metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(1,3-di­methyl-1,3-diazinan-2-one)dinitratodioxidouranium(VI)

aResearch Laboratory for Nuclear Reactors, Tokyo Institute of Technology, 2-12-1-N1-34 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
*Correspondence e-mail: yikeda@nr.titech.ac.jp

(Received 22 September 2010; accepted 29 November 2010; online 4 December 2010)

The title compound, [U(NO3)2O2(C6H12N2O)2], exhibits a hexa­gonal–bipyramidal geometry around the UVI ion, which is situated on an inversion centre and coordinated by two oxide ligands in the axial positions, and four O atoms from two bidentate NO3 and two O atoms from two 1,3-dimethyl-1,3-diazinan-2-one (DMPU) ligands in the equatorial plane. These ligands are located in trans positions. The –(CH2)3– moiety in the DMPU ligand is disordered over two positions in a 0.786 (11):0.214 (11) ratio.

Related literature

For the structures of uran­yl(VI) nitrate complexes, see: Alcock et al. (1990[Alcock, N. W., Kemp, T. J., Leciejewicz, J. & Trzaska-Durski, Z. (1990). Acta Cryst. C46, 981-983.]); Cao et al. (1993[Cao, Z., Wang, H., Gu, J., Zhu, L. & Yu, K. (1993). Acta Cryst. C49, 1942-1943.], 1999[Cao, Z., Qi, T., Zhu, L., Zhang, D.-C., Zhou, R. & Yu, K.-B. (1999). Acta Cryst. C55, 1270-1272.]); Ikeda et al. (2004[Ikeda, Y., Wada, E., Harada, M., Chikazawa, T., Kikuchi, T., Mineo, H., Morita, Y., Nogami, M. & Suzuki, K. (2004). J. Alloys Compd, 374, 420-425.]); Kannan et al. (2008[Kannan, S., Deb, S. B., Gamare, J. S. & Drew, M. G. B. (2008). Polyhedron, 27, 2557-2562.]); Koshino et al. (2005[Koshino, N., Harada, M., Nogami, M., Morita, Y., Kikuchi, T. & Ikeda, Y. (2005). Inorg. Chim. Acta, 358, 1857-1864.]); Pennington et al. (1988[Pennington, M., Alcock, N. W. & Flanders, D. J. (1988). Acta Cryst. C44, 1664-1666.]); Takao et al. (2008[Takao, K., Noda, K., Morita, Y., Nishimura, K. & Ikeda, Y. (2008). Cryst. Growth Des. 8, 2364-2376.]); van Vuuren & van Rooyen (1988[Vuuren, C. P. J. van & van Rooyen, P. H. (1988). Inorg. Chim. Acta, 142, 151-152.]); Varga et al. (2003[Varga, T. R., Bényei, A. C., Fazekas, Z., Tomiyasu, H. & Ikeda, Y. (2003). Inorg. Chim. Acta, 342, 291-294.]); Villiers et al. (2004[Villiers, C., Thuéry, P. & Ephritikhine, M. (2004). Polyhedron, 23, 1613-1618.]).

[Scheme 1]

Experimental

Crystal data
  • [U(NO3)2O2(C6H12N2O)2]

  • Mr = 650.40

  • Triclinic, [P \overline 1]

  • a = 7.8529 (6) Å

  • b = 8.7706 (6) Å

  • c = 9.1990 (6) Å

  • α = 115.611 (2)°

  • β = 113.348 (2)°

  • γ = 91.041 (2)°

  • V = 510.62 (6) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 8.01 mm−1

  • T = 173 K

  • 0.17 × 0.13 × 0.12 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.343, Tmax = 0.447

  • 4800 measured reflections

  • 2307 independent reflections

  • 2306 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.017

  • wR(F2) = 0.045

  • S = 1.06

  • 2307 reflections

  • 143 parameters

  • H-atom parameters constrained

  • Δρmax = 0.88 e Å−3

  • Δρmin = −0.93 e Å−3

Table 1
Selected bond lengths (Å)

U1—O1 1.774 (2)
U1—O2 2.363 (2)
U1—O4 2.526 (2)
U1—O3 2.549 (2)
Symmetry code: (i) -x+2, -y, -z+2.

Data collection: PROCESS-AUTO (Rigaku, 2006[Rigaku (2006). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2006[Rigaku/MSC (2006). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: CrystalMaker (CrystalMaker, 2007[CrystalMaker (2007). CrystalMaker. CrystalMaker Software Ltd, Yarnton, England.]); software used to prepare material for publication: CrystalStructure.

Supporting information


Comment top

Crystal structures of various uranyl(VI) nitrate complexes with neutral unidentate ligands (L) have been reported. The uranyl(VI) nitrate complexes normally have a conformation of UO2(NO3)2(L)2 (Cao et al., 1999; Cao et al., 1993; Ikeda et al., 2004; Kannan et al., 2008; Koshino et al., 2005; Pennington et al., 1988; Takao, et al., 2008; van Vuuren & van Rooyen 1988; Varga et al., 2003; Villiers et al., 2004). The UO2(NO3)2(L)2 complexes exhibit hexagonal bipyramidal geometry, in which the UVI atom is coordinated by two oxo ligands in the axial positions, and four oxygen atoms from two bidentate NO3- and two donating atoms from two L in the equatorial plane. These ligands are located in the trans positions. Recently, we have reported that N-cyclohexyl-2-pyrrolidone (NCP) can selectively precipitate uranyl(VI) species in HNO3 aqueous solution and that the precipitate has an above typical molecular structure, i.e., UO2(NO3)2(NCP)2 (Ikeda et al., 2004; Varga et al., 2003). Similarly, we have also studied other N-alkyl-2-pyrrolidone (NRP) (Ikeda et al., 2004; Koshino et al., 2005; Takao et al., 2008; Varga et al., 2003), 2-pyrrolidone(NHP) (Ikeda et al., 2004) modification: 2-pyrrolidone(NHP) (Takao et al., 2008), and 1,3-dimethyl-imidazolidone (DMI) (Koshino et al., 2005). We report herein the synthesis and crystal characterization of the new uranyl(VI) complex UO2(NO3)2(DMPU)2 (I) (DMPU = 1,3-dimethyl-1,3-diazinan-2-one (N, N'-dimethylpropyleneurea)).

The molecular structure of the title complex is shown in Fig. 1. U1 has a hexagonal bipyramidal coordination geometry. The two uranyl oxo atoms (O1) from the uranyl(VI) ion occupy the axial position of U1, and two carbonyl oxygen atoms (O2) from the two unidentate DMPU and four oxygen atoms (two O3 and two O4) from the two bidentate NO3- are situated in the trans positions in the equatorial plane of U1 (Fig. 1). The selected parameters are listed in Table 1. These structural features are similar to those of uranyl(VI) nitrate complexes with NRPs (Ikeda et al., 2004; Koshino et al., 2005; Takao et al., 2008; Varga et al., 2003), 2-imidazolidone type ligands [1,3-dibutyl-imidazolidone (DBI) and DMI modification: 1,3-dibutyl-imidazolium (DBI) (Cao et al., 1999) and DMI (Koshino et al., 2005)] and tetramethylurea (TMU) (van Vuuren & van Rooyen, 1988). The U—Ocarbo bond length of the title complex is slightly shorter than those of uranyl(VI) nitrate complexes with NHP [2.414 (3) Å] (Takao et al., 2008), N-cyclohexylmethyl-2- pyrrolidone [2.383 Å] (Koshino et al., 2005), N-(1-ethylpropyl)-2-pyrrolidone [2.372 (2) Å] (Takao et al., 2008), N-neopentyl-2-pyrrolidone [2.382 (3), 2.389 (3) Å] (Takao et al., 2008), and NRPs having alkyl chains of carbon number 2 ~4 (about 2.37 ~2.4 Å) (Ikeda et al., 2004; Koshino et al., 2005; Takao et al., 2008). On the other hand, The U—Ocarbo bond of I is slightly longer than those of uranyl(VI) nitrate complexes with TMU [2.335 (3) Å] (van Vuuren & van Rooyen, 1988), urea [2.341 (5), 2,348 (5) Å] (Alcock et al., 1990), DBI [2.345 (3) Å] (Cao et al., 1999), and NCP [2.348 (2) Å] (Varga, et al., 2003; Ikeda et al., 2004). The differences in U—O bonds are considered to be due to those in donicity and size of L. In the dmpu ligand, C3 and C3B display disorder in a 0.786 (11) and 0.214 (11) occupancy ratio.

Related literature top

For the structures of uranyl(VI) nitrate complexes, see: Alcock et al. (1990); Cao et al. (1999); Cao et al. (1993); Ikeda et al. (2004); Kannan et al. (2008); Koshino et al. (2005); Pennington et al. (1988); Takao et al. (2008); van Vuuren & van Rooyen (1988); Varga et al. (2003); Villiers et al. (2004).

Experimental top

Uranyl stock solution of 0.5 M (M = mol dm-3) was prepared by dissolving UO2(NO3)2.6H2O in 3 M HNO3 aqueous solution. To 1 ml of the UO22+ solution was added 1 mmol of DMPU with vigorous stirring. Yellow precipitate was obtained. The resulting precipitate was filtered off, and washed with hexane. The precipitate was recrystallized from dichloromethane.

Refinement top

All H atoms were positionated geometrically, with C—H 0.98 and 0.99 Å for methyl and methylene H atoms, and constrated to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C).

Structure description top

Crystal structures of various uranyl(VI) nitrate complexes with neutral unidentate ligands (L) have been reported. The uranyl(VI) nitrate complexes normally have a conformation of UO2(NO3)2(L)2 (Cao et al., 1999; Cao et al., 1993; Ikeda et al., 2004; Kannan et al., 2008; Koshino et al., 2005; Pennington et al., 1988; Takao, et al., 2008; van Vuuren & van Rooyen 1988; Varga et al., 2003; Villiers et al., 2004). The UO2(NO3)2(L)2 complexes exhibit hexagonal bipyramidal geometry, in which the UVI atom is coordinated by two oxo ligands in the axial positions, and four oxygen atoms from two bidentate NO3- and two donating atoms from two L in the equatorial plane. These ligands are located in the trans positions. Recently, we have reported that N-cyclohexyl-2-pyrrolidone (NCP) can selectively precipitate uranyl(VI) species in HNO3 aqueous solution and that the precipitate has an above typical molecular structure, i.e., UO2(NO3)2(NCP)2 (Ikeda et al., 2004; Varga et al., 2003). Similarly, we have also studied other N-alkyl-2-pyrrolidone (NRP) (Ikeda et al., 2004; Koshino et al., 2005; Takao et al., 2008; Varga et al., 2003), 2-pyrrolidone(NHP) (Ikeda et al., 2004) modification: 2-pyrrolidone(NHP) (Takao et al., 2008), and 1,3-dimethyl-imidazolidone (DMI) (Koshino et al., 2005). We report herein the synthesis and crystal characterization of the new uranyl(VI) complex UO2(NO3)2(DMPU)2 (I) (DMPU = 1,3-dimethyl-1,3-diazinan-2-one (N, N'-dimethylpropyleneurea)).

The molecular structure of the title complex is shown in Fig. 1. U1 has a hexagonal bipyramidal coordination geometry. The two uranyl oxo atoms (O1) from the uranyl(VI) ion occupy the axial position of U1, and two carbonyl oxygen atoms (O2) from the two unidentate DMPU and four oxygen atoms (two O3 and two O4) from the two bidentate NO3- are situated in the trans positions in the equatorial plane of U1 (Fig. 1). The selected parameters are listed in Table 1. These structural features are similar to those of uranyl(VI) nitrate complexes with NRPs (Ikeda et al., 2004; Koshino et al., 2005; Takao et al., 2008; Varga et al., 2003), 2-imidazolidone type ligands [1,3-dibutyl-imidazolidone (DBI) and DMI modification: 1,3-dibutyl-imidazolium (DBI) (Cao et al., 1999) and DMI (Koshino et al., 2005)] and tetramethylurea (TMU) (van Vuuren & van Rooyen, 1988). The U—Ocarbo bond length of the title complex is slightly shorter than those of uranyl(VI) nitrate complexes with NHP [2.414 (3) Å] (Takao et al., 2008), N-cyclohexylmethyl-2- pyrrolidone [2.383 Å] (Koshino et al., 2005), N-(1-ethylpropyl)-2-pyrrolidone [2.372 (2) Å] (Takao et al., 2008), N-neopentyl-2-pyrrolidone [2.382 (3), 2.389 (3) Å] (Takao et al., 2008), and NRPs having alkyl chains of carbon number 2 ~4 (about 2.37 ~2.4 Å) (Ikeda et al., 2004; Koshino et al., 2005; Takao et al., 2008). On the other hand, The U—Ocarbo bond of I is slightly longer than those of uranyl(VI) nitrate complexes with TMU [2.335 (3) Å] (van Vuuren & van Rooyen, 1988), urea [2.341 (5), 2,348 (5) Å] (Alcock et al., 1990), DBI [2.345 (3) Å] (Cao et al., 1999), and NCP [2.348 (2) Å] (Varga, et al., 2003; Ikeda et al., 2004). The differences in U—O bonds are considered to be due to those in donicity and size of L. In the dmpu ligand, C3 and C3B display disorder in a 0.786 (11) and 0.214 (11) occupancy ratio.

For the structures of uranyl(VI) nitrate complexes, see: Alcock et al. (1990); Cao et al. (1999); Cao et al. (1993); Ikeda et al. (2004); Kannan et al. (2008); Koshino et al. (2005); Pennington et al. (1988); Takao et al. (2008); van Vuuren & van Rooyen (1988); Varga et al. (2003); Villiers et al. (2004).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 2006); cell refinement: PROCESS-AUTO (Rigaku, 2006); data reduction: CrystalStructure (Rigaku/MSC, 2006); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalMaker (CrystalMaker, 2007); software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2006).

Figures top
[Figure 1] Fig. 1. Molecular view of I with 30% thermal ellipsoids [symmetry code: i) -x + 2, -y, -z + 2]. Hydrogen atoms are omitted for clarity.
Bis(1,3-dimethyl-1,3-diazinan-2-one)dinitratodioxidouranium(VI) top
Crystal data top
[U(NO3)2O2(C6H12N2O)2]Z = 1
Mr = 650.40F(000) = 310
Triclinic, P1Dx = 2.115 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71075 Å
a = 7.8529 (6) ÅCell parameters from 6036 reflections
b = 8.7706 (6) Åθ = 3.5–27.5°
c = 9.1990 (6) ŵ = 8.01 mm1
α = 115.611 (2)°T = 173 K
β = 113.348 (2)°Block, yellow
γ = 91.041 (2)°0.17 × 0.13 × 0.12 mm
V = 510.62 (6) Å3
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2307 independent reflections
Radiation source: fine-focus sealed tube2306 reflections with F2 > 2σ(F2)
Graphite monochromatorRint = 0.020
Detector resolution: 10.00 pixels mm-1θmax = 27.5°, θmin = 3.5°
ω scansh = 1010
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1011
Tmin = 0.343, Tmax = 0.447l = 1111
4800 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.017Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.045H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0297P)2 + 0.4772P]
where P = (Fo2 + 2Fc2)/3
2307 reflections(Δ/σ)max < 0.001
143 parametersΔρmax = 0.88 e Å3
0 restraintsΔρmin = 0.93 e Å3
Crystal data top
[U(NO3)2O2(C6H12N2O)2]γ = 91.041 (2)°
Mr = 650.40V = 510.62 (6) Å3
Triclinic, P1Z = 1
a = 7.8529 (6) ÅMo Kα radiation
b = 8.7706 (6) ŵ = 8.01 mm1
c = 9.1990 (6) ÅT = 173 K
α = 115.611 (2)°0.17 × 0.13 × 0.12 mm
β = 113.348 (2)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2307 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2306 reflections with F2 > 2σ(F2)
Tmin = 0.343, Tmax = 0.447Rint = 0.020
4800 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0170 restraints
wR(F2) = 0.045H-atom parameters constrained
S = 1.06Δρmax = 0.88 e Å3
2307 reflectionsΔρmin = 0.93 e Å3
143 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
U11.00000.00001.00000.02201 (6)
O11.1934 (3)0.1523 (3)1.0498 (3)0.0299 (4)
O20.7867 (3)0.0427 (3)0.7614 (3)0.0285 (4)
O31.0044 (4)0.1789 (3)0.6978 (3)0.0372 (5)
O41.1569 (4)0.2495 (3)0.9034 (3)0.0356 (5)
O51.1808 (5)0.3669 (4)0.6514 (4)0.0516 (7)
N11.1165 (4)0.2698 (4)0.7464 (4)0.0316 (5)
N20.7882 (4)0.2759 (4)0.7144 (4)0.0289 (5)
N30.5257 (4)0.1594 (4)0.7234 (4)0.0304 (5)
C10.7028 (4)0.1579 (4)0.7359 (4)0.0237 (5)
C20.7065 (6)0.4189 (5)0.6969 (6)0.0399 (8)
H2A0.74980.45180.62480.048*0.786 (11)
H2B0.75260.52100.81810.048*0.786 (11)
H2C0.64800.39010.56840.048*0.214 (11)
H2D0.81010.52460.76490.048*0.214 (11)
C30.4952 (7)0.3703 (7)0.6089 (7)0.0409 (13)0.786 (11)
H3A0.44780.28480.47990.049*0.786 (11)
H3B0.44440.47450.61650.049*0.786 (11)
C3B0.558 (2)0.457 (2)0.765 (2)0.036 (5)0.214 (11)
H3C0.62090.52040.89890.044*0.214 (11)
H3D0.48440.53260.72250.044*0.214 (11)
C40.4252 (5)0.2925 (6)0.6999 (6)0.0429 (8)
H4A0.44520.38570.81920.052*0.786 (11)
H4B0.28680.24020.62580.052*0.786 (11)
H4C0.34740.31760.76640.052*0.214 (11)
H4D0.33750.24680.57050.052*0.214 (11)
C50.9791 (5)0.2755 (6)0.7260 (5)0.0398 (8)
H5A1.01910.36950.70760.048*
H5B0.97780.16390.63280.048*
H5C1.06840.29280.84520.048*
C60.4370 (5)0.0441 (6)0.7625 (5)0.0417 (8)
H6A0.30960.06280.74680.050*
H6B0.51520.06870.88710.050*
H6C0.42660.07690.67990.050*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
U10.02333 (8)0.02264 (8)0.02564 (8)0.00962 (5)0.01238 (6)0.01470 (6)
O10.0291 (10)0.0298 (10)0.0382 (12)0.0080 (8)0.0153 (9)0.0220 (9)
O20.0297 (11)0.0333 (11)0.0295 (11)0.0151 (9)0.0139 (9)0.0198 (9)
O30.0454 (14)0.0466 (13)0.0370 (12)0.0299 (11)0.0269 (11)0.0261 (11)
O40.0427 (13)0.0364 (12)0.0313 (11)0.0211 (10)0.0169 (10)0.0185 (10)
O50.0618 (18)0.0590 (17)0.0440 (15)0.0396 (15)0.0344 (14)0.0222 (13)
N10.0307 (13)0.0339 (13)0.0309 (13)0.0141 (11)0.0148 (11)0.0151 (11)
N20.0274 (12)0.0338 (13)0.0355 (13)0.0140 (10)0.0169 (11)0.0221 (11)
N30.0238 (12)0.0409 (14)0.0348 (14)0.0131 (11)0.0153 (11)0.0227 (12)
C10.0234 (13)0.0308 (13)0.0215 (12)0.0125 (11)0.0107 (11)0.0155 (11)
C20.048 (2)0.0345 (17)0.052 (2)0.0202 (15)0.0268 (17)0.0289 (16)
C30.046 (3)0.049 (3)0.046 (3)0.032 (2)0.025 (2)0.032 (2)
C3B0.030 (7)0.027 (7)0.052 (10)0.015 (6)0.023 (7)0.014 (7)
C40.0353 (17)0.056 (2)0.054 (2)0.0285 (17)0.0270 (17)0.0332 (19)
C50.0278 (15)0.062 (2)0.050 (2)0.0154 (15)0.0209 (15)0.0395 (19)
C60.0326 (16)0.055 (2)0.0447 (19)0.0059 (15)0.0193 (15)0.0282 (17)
Geometric parameters (Å, º) top
U1—O11.774 (2)C2—H2A0.9900
U1—O1i1.774 (2)C2—H2B0.9900
U1—O2i2.363 (2)C2—H2C0.9900
U1—O22.363 (2)C2—H2D0.9900
U1—O42.526 (2)C3—C41.521 (6)
U1—O4i2.526 (2)C3—H3A0.9900
U1—O32.549 (2)C3—H3B0.9900
U1—O3i2.549 (2)C3B—C41.494 (16)
O2—C11.271 (4)C3B—H3C0.9900
O3—N11.277 (4)C3B—H3D0.9900
O4—N11.277 (4)C4—H4A0.9900
O5—N11.211 (4)C4—H4B0.9900
N2—C11.348 (4)C4—H4C0.9900
N2—C51.460 (4)C4—H4D0.9900
N2—C21.460 (4)C5—H5A0.9800
N3—C11.350 (4)C5—H5B0.9800
N3—C61.458 (4)C5—H5C0.9800
N3—C41.466 (4)C6—H6A0.9800
C2—C31.484 (6)C6—H6B0.9800
C2—C3B1.514 (15)C6—H6C0.9800
O1—U1—O1i180C3—C2—H2A109.3
O1—U1—O2i87.26 (9)N2—C2—H2B109.3
O1i—U1—O2i92.74 (9)C3—C2—H2B109.3
O1—U1—O292.74 (9)H2A—C2—H2B108.0
O1i—U1—O287.26 (9)N2—C2—H2C108.9
O2i—U1—O2180C3B—C2—H2C108.9
O1—U1—O492.17 (9)N2—C2—H2D108.9
O1i—U1—O487.83 (10)C3B—C2—H2D108.9
O2i—U1—O465.69 (8)H2C—C2—H2D107.7
O2—U1—O4114.31 (8)C2—C3—C4110.5 (4)
O1—U1—O4i87.83 (10)C2—C3—H3A109.6
O1i—U1—O4i92.17 (10)C4—C3—H3A109.5
O2i—U1—O4i114.31 (8)C2—C3—H3B109.5
O2—U1—O4i65.69 (8)C4—C3—H3B109.6
O4—U1—O4i180H3A—C3—H3B108.1
O1—U1—O386.07 (10)C4—C3B—C2110.3 (9)
O1i—U1—O393.93 (10)C4—C3B—H3C109.6
O2i—U1—O3115.08 (7)C2—C3B—H3C109.6
O2—U1—O364.92 (7)C4—C3B—H3D109.6
O4—U1—O350.20 (8)C2—C3B—H3D109.6
O4i—U1—O3129.80 (8)H3C—C3B—H3D108.1
O1—U1—O3i93.93 (10)N3—C4—C3B112.7 (7)
O1i—U1—O3i86.07 (10)N3—C4—C3111.4 (3)
O2i—U1—O3i64.92 (7)C3B—C4—C345.7 (7)
O2—U1—O3i115.08 (7)N3—C4—H4A109.4
O4—U1—O3i129.80 (8)C3—C4—H4A109.4
O4i—U1—O3i50.20 (8)N3—C4—H4B109.4
O3—U1—O3i180C3—C4—H4B109.4
C1—O2—U1139.9 (2)H4A—C4—H4B108.0
N1—O3—U196.59 (18)N3—C4—H4C109.1
N1—O4—U197.71 (17)C3B—C4—H4C109.1
O5—N1—O4122.5 (3)N3—C4—H4D109.1
O5—N1—O3122.6 (3)C3B—C4—H4D109.1
O4—N1—O3114.9 (3)H4C—C4—H4D107.8
C1—N2—C5120.3 (3)N2—C5—H5A109.5
C1—N2—C2122.8 (3)N2—C5—H5B109.5
C5—N2—C2116.5 (3)H5A—C5—H5B109.5
C1—N3—C6120.6 (3)N2—C5—H5C109.5
C1—N3—C4122.8 (3)H5A—C5—H5C109.5
C6—N3—C4115.9 (3)H5B—C5—H5C109.5
O2—C1—N2119.8 (3)N3—C6—H6A109.5
O2—C1—N3120.7 (3)N3—C6—H6B109.5
N2—C1—N3119.5 (3)H6A—C6—H6B109.5
N2—C2—C3111.4 (3)N3—C6—H6C109.5
N2—C2—C3B113.2 (7)H6A—C6—H6C109.5
N2—C2—H2A109.3H6B—C6—H6C109.5
Symmetry code: (i) x+2, y, z+2.

Experimental details

Crystal data
Chemical formula[U(NO3)2O2(C6H12N2O)2]
Mr650.40
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)7.8529 (6), 8.7706 (6), 9.1990 (6)
α, β, γ (°)115.611 (2), 113.348 (2), 91.041 (2)
V3)510.62 (6)
Z1
Radiation typeMo Kα
µ (mm1)8.01
Crystal size (mm)0.17 × 0.13 × 0.12
Data collection
DiffractometerRigaku R-AXIS RAPID
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.343, 0.447
No. of measured, independent and
observed [F2 > 2σ(F2)] reflections
4800, 2307, 2306
Rint0.020
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.017, 0.045, 1.06
No. of reflections2307
No. of parameters143
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.88, 0.93

Computer programs: PROCESS-AUTO (Rigaku, 2006), CrystalStructure (Rigaku/MSC, 2006), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008), CrystalMaker (CrystalMaker, 2007).

Selected geometric parameters (Å, º) top
U1—O11.774 (2)U1—O32.549 (2)
U1—O22.363 (2)O2—C11.271 (4)
U1—O42.526 (2)
O1—U1—O1i180O1—U1—O386.07 (10)
O1—U1—O292.74 (9)O2—U1—O364.92 (7)
O1—U1—O492.17 (9)O4—U1—O350.20 (8)
O2—U1—O4i65.69 (8)C1—O2—U1139.9 (2)
Symmetry code: (i) x+2, y, z+2.
 

Acknowledgements

We thank Dr Motoo Shiro of Rigaku Corporation for help with the structure solution.

References

First citationAlcock, N. W., Kemp, T. J., Leciejewicz, J. & Trzaska-Durski, Z. (1990). Acta Cryst. C46, 981–983.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationCao, Z., Qi, T., Zhu, L., Zhang, D.-C., Zhou, R. & Yu, K.-B. (1999). Acta Cryst. C55, 1270–1272.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationCao, Z., Wang, H., Gu, J., Zhu, L. & Yu, K. (1993). Acta Cryst. C49, 1942–1943.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCrystalMaker (2007). CrystalMaker. CrystalMaker Software Ltd, Yarnton, England.  Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationIkeda, Y., Wada, E., Harada, M., Chikazawa, T., Kikuchi, T., Mineo, H., Morita, Y., Nogami, M. & Suzuki, K. (2004). J. Alloys Compd, 374, 420–425.  Web of Science CrossRef CAS Google Scholar
First citationKannan, S., Deb, S. B., Gamare, J. S. & Drew, M. G. B. (2008). Polyhedron, 27, 2557–2562.  Web of Science CSD CrossRef CAS Google Scholar
First citationKoshino, N., Harada, M., Nogami, M., Morita, Y., Kikuchi, T. & Ikeda, Y. (2005). Inorg. Chim. Acta, 358, 1857–1864.  Web of Science CSD CrossRef CAS Google Scholar
First citationPennington, M., Alcock, N. W. & Flanders, D. J. (1988). Acta Cryst. C44, 1664–1666.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationRigaku (2006). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2006). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTakao, K., Noda, K., Morita, Y., Nishimura, K. & Ikeda, Y. (2008). Cryst. Growth Des. 8, 2364–2376.  Web of Science CSD CrossRef CAS Google Scholar
First citationVarga, T. R., Bényei, A. C., Fazekas, Z., Tomiyasu, H. & Ikeda, Y. (2003). Inorg. Chim. Acta, 342, 291–294.  Web of Science CSD CrossRef CAS Google Scholar
First citationVilliers, C., Thuéry, P. & Ephritikhine, M. (2004). Polyhedron, 23, 1613–1618.  Web of Science CSD CrossRef CAS Google Scholar
First citationVuuren, C. P. J. van & van Rooyen, P. H. (1988). Inorg. Chim. Acta, 142, 151–152.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds