metal-organic compounds
Bis(1,3-dimethyl-1,3-diazinan-2-one)dinitratodioxidouranium(VI)
aResearch Laboratory for Nuclear Reactors, Tokyo Institute of Technology, 2-12-1-N1-34 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
*Correspondence e-mail: yikeda@nr.titech.ac.jp
The title compound, [U(NO3)2O2(C6H12N2O)2], exhibits a hexagonal–bipyramidal geometry around the UVI ion, which is situated on an inversion centre and coordinated by two oxide ligands in the axial positions, and four O atoms from two bidentate NO3− and two O atoms from two 1,3-dimethyl-1,3-diazinan-2-one (DMPU) ligands in the equatorial plane. These ligands are located in trans positions. The –(CH2)3– moiety in the DMPU ligand is disordered over two positions in a 0.786 (11):0.214 (11) ratio.
Related literature
For the structures of uranyl(VI) nitrate complexes, see: Alcock et al. (1990); Cao et al. (1993, 1999); Ikeda et al. (2004); Kannan et al. (2008); Koshino et al. (2005); Pennington et al. (1988); Takao et al. (2008); van Vuuren & van Rooyen (1988); Varga et al. (2003); Villiers et al. (2004).
Experimental
Crystal data
|
Refinement
|
Data collection: PROCESS-AUTO (Rigaku, 2006); cell PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2006); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalMaker (CrystalMaker, 2007); software used to prepare material for publication: CrystalStructure.
Supporting information
https://doi.org/10.1107/S1600536810049883/kj2159sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810049883/kj2159Isup2.hkl
Uranyl stock solution of 0.5 M (M = mol dm-3) was prepared by dissolving UO2(NO3)2.6H2O in 3 M HNO3 aqueous solution. To 1 ml of the UO22+ solution was added 1 mmol of DMPU with vigorous stirring. Yellow precipitate was obtained. The resulting precipitate was filtered off, and washed with hexane. The precipitate was recrystallized from dichloromethane.
All H atoms were positionated geometrically, with C—H 0.98 and 0.99 Å for methyl and methylene H atoms, and constrated to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C).
Crystal structures of various uranyl(VI) nitrate complexes with neutral unidentate ligands (L) have been reported. The uranyl(VI) nitrate complexes normally have a conformation of UO2(NO3)2(L)2 (Cao et al., 1999; Cao et al., 1993; Ikeda et al., 2004; Kannan et al., 2008; Koshino et al., 2005; Pennington et al., 1988; Takao, et al., 2008; van Vuuren & van Rooyen 1988; Varga et al., 2003; Villiers et al., 2004). The UO2(NO3)2(L)2 complexes exhibit hexagonal bipyramidal geometry, in which the UVI atom is coordinated by two oxo ligands in the axial positions, and four oxygen atoms from two bidentate NO3- and two donating atoms from two L in the equatorial plane. These ligands are located in the trans positions. Recently, we have reported that N-cyclohexyl-2-pyrrolidone (NCP) can selectively precipitate uranyl(VI) species in HNO3 aqueous solution and that the precipitate has an above typical molecular structure, i.e., UO2(NO3)2(NCP)2 (Ikeda et al., 2004; Varga et al., 2003). Similarly, we have also studied other N-alkyl-2-pyrrolidone (NRP) (Ikeda et al., 2004; Koshino et al., 2005; Takao et al., 2008; Varga et al., 2003), 2-pyrrolidone(NHP) (Ikeda et al., 2004) modification: 2-pyrrolidone(NHP) (Takao et al., 2008), and 1,3-dimethyl-imidazolidone (DMI) (Koshino et al., 2005). We report herein the synthesis and crystal characterization of the new uranyl(VI) complex UO2(NO3)2(DMPU)2 (I) (DMPU = 1,3-dimethyl-1,3-diazinan-2-one (N, N'-dimethylpropyleneurea)).
The molecular structure of the title complex is shown in Fig. 1. U1 has a hexagonal bipyramidal coordination geometry. The two uranyl oxo atoms (O1) from the uranyl(VI) ion occupy the axial position of U1, and two carbonyl oxygen atoms (O2) from the two unidentate DMPU and four oxygen atoms (two O3 and two O4) from the two bidentate NO3- are situated in the trans positions in the equatorial plane of U1 (Fig. 1). The selected parameters are listed in Table 1. These structural features are similar to those of uranyl(VI) nitrate complexes with NRPs (Ikeda et al., 2004; Koshino et al., 2005; Takao et al., 2008; Varga et al., 2003), 2-imidazolidone type ligands [1,3-dibutyl-imidazolidone (DBI) and DMI modification: 1,3-dibutyl-imidazolium (DBI) (Cao et al., 1999) and DMI (Koshino et al., 2005)] and tetramethylurea (TMU) (van Vuuren & van Rooyen, 1988). The U—Ocarbo bond length of the title complex is slightly shorter than those of uranyl(VI) nitrate complexes with NHP [2.414 (3) Å] (Takao et al., 2008), N-cyclohexylmethyl-2- pyrrolidone [2.383 Å] (Koshino et al., 2005), N-(1-ethylpropyl)-2-pyrrolidone [2.372 (2) Å] (Takao et al., 2008), N-neopentyl-2-pyrrolidone [2.382 (3), 2.389 (3) Å] (Takao et al., 2008), and NRPs having alkyl chains of carbon number 2 ~4 (about 2.37 ~2.4 Å) (Ikeda et al., 2004; Koshino et al., 2005; Takao et al., 2008). On the other hand, The U—Ocarbo bond of I is slightly longer than those of uranyl(VI) nitrate complexes with TMU [2.335 (3) Å] (van Vuuren & van Rooyen, 1988), urea [2.341 (5), 2,348 (5) Å] (Alcock et al., 1990), DBI [2.345 (3) Å] (Cao et al., 1999), and NCP [2.348 (2) Å] (Varga, et al., 2003; Ikeda et al., 2004). The differences in U—O bonds are considered to be due to those in donicity and size of L. In the dmpu ligand, C3 and C3B display disorder in a 0.786 (11) and 0.214 (11) occupancy ratio.
For the structures of uranyl(VI) nitrate complexes, see: Alcock et al. (1990); Cao et al. (1999); Cao et al. (1993); Ikeda et al. (2004); Kannan et al. (2008); Koshino et al. (2005); Pennington et al. (1988); Takao et al. (2008); van Vuuren & van Rooyen (1988); Varga et al. (2003); Villiers et al. (2004).
Data collection: PROCESS-AUTO (Rigaku, 2006); cell
PROCESS-AUTO (Rigaku, 2006); data reduction: CrystalStructure (Rigaku/MSC, 2006); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalMaker (CrystalMaker, 2007); software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2006).Fig. 1. Molecular view of I with 30% thermal ellipsoids [symmetry code: i) -x + 2, -y, -z + 2]. Hydrogen atoms are omitted for clarity. |
[U(NO3)2O2(C6H12N2O)2] | Z = 1 |
Mr = 650.40 | F(000) = 310 |
Triclinic, P1 | Dx = 2.115 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71075 Å |
a = 7.8529 (6) Å | Cell parameters from 6036 reflections |
b = 8.7706 (6) Å | θ = 3.5–27.5° |
c = 9.1990 (6) Å | µ = 8.01 mm−1 |
α = 115.611 (2)° | T = 173 K |
β = 113.348 (2)° | Block, yellow |
γ = 91.041 (2)° | 0.17 × 0.13 × 0.12 mm |
V = 510.62 (6) Å3 |
Rigaku R-AXIS RAPID diffractometer | 2307 independent reflections |
Radiation source: fine-focus sealed tube | 2306 reflections with F2 > 2σ(F2) |
Graphite monochromator | Rint = 0.020 |
Detector resolution: 10.00 pixels mm-1 | θmax = 27.5°, θmin = 3.5° |
ω scans | h = −10→10 |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | k = −10→11 |
Tmin = 0.343, Tmax = 0.447 | l = −11→11 |
4800 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.017 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.045 | H-atom parameters constrained |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0297P)2 + 0.4772P] where P = (Fo2 + 2Fc2)/3 |
2307 reflections | (Δ/σ)max < 0.001 |
143 parameters | Δρmax = 0.88 e Å−3 |
0 restraints | Δρmin = −0.93 e Å−3 |
[U(NO3)2O2(C6H12N2O)2] | γ = 91.041 (2)° |
Mr = 650.40 | V = 510.62 (6) Å3 |
Triclinic, P1 | Z = 1 |
a = 7.8529 (6) Å | Mo Kα radiation |
b = 8.7706 (6) Å | µ = 8.01 mm−1 |
c = 9.1990 (6) Å | T = 173 K |
α = 115.611 (2)° | 0.17 × 0.13 × 0.12 mm |
β = 113.348 (2)° |
Rigaku R-AXIS RAPID diffractometer | 2307 independent reflections |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | 2306 reflections with F2 > 2σ(F2) |
Tmin = 0.343, Tmax = 0.447 | Rint = 0.020 |
4800 measured reflections |
R[F2 > 2σ(F2)] = 0.017 | 0 restraints |
wR(F2) = 0.045 | H-atom parameters constrained |
S = 1.06 | Δρmax = 0.88 e Å−3 |
2307 reflections | Δρmin = −0.93 e Å−3 |
143 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
U1 | 1.0000 | 0.0000 | 1.0000 | 0.02201 (6) | |
O1 | 1.1934 (3) | 0.1523 (3) | 1.0498 (3) | 0.0299 (4) | |
O2 | 0.7867 (3) | 0.0427 (3) | 0.7614 (3) | 0.0285 (4) | |
O3 | 1.0044 (4) | −0.1789 (3) | 0.6978 (3) | 0.0372 (5) | |
O4 | 1.1569 (4) | −0.2495 (3) | 0.9034 (3) | 0.0356 (5) | |
O5 | 1.1808 (5) | −0.3669 (4) | 0.6514 (4) | 0.0516 (7) | |
N1 | 1.1165 (4) | −0.2698 (4) | 0.7464 (4) | 0.0316 (5) | |
N2 | 0.7882 (4) | 0.2759 (4) | 0.7144 (4) | 0.0289 (5) | |
N3 | 0.5257 (4) | 0.1594 (4) | 0.7234 (4) | 0.0304 (5) | |
C1 | 0.7028 (4) | 0.1579 (4) | 0.7359 (4) | 0.0237 (5) | |
C2 | 0.7065 (6) | 0.4189 (5) | 0.6969 (6) | 0.0399 (8) | |
H2A | 0.7498 | 0.4518 | 0.6248 | 0.048* | 0.786 (11) |
H2B | 0.7526 | 0.5210 | 0.8181 | 0.048* | 0.786 (11) |
H2C | 0.6480 | 0.3901 | 0.5684 | 0.048* | 0.214 (11) |
H2D | 0.8101 | 0.5246 | 0.7649 | 0.048* | 0.214 (11) |
C3 | 0.4952 (7) | 0.3703 (7) | 0.6089 (7) | 0.0409 (13) | 0.786 (11) |
H3A | 0.4478 | 0.2848 | 0.4799 | 0.049* | 0.786 (11) |
H3B | 0.4444 | 0.4745 | 0.6165 | 0.049* | 0.786 (11) |
C3B | 0.558 (2) | 0.457 (2) | 0.765 (2) | 0.036 (5) | 0.214 (11) |
H3C | 0.6209 | 0.5204 | 0.8989 | 0.044* | 0.214 (11) |
H3D | 0.4844 | 0.5326 | 0.7225 | 0.044* | 0.214 (11) |
C4 | 0.4252 (5) | 0.2925 (6) | 0.6999 (6) | 0.0429 (8) | |
H4A | 0.4452 | 0.3857 | 0.8192 | 0.052* | 0.786 (11) |
H4B | 0.2868 | 0.2402 | 0.6258 | 0.052* | 0.786 (11) |
H4C | 0.3474 | 0.3176 | 0.7664 | 0.052* | 0.214 (11) |
H4D | 0.3375 | 0.2468 | 0.5705 | 0.052* | 0.214 (11) |
C5 | 0.9791 (5) | 0.2755 (6) | 0.7260 (5) | 0.0398 (8) | |
H5A | 1.0191 | 0.3695 | 0.7076 | 0.048* | |
H5B | 0.9778 | 0.1639 | 0.6328 | 0.048* | |
H5C | 1.0684 | 0.2928 | 0.8452 | 0.048* | |
C6 | 0.4370 (5) | 0.0441 (6) | 0.7625 (5) | 0.0417 (8) | |
H6A | 0.3096 | 0.0628 | 0.7468 | 0.050* | |
H6B | 0.5152 | 0.0687 | 0.8871 | 0.050* | |
H6C | 0.4266 | −0.0769 | 0.6799 | 0.050* |
U11 | U22 | U33 | U12 | U13 | U23 | |
U1 | 0.02333 (8) | 0.02264 (8) | 0.02564 (8) | 0.00962 (5) | 0.01238 (6) | 0.01470 (6) |
O1 | 0.0291 (10) | 0.0298 (10) | 0.0382 (12) | 0.0080 (8) | 0.0153 (9) | 0.0220 (9) |
O2 | 0.0297 (11) | 0.0333 (11) | 0.0295 (11) | 0.0151 (9) | 0.0139 (9) | 0.0198 (9) |
O3 | 0.0454 (14) | 0.0466 (13) | 0.0370 (12) | 0.0299 (11) | 0.0269 (11) | 0.0261 (11) |
O4 | 0.0427 (13) | 0.0364 (12) | 0.0313 (11) | 0.0211 (10) | 0.0169 (10) | 0.0185 (10) |
O5 | 0.0618 (18) | 0.0590 (17) | 0.0440 (15) | 0.0396 (15) | 0.0344 (14) | 0.0222 (13) |
N1 | 0.0307 (13) | 0.0339 (13) | 0.0309 (13) | 0.0141 (11) | 0.0148 (11) | 0.0151 (11) |
N2 | 0.0274 (12) | 0.0338 (13) | 0.0355 (13) | 0.0140 (10) | 0.0169 (11) | 0.0221 (11) |
N3 | 0.0238 (12) | 0.0409 (14) | 0.0348 (14) | 0.0131 (11) | 0.0153 (11) | 0.0227 (12) |
C1 | 0.0234 (13) | 0.0308 (13) | 0.0215 (12) | 0.0125 (11) | 0.0107 (11) | 0.0155 (11) |
C2 | 0.048 (2) | 0.0345 (17) | 0.052 (2) | 0.0202 (15) | 0.0268 (17) | 0.0289 (16) |
C3 | 0.046 (3) | 0.049 (3) | 0.046 (3) | 0.032 (2) | 0.025 (2) | 0.032 (2) |
C3B | 0.030 (7) | 0.027 (7) | 0.052 (10) | 0.015 (6) | 0.023 (7) | 0.014 (7) |
C4 | 0.0353 (17) | 0.056 (2) | 0.054 (2) | 0.0285 (17) | 0.0270 (17) | 0.0332 (19) |
C5 | 0.0278 (15) | 0.062 (2) | 0.050 (2) | 0.0154 (15) | 0.0209 (15) | 0.0395 (19) |
C6 | 0.0326 (16) | 0.055 (2) | 0.0447 (19) | 0.0059 (15) | 0.0193 (15) | 0.0282 (17) |
U1—O1 | 1.774 (2) | C2—H2A | 0.9900 |
U1—O1i | 1.774 (2) | C2—H2B | 0.9900 |
U1—O2i | 2.363 (2) | C2—H2C | 0.9900 |
U1—O2 | 2.363 (2) | C2—H2D | 0.9900 |
U1—O4 | 2.526 (2) | C3—C4 | 1.521 (6) |
U1—O4i | 2.526 (2) | C3—H3A | 0.9900 |
U1—O3 | 2.549 (2) | C3—H3B | 0.9900 |
U1—O3i | 2.549 (2) | C3B—C4 | 1.494 (16) |
O2—C1 | 1.271 (4) | C3B—H3C | 0.9900 |
O3—N1 | 1.277 (4) | C3B—H3D | 0.9900 |
O4—N1 | 1.277 (4) | C4—H4A | 0.9900 |
O5—N1 | 1.211 (4) | C4—H4B | 0.9900 |
N2—C1 | 1.348 (4) | C4—H4C | 0.9900 |
N2—C5 | 1.460 (4) | C4—H4D | 0.9900 |
N2—C2 | 1.460 (4) | C5—H5A | 0.9800 |
N3—C1 | 1.350 (4) | C5—H5B | 0.9800 |
N3—C6 | 1.458 (4) | C5—H5C | 0.9800 |
N3—C4 | 1.466 (4) | C6—H6A | 0.9800 |
C2—C3 | 1.484 (6) | C6—H6B | 0.9800 |
C2—C3B | 1.514 (15) | C6—H6C | 0.9800 |
O1—U1—O1i | 180 | C3—C2—H2A | 109.3 |
O1—U1—O2i | 87.26 (9) | N2—C2—H2B | 109.3 |
O1i—U1—O2i | 92.74 (9) | C3—C2—H2B | 109.3 |
O1—U1—O2 | 92.74 (9) | H2A—C2—H2B | 108.0 |
O1i—U1—O2 | 87.26 (9) | N2—C2—H2C | 108.9 |
O2i—U1—O2 | 180 | C3B—C2—H2C | 108.9 |
O1—U1—O4 | 92.17 (9) | N2—C2—H2D | 108.9 |
O1i—U1—O4 | 87.83 (10) | C3B—C2—H2D | 108.9 |
O2i—U1—O4 | 65.69 (8) | H2C—C2—H2D | 107.7 |
O2—U1—O4 | 114.31 (8) | C2—C3—C4 | 110.5 (4) |
O1—U1—O4i | 87.83 (10) | C2—C3—H3A | 109.6 |
O1i—U1—O4i | 92.17 (10) | C4—C3—H3A | 109.5 |
O2i—U1—O4i | 114.31 (8) | C2—C3—H3B | 109.5 |
O2—U1—O4i | 65.69 (8) | C4—C3—H3B | 109.6 |
O4—U1—O4i | 180 | H3A—C3—H3B | 108.1 |
O1—U1—O3 | 86.07 (10) | C4—C3B—C2 | 110.3 (9) |
O1i—U1—O3 | 93.93 (10) | C4—C3B—H3C | 109.6 |
O2i—U1—O3 | 115.08 (7) | C2—C3B—H3C | 109.6 |
O2—U1—O3 | 64.92 (7) | C4—C3B—H3D | 109.6 |
O4—U1—O3 | 50.20 (8) | C2—C3B—H3D | 109.6 |
O4i—U1—O3 | 129.80 (8) | H3C—C3B—H3D | 108.1 |
O1—U1—O3i | 93.93 (10) | N3—C4—C3B | 112.7 (7) |
O1i—U1—O3i | 86.07 (10) | N3—C4—C3 | 111.4 (3) |
O2i—U1—O3i | 64.92 (7) | C3B—C4—C3 | 45.7 (7) |
O2—U1—O3i | 115.08 (7) | N3—C4—H4A | 109.4 |
O4—U1—O3i | 129.80 (8) | C3—C4—H4A | 109.4 |
O4i—U1—O3i | 50.20 (8) | N3—C4—H4B | 109.4 |
O3—U1—O3i | 180 | C3—C4—H4B | 109.4 |
C1—O2—U1 | 139.9 (2) | H4A—C4—H4B | 108.0 |
N1—O3—U1 | 96.59 (18) | N3—C4—H4C | 109.1 |
N1—O4—U1 | 97.71 (17) | C3B—C4—H4C | 109.1 |
O5—N1—O4 | 122.5 (3) | N3—C4—H4D | 109.1 |
O5—N1—O3 | 122.6 (3) | C3B—C4—H4D | 109.1 |
O4—N1—O3 | 114.9 (3) | H4C—C4—H4D | 107.8 |
C1—N2—C5 | 120.3 (3) | N2—C5—H5A | 109.5 |
C1—N2—C2 | 122.8 (3) | N2—C5—H5B | 109.5 |
C5—N2—C2 | 116.5 (3) | H5A—C5—H5B | 109.5 |
C1—N3—C6 | 120.6 (3) | N2—C5—H5C | 109.5 |
C1—N3—C4 | 122.8 (3) | H5A—C5—H5C | 109.5 |
C6—N3—C4 | 115.9 (3) | H5B—C5—H5C | 109.5 |
O2—C1—N2 | 119.8 (3) | N3—C6—H6A | 109.5 |
O2—C1—N3 | 120.7 (3) | N3—C6—H6B | 109.5 |
N2—C1—N3 | 119.5 (3) | H6A—C6—H6B | 109.5 |
N2—C2—C3 | 111.4 (3) | N3—C6—H6C | 109.5 |
N2—C2—C3B | 113.2 (7) | H6A—C6—H6C | 109.5 |
N2—C2—H2A | 109.3 | H6B—C6—H6C | 109.5 |
Symmetry code: (i) −x+2, −y, −z+2. |
Experimental details
Crystal data | |
Chemical formula | [U(NO3)2O2(C6H12N2O)2] |
Mr | 650.40 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 173 |
a, b, c (Å) | 7.8529 (6), 8.7706 (6), 9.1990 (6) |
α, β, γ (°) | 115.611 (2), 113.348 (2), 91.041 (2) |
V (Å3) | 510.62 (6) |
Z | 1 |
Radiation type | Mo Kα |
µ (mm−1) | 8.01 |
Crystal size (mm) | 0.17 × 0.13 × 0.12 |
Data collection | |
Diffractometer | Rigaku R-AXIS RAPID |
Absorption correction | Multi-scan (ABSCOR; Higashi, 1995) |
Tmin, Tmax | 0.343, 0.447 |
No. of measured, independent and observed [F2 > 2σ(F2)] reflections | 4800, 2307, 2306 |
Rint | 0.020 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.017, 0.045, 1.06 |
No. of reflections | 2307 |
No. of parameters | 143 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.88, −0.93 |
Computer programs: PROCESS-AUTO (Rigaku, 2006), CrystalStructure (Rigaku/MSC, 2006), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008), CrystalMaker (CrystalMaker, 2007).
U1—O1 | 1.774 (2) | U1—O3 | 2.549 (2) |
U1—O2 | 2.363 (2) | O2—C1 | 1.271 (4) |
U1—O4 | 2.526 (2) | ||
O1—U1—O1i | 180 | O1—U1—O3 | 86.07 (10) |
O1—U1—O2 | 92.74 (9) | O2—U1—O3 | 64.92 (7) |
O1—U1—O4 | 92.17 (9) | O4—U1—O3 | 50.20 (8) |
O2—U1—O4i | 65.69 (8) | C1—O2—U1 | 139.9 (2) |
Symmetry code: (i) −x+2, −y, −z+2. |
Acknowledgements
We thank Dr Motoo Shiro of Rigaku Corporation for help with the structure solution.
References
Alcock, N. W., Kemp, T. J., Leciejewicz, J. & Trzaska-Durski, Z. (1990). Acta Cryst. C46, 981–983. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435. CrossRef Web of Science IUCr Journals Google Scholar
Cao, Z., Qi, T., Zhu, L., Zhang, D.-C., Zhou, R. & Yu, K.-B. (1999). Acta Cryst. C55, 1270–1272. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Cao, Z., Wang, H., Gu, J., Zhu, L. & Yu, K. (1993). Acta Cryst. C49, 1942–1943. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
CrystalMaker (2007). CrystalMaker. CrystalMaker Software Ltd, Yarnton, England. Google Scholar
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan. Google Scholar
Ikeda, Y., Wada, E., Harada, M., Chikazawa, T., Kikuchi, T., Mineo, H., Morita, Y., Nogami, M. & Suzuki, K. (2004). J. Alloys Compd, 374, 420–425. Web of Science CrossRef CAS Google Scholar
Kannan, S., Deb, S. B., Gamare, J. S. & Drew, M. G. B. (2008). Polyhedron, 27, 2557–2562. Web of Science CSD CrossRef CAS Google Scholar
Koshino, N., Harada, M., Nogami, M., Morita, Y., Kikuchi, T. & Ikeda, Y. (2005). Inorg. Chim. Acta, 358, 1857–1864. Web of Science CSD CrossRef CAS Google Scholar
Pennington, M., Alcock, N. W. & Flanders, D. J. (1988). Acta Cryst. C44, 1664–1666. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Rigaku (2006). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rigaku/MSC (2006). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Takao, K., Noda, K., Morita, Y., Nishimura, K. & Ikeda, Y. (2008). Cryst. Growth Des. 8, 2364–2376. Web of Science CSD CrossRef CAS Google Scholar
Varga, T. R., Bényei, A. C., Fazekas, Z., Tomiyasu, H. & Ikeda, Y. (2003). Inorg. Chim. Acta, 342, 291–294. Web of Science CSD CrossRef CAS Google Scholar
Villiers, C., Thuéry, P. & Ephritikhine, M. (2004). Polyhedron, 23, 1613–1618. Web of Science CSD CrossRef CAS Google Scholar
Vuuren, C. P. J. van & van Rooyen, P. H. (1988). Inorg. Chim. Acta, 142, 151–152. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Crystal structures of various uranyl(VI) nitrate complexes with neutral unidentate ligands (L) have been reported. The uranyl(VI) nitrate complexes normally have a conformation of UO2(NO3)2(L)2 (Cao et al., 1999; Cao et al., 1993; Ikeda et al., 2004; Kannan et al., 2008; Koshino et al., 2005; Pennington et al., 1988; Takao, et al., 2008; van Vuuren & van Rooyen 1988; Varga et al., 2003; Villiers et al., 2004). The UO2(NO3)2(L)2 complexes exhibit hexagonal bipyramidal geometry, in which the UVI atom is coordinated by two oxo ligands in the axial positions, and four oxygen atoms from two bidentate NO3- and two donating atoms from two L in the equatorial plane. These ligands are located in the trans positions. Recently, we have reported that N-cyclohexyl-2-pyrrolidone (NCP) can selectively precipitate uranyl(VI) species in HNO3 aqueous solution and that the precipitate has an above typical molecular structure, i.e., UO2(NO3)2(NCP)2 (Ikeda et al., 2004; Varga et al., 2003). Similarly, we have also studied other N-alkyl-2-pyrrolidone (NRP) (Ikeda et al., 2004; Koshino et al., 2005; Takao et al., 2008; Varga et al., 2003), 2-pyrrolidone(NHP) (Ikeda et al., 2004) modification: 2-pyrrolidone(NHP) (Takao et al., 2008), and 1,3-dimethyl-imidazolidone (DMI) (Koshino et al., 2005). We report herein the synthesis and crystal characterization of the new uranyl(VI) complex UO2(NO3)2(DMPU)2 (I) (DMPU = 1,3-dimethyl-1,3-diazinan-2-one (N, N'-dimethylpropyleneurea)).
The molecular structure of the title complex is shown in Fig. 1. U1 has a hexagonal bipyramidal coordination geometry. The two uranyl oxo atoms (O1) from the uranyl(VI) ion occupy the axial position of U1, and two carbonyl oxygen atoms (O2) from the two unidentate DMPU and four oxygen atoms (two O3 and two O4) from the two bidentate NO3- are situated in the trans positions in the equatorial plane of U1 (Fig. 1). The selected parameters are listed in Table 1. These structural features are similar to those of uranyl(VI) nitrate complexes with NRPs (Ikeda et al., 2004; Koshino et al., 2005; Takao et al., 2008; Varga et al., 2003), 2-imidazolidone type ligands [1,3-dibutyl-imidazolidone (DBI) and DMI modification: 1,3-dibutyl-imidazolium (DBI) (Cao et al., 1999) and DMI (Koshino et al., 2005)] and tetramethylurea (TMU) (van Vuuren & van Rooyen, 1988). The U—Ocarbo bond length of the title complex is slightly shorter than those of uranyl(VI) nitrate complexes with NHP [2.414 (3) Å] (Takao et al., 2008), N-cyclohexylmethyl-2- pyrrolidone [2.383 Å] (Koshino et al., 2005), N-(1-ethylpropyl)-2-pyrrolidone [2.372 (2) Å] (Takao et al., 2008), N-neopentyl-2-pyrrolidone [2.382 (3), 2.389 (3) Å] (Takao et al., 2008), and NRPs having alkyl chains of carbon number 2 ~4 (about 2.37 ~2.4 Å) (Ikeda et al., 2004; Koshino et al., 2005; Takao et al., 2008). On the other hand, The U—Ocarbo bond of I is slightly longer than those of uranyl(VI) nitrate complexes with TMU [2.335 (3) Å] (van Vuuren & van Rooyen, 1988), urea [2.341 (5), 2,348 (5) Å] (Alcock et al., 1990), DBI [2.345 (3) Å] (Cao et al., 1999), and NCP [2.348 (2) Å] (Varga, et al., 2003; Ikeda et al., 2004). The differences in U—O bonds are considered to be due to those in donicity and size of L. In the dmpu ligand, C3 and C3B display disorder in a 0.786 (11) and 0.214 (11) occupancy ratio.