metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(2,6-dihy­dr­oxy­benzoato-κ2O1,O1′)(nitrato-κ2O,O′)bis­­(1,10-phenanthroline-κ2N,N′)cerium(III)

aCollege of Materials Science and Engineering, China Jiliang University, Hangzhou 310018, People's Republic of China
*Correspondence e-mail: jin_hongxiao@yahoo.com.cn

(Received 11 November 2010; accepted 29 November 2010; online 4 December 2010)

The mononuclear title complex, [Ce(C7H5O3)2(NO3)(C12H8N2)2], is isostructural to other related lanthanide structures. The Ce atom is in a pseudo-bicapped square-anti­prismatic geometry formed by four N atoms from two chelating 1,10-phenanthroline (phen) ligands and by six O atoms, four from two 2,6-dihy­droxy­benzoate (DHB) ligands and the other two from a nitrate anion. ππ stacking inter­actions between phen and DHB ligands [centroid–centroid distances = 3.513 (3) and 3.762 (2) Å] and phen and phen ligands [face-to-face separation = 3.423 (7) Å] of adjacent complexes stabilize the crystal structure. Intra­molecular O—H⋯O hydrogen bonds are observed in the DHB ligands.

Related literature

For background and a related structure, see: Zheng et al. (2010[Zheng, J., Jin, H. & Ge, H. (2010). Acta Cryst. E66, m1469-m1470.]).

[Scheme 1]

Experimental

Crystal data
  • [Ce(C7H5O3)2(NO3)(C12H8N2)2]

  • Mr = 868.76

  • Monoclinic, P 21 /c

  • a = 11.2937 (2) Å

  • b = 26.7878 (3) Å

  • c = 14.4056 (4) Å

  • β = 128.062 (2)°

  • V = 3431.38 (12) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 10.88 mm−1

  • T = 298 K

  • 0.40 × 0.35 × 0.32 mm

Data collection
  • Oxford Diffraction Gemini S Ultra diffractometer

  • Absorption correction: multi-scan (ABSPACK in CrysAlis PRO RED; Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis PRO CCD and CrysAlis PRO RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]) Tmin = 0.098, Tmax = 0.128

  • 11880 measured reflections

  • 6060 independent reflections

  • 5705 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.108

  • S = 1.08

  • 6060 reflections

  • 496 parameters

  • H-atom parameters constrained

  • Δρmax = 1.60 e Å−3

  • Δρmin = −2.34 e Å−3

Table 1
Selected bond lengths (Å)

Ce1—O2 2.549 (3)
Ce1—O5 2.567 (3)
Ce1—O6 2.572 (3)
Ce1—O10 2.593 (3)
Ce1—O1 2.620 (3)
Ce1—O9 2.633 (3)
Ce1—N4 2.640 (3)
Ce1—N3 2.674 (3)
Ce1—N2 2.685 (3)
Ce1—N1 2.702 (3)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O8—H38⋯O6 0.82 1.85 2.582 (4) 147
O7—H34⋯O5 0.82 1.82 2.552 (4) 148
O4—H31⋯O2 0.82 1.86 2.584 (4) 146
O3—H27⋯O1 0.82 1.87 2.583 (4) 145

Data collection: CrysAlis PRO CCD (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis PRO CCD and CrysAlis PRO RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); cell refinement: CrysAlis PRO CCD; data reduction: CrysAlis PRO RED (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis PRO CCD and CrysAlis PRO RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg & Berndt, 1999[Brandenburg, K. & Berndt, M. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The description of the structure of the title compound is part of a series of papers on mononuclear complexes of the type [Ln(C12H8N2)2(C7H8O3)2 (NO3)], with Ln = Ce(this publication), Pr, Sm, Eu, and Dy respectively. All five compounds are also isostructural to the previously reported Nd complex (Zheng et al. 2010). The background to this study is given in previous paper by Zheng et al. (2010).

The complex forms a ten-coordinate pseudo-bicapped square antiprismatic structure in which the set of O2, N3, N2 and O5 and the set of N4, N1, O10 and O6 form two approximate squares, respectively. The ninth coordinate atom O1 and tenth coordinate atom O9 are above and under the two planes formed by O2, N3, N2 and O5 and of N4, N1, O10 and O6, respectively, and locate at bicapped positions. The O1–Ce–O9 is 175.99 (9)° close to 180°. Because the coordinate O1 and O9 atoms are excluded by O2, N3, N2 and O5 (formed the above plane) and N4, N1, O10 and O6 (formed the under plane), the bond distances of CeIII–O1 and CeIII–O9 are significantly longer than those of CeIII–O2 and GdIII–O10, respectively (Table 1).

π··· π stackings stacking are observed in the crystal structure (Fig. 2). Partially overlapped arrangement between DHB and phen ligand is observed in the molecular structure [Cg1 - Cg 2 distance = 3.762 (2) Å, Cg1 - Cg3 distance = 3.513 (3) Å, Cg denotes the centroid of ring, C33 - C38 for Cg1, N4 / C18 - C23 for Cg2, N3 / C13 - C17 for Cg3]. The face-to-face separation between partially overlapped Ce - phen ligands and Ceiii - phen is 3.423 (7) Å [symmetry codes: (iii) - x, 2 - y, - z].

Intramolecular O–H···O hydrogen bonds are observed in the DHB ligands (Fig. 1 & Table 2).

Related literature top

For background and a related structure, see: Zheng et al. (2010).

Experimental top

Each reagent was commercially available and of analytical grade. Ce(NO3)3.6H2O (0.217 g, 0.5 mmol), 2, 6-dihydroxybenzoic acid (0.074 g 0.5 mmol), 1, 10-phenanthroline (0.090 g, 0.5 mmol) and NaHCO3 (0.042 g, 0.5 mmol) were dissolved in a water-ethanol mixture (10 ml, 5:5). The solution was refluxed for 4 h, and filtered after cooling to room temperature. Orange single crystals were obtained from the filtrate after 5 days.

Refinement top

The hydroxyl H atoms were placed in chemically sensible positions on the basis of hydrogen bonding interactions [O—H = 0.82 Å and Uiso(H) = 1.5Ueq(O)]. Aromatic H atoms were positioned geometrically (C—H = 0.93 Å) and refined as riding, with Uiso (H) = 1.2Ueq (C).

Structure description top

The description of the structure of the title compound is part of a series of papers on mononuclear complexes of the type [Ln(C12H8N2)2(C7H8O3)2 (NO3)], with Ln = Ce(this publication), Pr, Sm, Eu, and Dy respectively. All five compounds are also isostructural to the previously reported Nd complex (Zheng et al. 2010). The background to this study is given in previous paper by Zheng et al. (2010).

The complex forms a ten-coordinate pseudo-bicapped square antiprismatic structure in which the set of O2, N3, N2 and O5 and the set of N4, N1, O10 and O6 form two approximate squares, respectively. The ninth coordinate atom O1 and tenth coordinate atom O9 are above and under the two planes formed by O2, N3, N2 and O5 and of N4, N1, O10 and O6, respectively, and locate at bicapped positions. The O1–Ce–O9 is 175.99 (9)° close to 180°. Because the coordinate O1 and O9 atoms are excluded by O2, N3, N2 and O5 (formed the above plane) and N4, N1, O10 and O6 (formed the under plane), the bond distances of CeIII–O1 and CeIII–O9 are significantly longer than those of CeIII–O2 and GdIII–O10, respectively (Table 1).

π··· π stackings stacking are observed in the crystal structure (Fig. 2). Partially overlapped arrangement between DHB and phen ligand is observed in the molecular structure [Cg1 - Cg 2 distance = 3.762 (2) Å, Cg1 - Cg3 distance = 3.513 (3) Å, Cg denotes the centroid of ring, C33 - C38 for Cg1, N4 / C18 - C23 for Cg2, N3 / C13 - C17 for Cg3]. The face-to-face separation between partially overlapped Ce - phen ligands and Ceiii - phen is 3.423 (7) Å [symmetry codes: (iii) - x, 2 - y, - z].

Intramolecular O–H···O hydrogen bonds are observed in the DHB ligands (Fig. 1 & Table 2).

For background and a related structure, see: Zheng et al. (2010).

Computing details top

Data collection: CrysAlis PRO CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis PRO CCD (Oxford Diffraction, 2006); data reduction: CrysAlis PRO RED (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg & Berndt, 1999); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of title compound. Displacement ellipsoids are drawn at the 15% probablility level and H atoms are shown as small spheres of arbitraty radii. Some H atoms are omitted for clarity. Orange dashed lines denote hydrogen bonds.
[Figure 2] Fig. 2. π···π stacking interaction between DHB and phen, phen and phen. Cg (light green sphere) denotes the centroid of six-membered ring: Cg1 = C33 - C38, Cg2 = N4 / C18 - C23, Cg3 = N3 / C13 - C17. Orange dashed lines show the π - π stacking between ligands. [symmetry codes: (i) 1 + x, 1.5 - y, 1/2 + z; (ii) 1 + x, 1.5 - y, 1/2 + z; (iii) - x, 2 - y, - z].
Bis(2,6-dihydroxybenzoato-κ2O1,O1')(nitrato- κ2O,O')bis(1,10-phenanthroline- κ2N,N')cerium(III) top
Crystal data top
[Ce(C7H8O3)2(NO3)(C12H8N2)2]F(000) = 1740
Mr = 868.76Dx = 1.682 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
Hall symbol: -P 2ybcCell parameters from 7834 reflections
a = 11.2937 (2) Åθ = 3.3–67.5°
b = 26.7878 (3) ŵ = 10.88 mm1
c = 14.4056 (4) ÅT = 298 K
β = 128.062 (2)°Prism, orange
V = 3431.38 (12) Å30.40 × 0.35 × 0.32 mm
Z = 4
Data collection top
Oxford Diffraction Gemini S Ultra
diffractometer
6060 independent reflections
Radiation source: Enhance Ultra (Cu) X-ray Source5705 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.040
Detector resolution: 15.9149 pixels mm-1θmax = 67.6°, θmin = 3.3°
ω scansh = 139
Absorption correction: multi-scan
(ABSPACK in CrysAlis PRO RED; Oxford Diffraction, 2006)
k = 3130
Tmin = 0.098, Tmax = 0.128l = 1517
11880 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0672P)2]
where P = (Fo2 + 2Fc2)/3
6060 reflections(Δ/σ)max = 0.001
496 parametersΔρmax = 1.60 e Å3
0 restraintsΔρmin = 2.34 e Å3
Crystal data top
[Ce(C7H8O3)2(NO3)(C12H8N2)2]V = 3431.38 (12) Å3
Mr = 868.76Z = 4
Monoclinic, P21/cCu Kα radiation
a = 11.2937 (2) ŵ = 10.88 mm1
b = 26.7878 (3) ÅT = 298 K
c = 14.4056 (4) Å0.40 × 0.35 × 0.32 mm
β = 128.062 (2)°
Data collection top
Oxford Diffraction Gemini S Ultra
diffractometer
6060 independent reflections
Absorption correction: multi-scan
(ABSPACK in CrysAlis PRO RED; Oxford Diffraction, 2006)
5705 reflections with I > 2σ(I)
Tmin = 0.098, Tmax = 0.128Rint = 0.040
11880 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.108H-atom parameters constrained
S = 1.08Δρmax = 1.60 e Å3
6060 reflectionsΔρmin = 2.34 e Å3
496 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ce10.06777 (2)0.860990 (6)0.281182 (15)0.02790 (10)
O10.1127 (3)0.91826 (10)0.4477 (2)0.0425 (6)
O20.1553 (3)0.83834 (11)0.4866 (2)0.0433 (6)
O30.1667 (6)0.97993 (13)0.6076 (3)0.0836 (14)
H270.15390.97160.54720.125*
O40.2409 (4)0.80338 (11)0.6866 (3)0.0577 (8)
H310.20970.80220.61800.087*
O50.3411 (3)0.89154 (12)0.4052 (3)0.0522 (7)
O60.3093 (3)0.81036 (10)0.3702 (3)0.0423 (6)
O70.5838 (4)0.93411 (14)0.4708 (4)0.0707 (10)
H340.49900.93150.45160.106*
O80.5206 (3)0.75680 (11)0.4002 (3)0.0509 (7)
H380.43670.76310.38030.076*
O90.0371 (3)0.79921 (10)0.1255 (2)0.0446 (6)
O100.1491 (4)0.86854 (12)0.1482 (3)0.0517 (8)
O110.1299 (5)0.8118 (2)0.0329 (3)0.0872 (14)
N10.1724 (3)0.88310 (11)0.0578 (3)0.0342 (6)
N20.0218 (4)0.95609 (12)0.2074 (3)0.0362 (6)
N30.1909 (4)0.86488 (11)0.2506 (3)0.0354 (7)
N40.0654 (3)0.77638 (11)0.2624 (3)0.0341 (6)
N50.1050 (4)0.82562 (15)0.1000 (3)0.0447 (8)
C10.2693 (5)0.84828 (16)0.0142 (4)0.0396 (8)
H10.25890.81670.01670.048*
C20.3867 (5)0.85607 (16)0.1341 (4)0.0446 (10)
H20.45200.83030.18130.053*
C30.4029 (4)0.90275 (19)0.1799 (4)0.0471 (9)
H3A0.47890.90900.25950.056*
C40.3037 (4)0.94091 (15)0.1058 (3)0.0380 (8)
C50.1891 (4)0.92953 (14)0.0138 (3)0.0321 (7)
C60.0870 (4)0.96814 (13)0.0922 (3)0.0325 (7)
C70.1023 (5)1.01658 (14)0.0469 (4)0.0405 (8)
C80.2192 (5)1.02677 (16)0.0747 (4)0.0476 (10)
H8A0.22911.05880.10390.057*
C90.3150 (5)0.99073 (17)0.1476 (4)0.0484 (10)
H90.39020.99820.22670.058*
C100.0007 (5)1.05311 (14)0.1265 (4)0.0478 (10)
H100.00551.08550.10060.057*
C110.1098 (6)1.04083 (16)0.2420 (4)0.0528 (11)
H110.17901.06460.29530.063*
C120.1157 (5)0.99191 (15)0.2789 (4)0.0450 (9)
H120.18960.98410.35790.054*
C130.2486 (5)0.90824 (16)0.2494 (4)0.0463 (9)
H130.18930.93680.27430.056*
C140.3965 (6)0.9125 (2)0.2118 (4)0.0578 (12)
H140.43430.94340.21130.069*
C150.4844 (5)0.8705 (2)0.1758 (4)0.0572 (12)
H150.58300.87280.14930.069*
C160.4252 (4)0.82424 (19)0.1790 (3)0.0449 (10)
C170.2750 (4)0.82332 (15)0.2188 (3)0.0354 (8)
C180.2060 (4)0.77609 (13)0.2295 (3)0.0329 (7)
C190.2887 (5)0.73159 (16)0.2044 (3)0.0420 (9)
C200.4416 (5)0.7343 (2)0.1603 (4)0.0522 (11)
H200.49700.70500.14010.063*
C210.5061 (5)0.7781 (2)0.1478 (4)0.0564 (12)
H210.60620.77880.11810.068*
C220.2121 (6)0.68653 (15)0.2236 (4)0.0489 (10)
H220.26020.65620.21090.059*
C230.0695 (5)0.68692 (15)0.2604 (4)0.0469 (10)
H230.01840.65720.27460.056*
C240.0003 (5)0.73284 (15)0.2768 (4)0.0422 (8)
H240.09680.73290.29870.051*
C250.1543 (4)0.88195 (14)0.5192 (3)0.0353 (8)
C260.2017 (4)0.89119 (15)0.6388 (3)0.0340 (7)
C270.2065 (5)0.93979 (17)0.6772 (4)0.0492 (10)
C280.2552 (7)0.9477 (2)0.7912 (4)0.0652 (14)
H280.25980.98000.81720.078*
C290.2965 (6)0.9078 (2)0.8657 (4)0.0611 (13)
H290.32910.91350.94190.073*
C300.2907 (6)0.86001 (18)0.8302 (4)0.0513 (12)
H300.31880.83360.88190.062*
C310.2426 (4)0.85087 (16)0.7164 (4)0.0408 (8)
C320.3909 (4)0.84926 (16)0.4017 (3)0.0384 (8)
C330.5425 (4)0.84581 (16)0.4348 (3)0.0379 (8)
C340.6332 (5)0.88857 (18)0.4675 (4)0.0475 (9)
C350.7760 (5)0.8846 (2)0.4980 (4)0.0577 (12)
H350.83620.91280.52080.069*
C360.8279 (5)0.8391 (2)0.4945 (4)0.0568 (12)
H360.92350.83690.51490.068*
C370.7431 (4)0.7963 (2)0.4617 (3)0.0480 (10)
H370.78090.76580.45950.058*
C380.6000 (4)0.79916 (16)0.4319 (3)0.0396 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ce10.03329 (14)0.02207 (14)0.03061 (13)0.00013 (6)0.02084 (11)0.00019 (6)
O10.0571 (16)0.0358 (14)0.0328 (12)0.0013 (12)0.0268 (12)0.0006 (11)
O20.0552 (16)0.0328 (14)0.0348 (13)0.0032 (12)0.0243 (13)0.0010 (11)
O30.155 (4)0.0357 (17)0.0533 (19)0.018 (2)0.061 (2)0.0030 (15)
O40.071 (2)0.0396 (16)0.0427 (15)0.0006 (15)0.0248 (15)0.0059 (13)
O50.0419 (15)0.0422 (16)0.0652 (19)0.0031 (13)0.0292 (15)0.0107 (14)
O60.0371 (13)0.0362 (14)0.0524 (15)0.0002 (11)0.0269 (12)0.0002 (12)
O70.060 (2)0.050 (2)0.089 (3)0.0172 (16)0.039 (2)0.0139 (19)
O80.0469 (15)0.0449 (16)0.0638 (18)0.0011 (13)0.0356 (15)0.0065 (14)
O90.0541 (15)0.0362 (14)0.0480 (14)0.0011 (12)0.0337 (14)0.0065 (12)
O100.069 (2)0.0459 (16)0.0618 (19)0.0031 (15)0.0515 (18)0.0067 (15)
O110.087 (3)0.142 (4)0.055 (2)0.003 (3)0.055 (2)0.018 (2)
N10.0439 (17)0.0282 (15)0.0355 (14)0.0033 (13)0.0270 (14)0.0010 (12)
N20.0445 (16)0.0283 (15)0.0377 (15)0.0010 (13)0.0263 (14)0.0028 (12)
N30.0368 (16)0.0366 (17)0.0331 (15)0.0063 (12)0.0216 (14)0.0054 (12)
N40.0441 (16)0.0253 (15)0.0351 (14)0.0003 (12)0.0255 (14)0.0020 (11)
N50.0445 (17)0.058 (2)0.0342 (15)0.0082 (16)0.0258 (15)0.0003 (15)
C10.045 (2)0.0372 (19)0.0387 (19)0.0080 (17)0.0266 (18)0.0042 (17)
C20.039 (2)0.052 (2)0.040 (2)0.0063 (17)0.0227 (19)0.0066 (17)
C30.0362 (19)0.061 (3)0.0392 (19)0.0042 (18)0.0208 (17)0.0043 (19)
C40.0366 (18)0.044 (2)0.0387 (18)0.0101 (16)0.0260 (16)0.0108 (16)
C50.0366 (17)0.0326 (18)0.0377 (17)0.0054 (14)0.0282 (16)0.0035 (14)
C60.0433 (18)0.0253 (16)0.0407 (17)0.0054 (14)0.0318 (16)0.0022 (14)
C70.058 (2)0.0264 (17)0.060 (2)0.0103 (16)0.047 (2)0.0067 (16)
C80.062 (3)0.035 (2)0.061 (2)0.0200 (19)0.046 (2)0.0211 (19)
C90.053 (2)0.050 (2)0.049 (2)0.021 (2)0.035 (2)0.020 (2)
C100.073 (3)0.0211 (17)0.073 (3)0.0036 (17)0.057 (3)0.0013 (17)
C110.073 (3)0.030 (2)0.068 (3)0.014 (2)0.050 (3)0.0136 (19)
C120.058 (2)0.031 (2)0.046 (2)0.0080 (18)0.033 (2)0.0073 (17)
C130.054 (2)0.041 (2)0.050 (2)0.0111 (19)0.036 (2)0.0040 (18)
C140.058 (3)0.066 (3)0.054 (2)0.030 (2)0.037 (2)0.013 (2)
C150.040 (2)0.087 (3)0.044 (2)0.015 (2)0.026 (2)0.009 (2)
C160.0387 (19)0.069 (3)0.0300 (16)0.0064 (19)0.0225 (16)0.0066 (18)
C170.0358 (17)0.046 (2)0.0252 (14)0.0025 (16)0.0190 (14)0.0045 (14)
C180.0420 (18)0.0345 (18)0.0253 (14)0.0063 (15)0.0224 (14)0.0010 (13)
C190.054 (2)0.047 (2)0.0298 (16)0.0153 (18)0.0286 (16)0.0027 (16)
C200.052 (2)0.066 (3)0.0388 (19)0.020 (2)0.0280 (19)0.004 (2)
C210.039 (2)0.088 (4)0.039 (2)0.015 (2)0.0225 (18)0.002 (2)
C220.076 (3)0.032 (2)0.042 (2)0.0172 (19)0.038 (2)0.0037 (16)
C230.072 (3)0.0269 (18)0.044 (2)0.0016 (18)0.036 (2)0.0031 (15)
C240.051 (2)0.0301 (18)0.046 (2)0.0025 (17)0.0308 (18)0.0030 (16)
C250.0348 (18)0.0351 (19)0.0351 (17)0.0000 (15)0.0212 (15)0.0010 (15)
C260.0306 (16)0.0391 (19)0.0299 (16)0.0004 (14)0.0175 (14)0.0002 (14)
C270.065 (3)0.044 (2)0.0381 (19)0.009 (2)0.032 (2)0.0015 (17)
C280.092 (4)0.058 (3)0.043 (2)0.017 (3)0.041 (3)0.004 (2)
C290.068 (3)0.080 (4)0.036 (2)0.011 (3)0.032 (2)0.001 (2)
C300.050 (3)0.066 (3)0.036 (2)0.0043 (19)0.026 (2)0.0119 (18)
C310.0314 (18)0.045 (2)0.0375 (19)0.0019 (16)0.0171 (16)0.0028 (17)
C320.0362 (19)0.042 (2)0.0344 (18)0.0018 (17)0.0203 (16)0.0038 (16)
C330.0344 (18)0.047 (2)0.0277 (16)0.0036 (17)0.0170 (15)0.0004 (16)
C340.042 (2)0.051 (2)0.0419 (19)0.0078 (18)0.0217 (18)0.0039 (18)
C350.046 (2)0.077 (4)0.045 (2)0.022 (2)0.026 (2)0.005 (2)
C360.035 (2)0.093 (4)0.040 (2)0.003 (2)0.0222 (18)0.001 (2)
C370.040 (2)0.070 (3)0.0339 (17)0.005 (2)0.0225 (16)0.0001 (19)
C380.0357 (18)0.051 (2)0.0290 (15)0.0025 (17)0.0185 (14)0.0028 (16)
Geometric parameters (Å, º) top
Ce1—O22.549 (3)C9—H90.9300
Ce1—O52.567 (3)C10—C111.366 (7)
Ce1—O62.572 (3)C10—H100.9300
Ce1—O102.593 (3)C11—C121.400 (6)
Ce1—O12.620 (3)C11—H110.9300
Ce1—O92.633 (3)C12—H120.9300
Ce1—N42.640 (3)C13—C141.407 (6)
Ce1—N32.674 (3)C13—H130.9300
Ce1—N22.685 (3)C14—C151.375 (8)
Ce1—N12.702 (3)C14—H140.9300
O1—C251.277 (5)C15—C161.394 (7)
O2—C251.261 (5)C15—H150.9300
O3—C271.345 (6)C16—C171.417 (5)
O3—H270.8204C16—C211.434 (7)
O4—C311.339 (5)C17—C181.443 (5)
O4—H310.8200C18—C191.417 (5)
O5—C321.279 (5)C19—C221.409 (6)
O6—C321.275 (5)C19—C201.428 (6)
O7—C341.354 (6)C20—C211.335 (8)
O7—H340.8196C20—H200.9300
O8—C381.340 (5)C21—H210.9300
O8—H380.8207C22—C231.350 (7)
O9—N51.253 (5)C22—H220.9300
O10—N51.275 (5)C23—C241.400 (6)
O11—N51.218 (5)C23—H230.9300
N1—C11.320 (5)C24—H240.9300
N1—C51.355 (5)C25—C261.476 (5)
N2—C121.326 (5)C26—C271.402 (6)
N2—C61.362 (5)C26—C311.412 (6)
N3—C131.327 (5)C27—C281.390 (6)
N3—C171.347 (5)C28—C291.376 (8)
N4—C241.328 (5)C28—H280.9300
N4—C181.349 (5)C29—C301.366 (7)
C1—C21.400 (6)C29—H290.9300
C1—H10.9300C30—C311.394 (6)
C2—C31.373 (6)C30—H300.9300
C2—H20.9300C32—C331.470 (5)
C3—C41.402 (6)C33—C341.410 (6)
C3—H3A0.9300C33—C381.421 (6)
C4—C51.409 (5)C34—C351.390 (6)
C4—C91.437 (6)C35—C361.367 (8)
C5—C61.439 (5)C35—H350.9300
C6—C71.414 (5)C36—C371.377 (7)
C7—C101.408 (6)C36—H360.9300
C7—C81.426 (6)C37—C381.395 (6)
C8—C91.344 (7)C37—H370.9300
C8—H8A0.9300
O2—Ce1—O580.14 (10)C9—C8—H8A119.6
O2—Ce1—O676.28 (9)C7—C8—H8A119.6
O5—Ce1—O650.97 (9)C8—C9—C4121.3 (4)
O2—Ce1—O10144.69 (11)C8—C9—H9119.4
O5—Ce1—O1070.60 (11)C4—C9—H9119.4
O6—Ce1—O1070.09 (10)C11—C10—C7119.8 (4)
O2—Ce1—O150.12 (8)C11—C10—H10120.1
O5—Ce1—O172.83 (10)C7—C10—H10120.1
O6—Ce1—O1107.76 (9)C10—C11—C12118.9 (4)
O10—Ce1—O1132.36 (10)C10—C11—H11120.5
O2—Ce1—O9126.35 (9)C12—C11—H11120.5
O5—Ce1—O9105.27 (9)N2—C12—C11123.7 (4)
O6—Ce1—O968.60 (9)N2—C12—H12118.2
O10—Ce1—O948.70 (10)C11—C12—H12118.2
O1—Ce1—O9175.99 (9)N3—C13—C14122.2 (4)
O2—Ce1—N472.73 (9)N3—C13—H13118.9
O5—Ce1—N4135.20 (10)C14—C13—H13118.9
O6—Ce1—N487.74 (9)C15—C14—C13119.2 (4)
O10—Ce1—N4115.47 (10)C15—C14—H14120.4
O1—Ce1—N4111.91 (9)C13—C14—H14120.4
O9—Ce1—N466.78 (9)C14—C15—C16119.7 (4)
O2—Ce1—N378.62 (10)C14—C15—H15120.2
O5—Ce1—N3145.58 (10)C16—C15—H15120.2
O6—Ce1—N3144.88 (9)C15—C16—C17117.3 (4)
O10—Ce1—N3136.36 (11)C15—C16—C21123.7 (4)
O1—Ce1—N372.76 (10)C17—C16—C21119.0 (4)
O9—Ce1—N3109.12 (9)N3—C17—C16122.7 (4)
N4—Ce1—N361.39 (9)N3—C17—C18117.9 (3)
O2—Ce1—N2121.83 (9)C16—C17—C18119.4 (4)
O5—Ce1—N280.15 (10)N4—C18—C19122.8 (4)
O6—Ce1—N2125.77 (9)N4—C18—C17118.2 (3)
O10—Ce1—N272.76 (10)C19—C18—C17118.9 (3)
O1—Ce1—N271.80 (8)C22—C19—C18116.3 (4)
O9—Ce1—N2111.56 (9)C22—C19—C20123.9 (4)
N4—Ce1—N2144.60 (10)C18—C19—C20119.8 (4)
N3—Ce1—N288.45 (9)C21—C20—C19120.9 (4)
O2—Ce1—N1145.18 (9)C21—C20—H20119.5
O5—Ce1—N1130.72 (10)C19—C20—H20119.5
O6—Ce1—N1133.38 (9)C20—C21—C16121.8 (4)
O10—Ce1—N169.85 (10)C20—C21—H21119.1
O1—Ce1—N1116.60 (9)C16—C21—H21119.1
O9—Ce1—N167.35 (9)C23—C22—C19120.6 (4)
N4—Ce1—N188.63 (9)C23—C22—H22119.7
N3—Ce1—N166.60 (9)C19—C22—H22119.7
N2—Ce1—N160.89 (9)C22—C23—C24118.9 (4)
C25—O1—Ce193.4 (2)C22—C23—H23120.5
C25—O2—Ce197.2 (2)C24—C23—H23120.5
C27—O3—H27109.4N4—C24—C23122.9 (4)
C31—O4—H31109.5N4—C24—H24118.5
C32—O5—Ce193.4 (2)C23—C24—H24118.5
C32—O6—Ce193.3 (2)O2—C25—O1119.3 (3)
C34—O7—H34109.5O2—C25—C26120.6 (4)
C38—O8—H38109.3O1—C25—C26120.1 (3)
N5—O9—Ce196.4 (2)C27—C26—C31118.9 (3)
N5—O10—Ce197.8 (2)C27—C26—C25120.9 (4)
C1—N1—C5118.2 (3)C31—C26—C25120.2 (4)
C1—N1—Ce1121.2 (3)O3—C27—C28117.8 (4)
C5—N1—Ce1120.4 (2)O3—C27—C26122.3 (4)
C12—N2—C6117.6 (3)C28—C27—C26119.9 (4)
C12—N2—Ce1120.8 (3)C29—C28—C27120.0 (5)
C6—N2—Ce1121.1 (2)C29—C28—H28120.0
C13—N3—C17118.8 (4)C27—C28—H28120.0
C13—N3—Ce1120.9 (3)C30—C29—C28121.4 (4)
C17—N3—Ce1119.5 (2)C30—C29—H29119.3
C24—N4—C18118.3 (3)C28—C29—H29119.3
C24—N4—Ce1120.6 (3)C29—C30—C31119.9 (4)
C18—N4—Ce1120.9 (2)C29—C30—H30120.0
O11—N5—O9122.8 (4)C31—C30—H30120.0
O11—N5—O10120.2 (4)O4—C31—C30117.5 (4)
O9—N5—O10117.0 (3)O4—C31—C26122.6 (4)
N1—C1—C2124.0 (4)C30—C31—C26119.8 (4)
N1—C1—H1118.0O6—C32—O5119.9 (4)
C2—C1—H1118.0O6—C32—C33120.4 (4)
C3—C2—C1118.2 (4)O5—C32—C33119.7 (4)
C3—C2—H2120.9C34—C33—C38118.2 (4)
C1—C2—H2120.9C34—C33—C32121.2 (4)
C2—C3—C4119.4 (4)C38—C33—C32120.5 (4)
C2—C3—H3A120.3O7—C34—C35118.7 (4)
C4—C3—H3A120.3O7—C34—C33120.9 (4)
C3—C4—C5118.3 (4)C35—C34—C33120.4 (5)
C3—C4—C9122.3 (4)C36—C35—C34119.8 (5)
C5—C4—C9119.4 (4)C36—C35—H35120.1
N1—C5—C4121.9 (4)C34—C35—H35120.1
N1—C5—C6118.7 (3)C35—C36—C37122.2 (4)
C4—C5—C6119.5 (3)C35—C36—H36118.9
N2—C6—C7122.8 (4)C37—C36—H36118.9
N2—C6—C5118.1 (3)C36—C37—C38119.2 (5)
C7—C6—C5119.1 (3)C36—C37—H37120.4
C10—C7—C6117.2 (4)C38—C37—H37120.4
C10—C7—C8122.8 (4)O8—C38—C37117.6 (4)
C6—C7—C8120.0 (4)O8—C38—C33122.2 (3)
C9—C8—C7120.8 (4)C37—C38—C33120.2 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O8—H38···O60.821.852.582 (4)147
O7—H34···O50.821.822.552 (4)148
O4—H31···O20.821.862.584 (4)146
O3—H27···O10.821.872.583 (4)145

Experimental details

Crystal data
Chemical formula[Ce(C7H8O3)2(NO3)(C12H8N2)2]
Mr868.76
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)11.2937 (2), 26.7878 (3), 14.4056 (4)
β (°) 128.062 (2)
V3)3431.38 (12)
Z4
Radiation typeCu Kα
µ (mm1)10.88
Crystal size (mm)0.40 × 0.35 × 0.32
Data collection
DiffractometerOxford Diffraction Gemini S Ultra
Absorption correctionMulti-scan
(ABSPACK in CrysAlis PRO RED; Oxford Diffraction, 2006)
Tmin, Tmax0.098, 0.128
No. of measured, independent and
observed [I > 2σ(I)] reflections
11880, 6060, 5705
Rint0.040
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.108, 1.08
No. of reflections6060
No. of parameters496
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.60, 2.34

Computer programs: CrysAlis PRO CCD (Oxford Diffraction, 2006), CrysAlis PRO RED (Oxford Diffraction, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg & Berndt, 1999).

Selected geometric parameters (Å, º) top
Ce1—O22.549 (3)Ce1—O92.633 (3)
Ce1—O52.567 (3)Ce1—N42.640 (3)
Ce1—O62.572 (3)Ce1—N32.674 (3)
Ce1—O102.593 (3)Ce1—N22.685 (3)
Ce1—O12.620 (3)Ce1—N12.702 (3)
O1—Ce1—O9175.99 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O8—H38···O60.821.852.582 (4)147.2
O7—H34···O50.821.822.552 (4)148.3
O4—H31···O20.821.862.584 (4)146.4
O3—H27···O10.821.872.583 (4)145.1
 

Acknowledgements

The authors are grateful for financial support from the Natural Science Foundation of Zhejiang Province (project No. 2010 Y4100495).

References

First citationBrandenburg, K. & Berndt, M. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2006). CrysAlis PRO CCD and CrysAlis PRO RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZheng, J., Jin, H. & Ge, H. (2010). Acta Cryst. E66, m1469–m1470.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds