C27—C281.498 (6)
C6—C71.402 (5)C27—N21.512 (4)
C6—C101.468 (5)C27—H27A0.9700
C6—S31.683 (4)C27—H27B0.9700
C7—C81.478 (5)C28—C291.506 (5)
C7—S41.693 (4)C28—H28A0.9700
C8—O41.215 (5)C28—H28B0.9700
C8—C91.480 (6)C29—C301.520 (6)
C9—O51.222 (5)C29—H29A0.9700
C9—C101.505 (6)C29—H29B0.9700
C10—O61.209 (5)C30—H30A0.9600
C11—C121.513 (5)C30—H30B0.9600
C11—N11.514 (5)C30—H30C0.9600
C11—H11A0.9700C31—C321.513 (5)
C11—H11B0.9700C31—N21.514 (5)
C12—C131.554 (8)C31—H31A0.9700
C12—H12A0.9700C31—H31B0.9700
C12—H12B0.9700C32—C331.501 (5)
C13—C141.526 (9)C32—H32A0.9700
C13—H13A0.9700C32—H32B0.9700
C13—H13B0.9700C33—C341.524 (6)
C14—H14A0.9600C33—H33A0.9700
C14—H14B0.9600C33—H33B0.9700
C14—H14C0.9600C34—H34A0.9600
C13'—C14'1.538 (10)C34—H34B0.9600
C13'—H13C0.9700C34—H34C0.9600
C13'—H13D0.9700C35—C361.518 (5)
C14'—H14D0.9600C35—N21.519 (5)
C14'—H14E0.9600C35—H35A0.9700
C14'—H14F0.9600C35—H35B0.9700
C15—C161.499 (5)C36—C371.518 (6)
C15—N11.522 (5)C36—H36A0.9700
C15—H15A0.9700C36—H36B0.9700
C15—H15B0.9700C37—C381.502 (7)
C16—C171.520 (5)C37—H37A0.9700
C16—H16A0.9700C37—H37B0.9700
C16—H16B0.9700C38—H38A0.9600
C17—C181.507 (6)C38—H38B0.9600
C17—H17A0.9700C38—H38C0.9600
C17—H17B0.9700C39—C401.514 (5)
C18—H18A0.9600C39—N21.529 (4)
C18—H18B0.9600C39—H39A0.9700
C18—H18C0.9600C39—H39B0.9700
C19—N11.511 (5)C40—C411.568 (6)
C19—C201.524 (4)C40—H40A0.9700
C19—H19A0.9700C40—H40B0.9700
C19—H19B0.9700C41—C421.450 (7)
C20—C211.550 (4)C41—H41A0.9700
C20—H20A0.9700C41—H41B0.9700
C20—H20B0.9700C42—H42A0.9600
C21—C221.492 (5)C42—H42B0.9600
C21—H21A0.9700C42—H42C0.9600
C21—H21B0.9700C41'—H41C0.9700
C22—H22A0.9600C41'—H41D0.9700
C22—H22B0.9600Cd1—S32.5254 (13)
C22—H22C0.9600Cd1—S42.5296 (13)
C23—C241.503 (5)Cd1—S22.5315 (15)
C23—N11.511 (5)Cd1—S12.5413 (12)
C23—H23A0.9700O7—H1O70.8499
C23—H23B0.9700O7—H2O70.8500
C2—C1—C5108.9 (3)H25A—C25—H25B108.1
C2—C1—S1128.7 (3)C25—C26—H26A109.5
C5—C1—S1122.4 (3)C25—C26—H26B109.5
C1—C2—C3110.7 (3)H26A—C26—H26B109.5
C1—C2—S2127.9 (3)C25—C26—H26C109.5
C3—C2—S2121.4 (3)H26A—C26—H26C109.5
O1—C3—C2128.6 (4)H26B—C26—H26C109.5
O1—C3—C4125.0 (4)C28—C27—N2115.9 (3)
C2—C3—C4106.4 (3)C28—C27—H27A108.3
O2—C4—C5126.5 (4)N2—C27—H27A108.3
O2—C4—C3126.8 (4)C28—C27—H27B108.3
C5—C4—C3106.7 (3)N2—C27—H27B108.3
O3—C5—C1128.0 (4)H27A—C27—H27B107.4
O3—C5—C4124.7 (3)C27—C28—C29110.8 (3)
C1—C5—C4107.3 (3)C27—C28—H28A109.5
C7—C6—C10110.1 (3)C29—C28—H28A109.5
C7—C6—S3128.4 (3)C27—C28—H28B109.5
C10—C6—S3121.5 (3)C29—C28—H28B109.5
C6—C7—C8109.2 (3)H28A—C28—H28B108.1
C6—C7—S4128.4 (3)C28—C29—C30113.3 (4)
C8—C7—S4122.4 (3)C28—C29—H29A108.9
O4—C8—C7126.6 (4)C30—C29—H29A108.9
O4—C8—C9125.9 (4)C28—C29—H29B108.9
C7—C8—C9107.4 (3)C30—C29—H29B108.9
O5—C9—C8127.6 (4)H29A—C29—H29B107.7
O5—C9—C10125.7 (4)C29—C30—H30A109.5
C8—C9—C10106.6 (3)C29—C30—H30B109.5
O6—C10—C6127.9 (4)H30A—C30—H30B109.5
O6—C10—C9125.5 (4)C29—C30—H30C109.5
C6—C10—C9106.6 (3)H30A—C30—H30C109.5
C12—C11—N1116.5 (3)H30B—C30—H30C109.5
C12—C11—H11A108.2C32—C31—N2116.8 (3)
N1—C11—H11A108.2C32—C31—H31A108.1
C12—C11—H11B108.2N2—C31—H31A108.1
N1—C11—H11B108.2C32—C31—H31B108.1
H11A—C11—H11B107.3N2—C31—H31B108.1
C11—C12—C13107.9 (5)H31A—C31—H31B107.3
C11—C12—H12A110.1C33—C32—C31111.1 (3)
C13—C12—H12A110.1C33—C32—H32A109.4
C11—C12—H12B110.1C31—C32—H32A109.4
C13—C12—H12B110.1C33—C32—H32B109.4
H12A—C12—H12B108.4C31—C32—H32B109.4
C14—C13—C12110.3 (8)H32A—C32—H32B108.0
C14—C13—H13A109.6C32—C33—C34112.9 (4)
C12—C13—H13A109.6C32—C33—H33A109.0
C14—C13—H13B109.6C34—C33—H33A109.0
C12—C13—H13B109.6C32—C33—H33B109.0
H13A—C13—H13B108.1C34—C33—H33B109.0
C13—C14—H14A109.5H33A—C33—H33B107.8
C13—C14—H14B109.5C33—C34—H34A109.5
H14A—C14—H14B109.5C33—C34—H34B109.5
C13—C14—H14C109.5H34A—C34—H34B109.5
H14A—C14—H14C109.5C33—C34—H34C109.5
H14B—C14—H14C109.5H34A—C34—H34C109.5
C14'—C13'—H13C109.9H34B—C34—H34C109.5
C14'—C13'—H13D109.9C36—C35—N2116.0 (3)
H13C—C13'—H13D108.3C36—C35—H35A108.3
C13'—C14'—H14D109.5N2—C35—H35A108.3
C13'—C14'—H14E109.5C36—C35—H35B108.3
H14D—C14'—H14E109.5N2—C35—H35B108.3
C13'—C14'—H14F109.5H35A—C35—H35B107.4
H14D—C14'—H14F109.5C37—C36—C35110.7 (4)
H14E—C14'—H14F109.5C37—C36—H36A109.5
C16—C15—N1115.8 (3)C35—C36—H36A109.5
C16—C15—H15A108.3C37—C36—H36B109.5
N1—C15—H15A108.3C35—C36—H36B109.5
C16—C15—H15B108.3H36A—C36—H36B108.1
N1—C15—H15B108.3C38—C37—C36113.7 (4)
H15A—C15—H15B107.4C38—C37—H37A108.8
C15—C16—C17111.2 (4)C36—C37—H37A108.8
C15—C16—H16A109.4C38—C37—H37B108.8
C17—C16—H16A109.4C36—C37—H37B108.8
C15—C16—H16B109.4H37A—C37—H37B107.7
C17—C16—H16B109.4C37—C38—H38A109.5
H16A—C16—H16B108.0C37—C38—H38B109.5
C18—C17—C16111.5 (4)H38A—C38—H38B109.5
C18—C17—H17A109.3C37—C38—H38C109.5
C16—C17—H17A109.3H38A—C38—H38C109.5
C18—C17—H17B109.3H38B—C38—H38C109.5
C16—C17—H17B109.3C40—C39—N2116.5 (3)
H17A—C17—H17B108.0C40—C39—H39A108.2
C17—C18—H18A109.5N2—C39—H39A108.2
C17—C18—H18B109.5C40—C39—H39B108.2
H18A—C18—H18B109.5N2—C39—H39B108.2
C17—C18—H18C109.5H39A—C39—H39B107.3
H18A—C18—H18C109.5C39—C40—C41111.5 (4)
H18B—C18—H18C109.5C39—C40—H40A109.3
N1—C19—C20116.7 (3)C41—C40—H40A109.3
N1—C19—H19A108.1C39—C40—H40B109.3
C20—C19—H19A108.1C41—C40—H40B109.3
N1—C19—H19B108.1H40A—C40—H40B108.0
C20—C19—H19B108.1C42—C41—C40114.0 (6)
H19A—C19—H19B107.3C42—C41—H41A108.7
C19—C20—C21106.2 (4)C40—C41—H41A108.7
C19—C20—H20A110.5C42—C41—H41B108.7
C21—C20—H20A110.5C40—C41—H41B108.7
C19—C20—H20B110.5H41A—C41—H41B107.6
C21—C20—H20B110.5C41—C42—H42A109.5
H20A—C20—H20B108.7C41—C42—H42B109.5
C22—C21—C20116.7 (5)H42A—C42—H42B109.5
C22—C21—H21A108.1C41—C42—H42C109.5
C20—C21—H21A108.1H42A—C42—H42C109.5
C22—C21—H21B108.1H42B—C42—H42C109.5
C20—C21—H21B108.1H41C—C41'—H41D107.8
H21A—C21—H21B107.3S3—Cd1—S487.62 (4)
C21—C22—H22A109.5S3—Cd1—S2125.26 (5)
C21—C22—H22B109.5S4—Cd1—S2119.07 (4)
H22A—C22—H22B109.5S3—Cd1—S1116.04 (4)
C21—C22—H22C109.5S4—Cd1—S1125.49 (4)
H22A—C22—H22C109.5S2—Cd1—S187.59 (3)
H22B—C22—H22C109.5C19—N1—C23104.1 (3)
C24—C23—N1116.0 (3)C19—N1—C11111.6 (3)
C24—C23—H23A108.3C23—N1—C11112.0 (3)
N1—C23—H23A108.3C19—N1—C15113.0 (3)
C24—C23—H23B108.3C23—N1—C15111.3 (3)
N1—C23—H23B108.3C11—N1—C15105.0 (3)
H23A—C23—H23B107.4C27—N2—C31111.9 (3)
C23—C24—C25107.0 (4)C27—N2—C35106.0 (3)
C23—C24—H24A110.3C31—N2—C35112.0 (3)
C25—C24—H24A110.3C27—N2—C39111.0 (3)
C23—C24—H24B110.3C31—N2—C39105.8 (3)
C25—C24—H24B110.3C35—N2—C39110.2 (3)
H24A—C24—H24B108.6C1—S1—Cd197.67 (12)
C26—C25—C24110.6 (5)C2—S2—Cd197.87 (13)
C26—C25—H25A109.5C6—S3—Cd197.98 (13)
C24—C25—H25A109.5C7—S4—Cd197.59 (12)
C26—C25—H25B109.5H1O7—O7—H2O7107.7
C24—C25—H25B109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12A···O6i0.972.483.412 (6)161
C14—H14C···S2ii0.972.703.472 (10)137
C16—H16B···O2iii0.972.543.483 (7)163
Symmetry codes: (i) x, y+1, z+2; (ii) x+1, y+1, z+2; (iii) x1, y+1, z.

Experimental details

Crystal data
Chemical formula(C16H36N)2[Cd(C5O3S2)2]·0.25H2O
Mr946.16
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)9.820 (5), 15.002 (5), 17.406 (5)
α, β, γ (°)74.853 (5), 86.898 (5), 87.705 (5)
V3)2470.6 (17)
Z2
Radiation typeMo Kα
µ (mm1)0.65
Crystal size (mm)0.24 × 0.18 × 0.15
Data collection
DiffractometerOxford Diffraction CCD area-detector
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2007)
Tmin, Tmax0.775, 0.858
No. of measured, independent and
observed [I > 2σ(I)] reflections
30150, 10069, 6510
Rint0.032
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.144, 1.04
No. of reflections10069
No. of parameters534
No. of restraints54
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.72, 0.42

Computer programs: CrysAlis PRO (Oxford Diffraction, 2007), CrysAlis RED (Oxford Diffraction, 2007), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12A···O6i0.972.483.412 (6)161
C14—H14C···S2ii0.972.703.472 (10)137
C16—H16B···O2iii0.972.543.483 (7)163
Symmetry codes: (i) x, y+1, z+2; (ii) x+1, y+1, z+2; (iii) x1, y+1, z.
 

Acknowledgements

This work was supported by the Shandong Key Scientific and Technological Project (2008 GG30002014), the Project of the Key Laboratory of Photochemical Conversion and Optoelectronic Materials, the TIPC and the Chinese Academy of Sciences

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationCastro, I., Calatayud, M. L., Lloret, F., Sletten, J. & Julve, M. (2002). J. Chem. Soc. Dalton Trans. pp. 2397–2403  CrossRef Google Scholar
First citationDeplano, P., Mercuri, M. L., Marchio, L., Pilia, L., Salidu, M. & Serpe, A. (2006). Dalton Trans. pp. 2456–2462.  Web of Science CSD CrossRef Google Scholar
First citationDeplano, P., Mercuri, M. L., Marchio, L., Pilia, L., Salidu, M., Serpe, A., Congiu, F. & Sanna, S. (2005). Eur. J. Inorg. Chem. pp. 1829–1835.  CSD CrossRef Google Scholar
First citationDunitz, J. D., Seiler, P. & Czechtizky, W. (2001). Angew. Chem. Int. Ed. 40, 1779–1780.  CrossRef CAS Google Scholar
First citationEisenberg, R. (1970). Prog. Inorg. Chem. 12, 295–327.  CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationKato, R. (2004). Chem. Rev. 11, 5319–5346.  Web of Science CrossRef Google Scholar
First citationMaji, T. K., Ghoshal, D., Zangrando, E., Ribas, J. & Chaudhuri, N. R. (2004). CrystEngComm, 6, 623–626.  Web of Science CSD CrossRef CAS Google Scholar
First citationOxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds