organic compounds
4-(Piperidin-1-yl)-4H-benzo[b]tetrazolo[1,5-d][1,4]diazepin-5(6H)-one
aDepartment of Chemistry and Biochemistry, 1306 E University Boulevard, The University of Arizona, Tucson, AZ 85721, USA, and bSouthwest Center for Drug, Discovery and Development, College of Pharmacy, BIO5 Institute, The University of Arizona, Tucson, AZ 85721, USA
*Correspondence e-mail: gsnichol@email.arizona.edu
There are two crystallographically unique molecules present in the 14H16N6O; in both molecules, the seven-membered diazepinone ring adopts a boat-like conformation and the chair conformation piperidine ring is an axial substituent on the diazepinone ring. In the crystal, each molecule forms hydrogen bonds with its respective symmetry equivalents. Hydrogen bonding between molecule A and symmetry equivalents forms two ring motifs, the first formed by inversion-related N—H⋯O interactions and the second formed by C—H⋯O and C—H⋯N interactions. The combination of both ring motifs results in the formation of an infinite double tape, which propagates in the a-axis direction. Hydrogen bonding between molecule B and symmetry equivalents forms one ring motif by inversion-related N—H⋯O interactions and a second ring motif by C—H⋯O interactions, which propagate as a single tape parallel with the c axis.
of the title compound, CRelated literature
The structure of the title compound was determined as part of a larger study on development of synthetic methods for high-throughput medicinal chemistry. For background to the use of multi-component reactions in high-throughput medicinal chemistry, see: Gunawan et al. (2010); Hulme & Dietrich (2009); Hulme & Gore (2003). For the Ugi reaction, see: Ugi & Steinbrückner (1961). For graph-set notation for hydrogen bonding, see: Bernstein et al. (1995) and puckering parameters, see: Cremer & Pople (1975).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2007); cell SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al. 2008); software used to prepare material for publication: SHELXTL and local programs.
Supporting information
https://doi.org/10.1107/S1600536810049950/kj2167sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810049950/kj2167Isup2.hkl
A solution of piperidine (0.017 g, 0.20 mmol) and ethyl glyoxylate (0.04 ml, 50% in toluene, 0.20 mmol) in methanol (0.5 ml) were stirred at room temperature. After 5 minutes, ortho-N-Boc-phenylisonitrile (0.0436 g, 0.20 mmol) and trimethylsilylazide (0.023 g, 0.20 mmol) was added dropwise to the above solution and stirred at room temperature for 23 h. The solvent was evaporated in vacuo and the product was purified using
(5–30% Hexane/Ethyl Acetate) to afford the desired Ugi product (0.056 g, 0.20 mmol, 65%) as colorless oil. The purified Ugi product was treated with 10% trifluoroacetic acid in dichloroethane (4 ml) and irradiated in a Biotage Initiator™ for 10 minutes at 120°C. The organic layer was washed with 1M NaHCO3 (3 × 5 ml) and dried (MgSO4). The solvent was evaporated in vacuo and purified by (0–50% Hexane/Ethyl Acetate) to afford the desired product (0.030 g, 0.116 mmol, 92%) as a white solid.At present there is a huge need for unique small molecules in the lead development stages of drug discovery. In this process, speed is paramount, and the development of high speed parallel synthesis in concert with isocyanide based multi-component reactions (MCRs) has enabled a revolution in high-throughput medicinal chemistry (Gunawan et al., (2010); Hulme & Dietrich (2009); Hulme & Gore (2003)). Following this theme, a novel two step solution phase protocol for the synthesis of an array of tricyclic fused tetrazole-benzodiazepines was recently investigated (Figure 1). The methodology employs ortho-N-Boc benzylisonitriles 1 and ethyl glyoxylate 2 in the 4-component TMS-N3 modified Ugi reaction (Ugi & Steinbrückner, 1961) to assemble the desired product 3. Subsequent treatment with trifluoroacetic acid unmasks an internal amino
and promotes to form the diazepine ring of the generic structure 4. Here we report the of 4.The
of 4 is shown in Figure 2. There are two crystallographically unique molecules in the the molecule composed of atoms O1 to C14 will henceforth be referred to as "molecule A" and the molecule composed of atoms O51 to C64 referred to as "molecule B". Where appropriate, discussion will be limited to molecule A with results for molecule B presented in square brackets. Molecular dimensions are unexceptional.The molecule adopts a U-shaped conformation in which the 7-membered diazepinone ring has adopted a boat-like conformation (total Q parameter 0.8021 (8)Å [0.8177 (9) Å]; Cremer & Pople (1975)) and the chair conformation piperidinyl ring is an axial substituent on the diazepinone ring. Both molecules have a very similar overall shape as shown by an overlay, fitting N1, N5, C4 > C9 with N51, N55, C54 > C59 (these representing the largest planar moiety in the structure, Figure 3).
In the crystal each molecule forms hydrogen bonds with its respective symmetry equivalents. Hydrogen bonding between molecule A and symmetry equivalents forms two ring motifs (Bernstein et al., 1995), an R22(8) motif formed by inversion-related N—H···O interactions and an R22(9) motif formed by C—H···O and C—H···N interactions. The combination of both ring motifs results in the formation of an infinite double tape which propagates in the a axis direction (Figure 4). Hydrogen bonding between molecule B and symmetry equivalents forms one ring motif composed of an R22(8) motif formed by inversion-related N—H···O interactions and an R22(10) motif formed by C—H···O interactions (Figure 5). This propagates as a single tape parallel with the c axis.
The structure of the title compound was determined as part of a larger study on development of synthetic methods for high-throughput medicinal chemistry. For background to the use of multi-component reactions in high-throughput medicinal chemistry, see: Gunawan et al. (2010); Hulme & Dietrich (2009); Hulme & Gore (2003). For the Ugi reaction, see: Ugi & Steinbrückner (1961). For graph-set notation for hydrogen bonding, see: Bernstein et al. (1995) and puckering parameters, see: Cremer & Pople (1975).
Data collection: APEX2 (Bruker, 2007); cell
SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al. 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and local programs.Fig. 1. The synthetic route to 4. | |
Fig. 2. The asymmetric unit of 4 with displacement ellipsoids at the 50% probability level and C-bound H atoms omitted. | |
Fig. 3. An overlay of molecule A (orange) and molecule B (black), r.m.s. deviation = 0.0185 Å), in 4. | |
Fig. 4. Hydrogen bonding patterns (dotted blue lines) formed by molecule A in 4. Symmetry operations: a, -x + 1, -y, -z + 1; c, x + 1, y, z. | |
Fig. 5. Hydrogen bonding patterns (dotted blue lines) formed by molecule B in 4. Symmetry operations: b, -x + 1, -y + 1, -z; d, -x + 1, -y + 1, -z + 1. |
C14H16N6O | Z = 4 |
Mr = 284.33 | F(000) = 600 |
Triclinic, P1 | Dx = 1.356 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 8.8210 (7) Å | Cell parameters from 9970 reflections |
b = 13.1802 (10) Å | θ = 2.5–35.5° |
c = 13.4476 (11) Å | µ = 0.09 mm−1 |
α = 105.549 (2)° | T = 100 K |
β = 99.490 (2)° | Prism, colourless |
γ = 106.623 (2)° | 0.39 × 0.28 × 0.09 mm |
V = 1392.99 (19) Å3 |
Bruker Kappa APEXII DUO CCD diffractometer | 12177 independent reflections |
Radiation source: fine-focus sealed tube with Miracol optics | 9733 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.029 |
φ and ω scans | θmax = 35.0°, θmin = 1.6° |
Absorption correction: numerical (SADABS; Sheldrick, 1996) | h = −8→14 |
Tmin = 0.965, Tmax = 0.992 | k = −21→21 |
51078 measured reflections | l = −21→19 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.043 | Hydrogen site location: difference Fourier map |
wR(F2) = 0.123 | All H-atom parameters refined |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0711P)2 + 0.1991P] where P = (Fo2 + 2Fc2)/3 |
12177 reflections | (Δ/σ)max < 0.001 |
507 parameters | Δρmax = 0.59 e Å−3 |
0 restraints | Δρmin = −0.23 e Å−3 |
C14H16N6O | γ = 106.623 (2)° |
Mr = 284.33 | V = 1392.99 (19) Å3 |
Triclinic, P1 | Z = 4 |
a = 8.8210 (7) Å | Mo Kα radiation |
b = 13.1802 (10) Å | µ = 0.09 mm−1 |
c = 13.4476 (11) Å | T = 100 K |
α = 105.549 (2)° | 0.39 × 0.28 × 0.09 mm |
β = 99.490 (2)° |
Bruker Kappa APEXII DUO CCD diffractometer | 12177 independent reflections |
Absorption correction: numerical (SADABS; Sheldrick, 1996) | 9733 reflections with I > 2σ(I) |
Tmin = 0.965, Tmax = 0.992 | Rint = 0.029 |
51078 measured reflections |
R[F2 > 2σ(F2)] = 0.043 | 0 restraints |
wR(F2) = 0.123 | All H-atom parameters refined |
S = 1.05 | Δρmax = 0.59 e Å−3 |
12177 reflections | Δρmin = −0.23 e Å−3 |
507 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.38761 (7) | 0.05350 (5) | 0.43124 (5) | 0.01571 (11) | |
N1 | 0.60561 (8) | 0.01832 (6) | 0.38204 (5) | 0.01320 (11) | |
H1N | 0.6179 (16) | −0.0054 (11) | 0.4346 (11) | 0.022 (3)* | |
N2 | 0.28444 (8) | −0.02275 (6) | 0.10021 (5) | 0.01491 (11) | |
N3 | 0.31273 (9) | −0.10081 (6) | 0.02234 (5) | 0.01668 (12) | |
N4 | 0.45718 (9) | −0.10612 (6) | 0.05193 (5) | 0.01538 (12) | |
N5 | 0.52683 (8) | −0.02989 (5) | 0.15250 (5) | 0.01189 (10) | |
N6 | 0.60485 (8) | 0.20364 (5) | 0.29571 (5) | 0.01251 (11) | |
C1 | 0.48112 (9) | 0.05928 (6) | 0.37255 (6) | 0.01170 (11) | |
C2 | 0.45700 (9) | 0.11124 (6) | 0.28435 (6) | 0.01159 (11) | |
H2 | 0.3595 (15) | 0.1330 (10) | 0.2855 (10) | 0.017 (3)* | |
C3 | 0.41921 (9) | 0.02050 (6) | 0.17984 (6) | 0.01156 (11) | |
C4 | 0.68763 (9) | −0.01103 (6) | 0.21140 (6) | 0.01208 (12) | |
C5 | 0.80602 (10) | −0.02132 (7) | 0.15637 (7) | 0.01617 (13) | |
H5 | 0.7760 (17) | −0.0426 (12) | 0.0765 (11) | 0.027 (3)* | |
C6 | 0.96362 (10) | −0.00308 (7) | 0.21295 (7) | 0.01873 (14) | |
H6 | 1.0457 (18) | −0.0093 (12) | 0.1781 (12) | 0.030 (3)* | |
C7 | 1.00262 (10) | 0.02641 (7) | 0.32418 (7) | 0.01900 (14) | |
H7 | 1.1107 (19) | 0.0416 (12) | 0.3635 (12) | 0.033 (4)* | |
C8 | 0.88362 (9) | 0.03591 (7) | 0.37831 (7) | 0.01614 (13) | |
H8 | 0.9081 (16) | 0.0536 (11) | 0.4581 (11) | 0.022 (3)* | |
C9 | 0.72383 (9) | 0.01681 (6) | 0.32280 (6) | 0.01220 (12) | |
C10 | 0.57954 (10) | 0.25511 (7) | 0.21242 (6) | 0.01617 (13) | |
H10A | 0.5286 (16) | 0.1938 (11) | 0.1401 (11) | 0.023 (3)* | |
H10B | 0.4961 (17) | 0.2921 (11) | 0.2234 (11) | 0.025 (3)* | |
C11 | 0.74158 (12) | 0.33854 (7) | 0.21560 (8) | 0.02248 (16) | |
H11A | 0.8144 (18) | 0.2980 (13) | 0.1966 (12) | 0.033 (4)* | |
H11 | 0.722 (2) | 0.3742 (13) | 0.1604 (13) | 0.040 (4)* | |
C12 | 0.81799 (14) | 0.42864 (8) | 0.32592 (9) | 0.02767 (19) | |
H12A | 0.753 (2) | 0.4792 (14) | 0.3395 (13) | 0.039 (4)* | |
H12B | 0.933 (2) | 0.4793 (14) | 0.3300 (13) | 0.039 (4)* | |
C13 | 0.82547 (12) | 0.37556 (8) | 0.41398 (8) | 0.02422 (17) | |
H13A | 0.9033 (18) | 0.3335 (12) | 0.4088 (12) | 0.031 (4)* | |
H13B | 0.8589 (17) | 0.4330 (12) | 0.4846 (11) | 0.027 (3)* | |
C14 | 0.65953 (10) | 0.28969 (7) | 0.40202 (6) | 0.01774 (14) | |
H14A | 0.6707 (17) | 0.2514 (11) | 0.4561 (11) | 0.026 (3)* | |
H14B | 0.5794 (18) | 0.3278 (12) | 0.4109 (11) | 0.029 (3)* | |
O51 | 0.52486 (10) | 0.64389 (6) | 0.05346 (5) | 0.02384 (13) | |
N51 | 0.40757 (10) | 0.50343 (6) | 0.11293 (6) | 0.01766 (13) | |
H51N | 0.4212 (19) | 0.4560 (13) | 0.0574 (13) | 0.036 (4)* | |
N52 | 0.67271 (10) | 0.77756 (6) | 0.37934 (6) | 0.02130 (14) | |
N53 | 0.72173 (10) | 0.73295 (7) | 0.45426 (6) | 0.02402 (15) | |
N54 | 0.62468 (10) | 0.63061 (7) | 0.43334 (6) | 0.02147 (14) | |
N55 | 0.50786 (9) | 0.60616 (6) | 0.34204 (5) | 0.01671 (12) | |
N56 | 0.26638 (9) | 0.67324 (6) | 0.22010 (5) | 0.01605 (12) | |
C51 | 0.45755 (11) | 0.61293 (7) | 0.11881 (6) | 0.01729 (14) | |
C52 | 0.43580 (10) | 0.69955 (6) | 0.21216 (6) | 0.01637 (13) | |
H52 | 0.4837 (16) | 0.7759 (11) | 0.2025 (10) | 0.020 (3)* | |
C53 | 0.53997 (10) | 0.69786 (7) | 0.31100 (6) | 0.01685 (13) | |
C54 | 0.38196 (10) | 0.49889 (6) | 0.29242 (6) | 0.01599 (13) | |
C55 | 0.31368 (11) | 0.44075 (7) | 0.35588 (7) | 0.01975 (15) | |
H55 | 0.3508 (16) | 0.4735 (11) | 0.4336 (11) | 0.022 (3)* | |
C56 | 0.19621 (11) | 0.33379 (8) | 0.30809 (8) | 0.02194 (16) | |
H56 | 0.1541 (17) | 0.2909 (12) | 0.3505 (11) | 0.027 (3)* | |
C57 | 0.14557 (11) | 0.28606 (7) | 0.19694 (8) | 0.02214 (16) | |
H57 | 0.0629 (17) | 0.2098 (12) | 0.1595 (12) | 0.029 (3)* | |
C58 | 0.21359 (11) | 0.34480 (7) | 0.13379 (7) | 0.01951 (15) | |
H58 | 0.1781 (17) | 0.3104 (12) | 0.0555 (11) | 0.027 (3)* | |
C59 | 0.33285 (10) | 0.45203 (6) | 0.18068 (6) | 0.01597 (13) | |
C60 | 0.14703 (12) | 0.64876 (7) | 0.11863 (7) | 0.02103 (15) | |
H60 | 0.1632 (16) | 0.7177 (11) | 0.1003 (11) | 0.023 (3)* | |
H60B | 0.1633 (17) | 0.5889 (12) | 0.0625 (11) | 0.028 (3)* | |
C61 | −0.02563 (12) | 0.60567 (8) | 0.13221 (8) | 0.02450 (17) | |
H61A | −0.1061 (19) | 0.5883 (13) | 0.0638 (13) | 0.038 (4)* | |
H61B | −0.0431 (17) | 0.5330 (12) | 0.1488 (11) | 0.027 (3)* | |
C62 | −0.05395 (13) | 0.69164 (9) | 0.22197 (9) | 0.0310 (2) | |
H62A | −0.059 (2) | 0.7574 (15) | 0.1989 (14) | 0.049 (5)* | |
H62B | −0.164 (2) | 0.6604 (14) | 0.2299 (13) | 0.039 (4)* | |
C63 | 0.08227 (13) | 0.73000 (9) | 0.32478 (8) | 0.02806 (19) | |
H63A | 0.075 (2) | 0.6703 (14) | 0.3558 (13) | 0.039 (4)* | |
H63B | 0.0736 (19) | 0.7914 (13) | 0.3791 (13) | 0.038 (4)* | |
C64 | 0.25074 (11) | 0.76573 (7) | 0.30339 (7) | 0.02088 (15) | |
H64A | 0.3370 (17) | 0.7863 (11) | 0.3681 (11) | 0.025 (3)* | |
H64B | 0.2700 (17) | 0.8337 (12) | 0.2788 (11) | 0.030 (3)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0141 (2) | 0.0241 (3) | 0.0131 (2) | 0.0092 (2) | 0.00717 (19) | 0.0080 (2) |
N1 | 0.0118 (2) | 0.0199 (3) | 0.0118 (2) | 0.0077 (2) | 0.0050 (2) | 0.0080 (2) |
N2 | 0.0124 (3) | 0.0189 (3) | 0.0118 (3) | 0.0044 (2) | 0.0018 (2) | 0.0046 (2) |
N3 | 0.0167 (3) | 0.0181 (3) | 0.0123 (3) | 0.0043 (2) | 0.0021 (2) | 0.0034 (2) |
N4 | 0.0179 (3) | 0.0152 (3) | 0.0108 (2) | 0.0049 (2) | 0.0028 (2) | 0.0023 (2) |
N5 | 0.0120 (2) | 0.0138 (2) | 0.0102 (2) | 0.0050 (2) | 0.00305 (19) | 0.00371 (19) |
N6 | 0.0132 (3) | 0.0130 (2) | 0.0109 (2) | 0.0040 (2) | 0.0037 (2) | 0.00355 (19) |
C1 | 0.0102 (3) | 0.0149 (3) | 0.0102 (3) | 0.0048 (2) | 0.0032 (2) | 0.0038 (2) |
C2 | 0.0109 (3) | 0.0146 (3) | 0.0103 (3) | 0.0054 (2) | 0.0035 (2) | 0.0042 (2) |
C3 | 0.0108 (3) | 0.0142 (3) | 0.0107 (3) | 0.0047 (2) | 0.0035 (2) | 0.0050 (2) |
C4 | 0.0105 (3) | 0.0147 (3) | 0.0127 (3) | 0.0056 (2) | 0.0041 (2) | 0.0053 (2) |
C5 | 0.0159 (3) | 0.0203 (3) | 0.0176 (3) | 0.0096 (3) | 0.0090 (3) | 0.0084 (3) |
C6 | 0.0142 (3) | 0.0241 (4) | 0.0242 (4) | 0.0101 (3) | 0.0104 (3) | 0.0109 (3) |
C7 | 0.0113 (3) | 0.0238 (4) | 0.0247 (4) | 0.0079 (3) | 0.0053 (3) | 0.0099 (3) |
C8 | 0.0114 (3) | 0.0208 (3) | 0.0168 (3) | 0.0065 (2) | 0.0026 (2) | 0.0070 (3) |
C9 | 0.0103 (3) | 0.0150 (3) | 0.0134 (3) | 0.0055 (2) | 0.0044 (2) | 0.0059 (2) |
C10 | 0.0185 (3) | 0.0160 (3) | 0.0159 (3) | 0.0063 (3) | 0.0051 (3) | 0.0076 (2) |
C11 | 0.0251 (4) | 0.0194 (3) | 0.0221 (4) | 0.0027 (3) | 0.0097 (3) | 0.0090 (3) |
C12 | 0.0297 (5) | 0.0174 (3) | 0.0284 (4) | −0.0010 (3) | 0.0088 (4) | 0.0050 (3) |
C13 | 0.0205 (4) | 0.0219 (4) | 0.0203 (4) | −0.0014 (3) | 0.0043 (3) | 0.0015 (3) |
C14 | 0.0177 (3) | 0.0176 (3) | 0.0132 (3) | 0.0027 (3) | 0.0049 (3) | 0.0010 (2) |
O51 | 0.0383 (4) | 0.0196 (3) | 0.0197 (3) | 0.0109 (3) | 0.0165 (3) | 0.0097 (2) |
N51 | 0.0272 (3) | 0.0141 (3) | 0.0140 (3) | 0.0077 (2) | 0.0090 (3) | 0.0054 (2) |
N52 | 0.0236 (3) | 0.0198 (3) | 0.0173 (3) | 0.0063 (3) | 0.0042 (3) | 0.0032 (2) |
N53 | 0.0253 (4) | 0.0247 (3) | 0.0186 (3) | 0.0083 (3) | 0.0019 (3) | 0.0044 (3) |
N54 | 0.0247 (4) | 0.0246 (3) | 0.0143 (3) | 0.0102 (3) | 0.0018 (3) | 0.0056 (2) |
N55 | 0.0202 (3) | 0.0180 (3) | 0.0126 (3) | 0.0074 (2) | 0.0042 (2) | 0.0055 (2) |
N56 | 0.0200 (3) | 0.0147 (3) | 0.0128 (3) | 0.0066 (2) | 0.0037 (2) | 0.0033 (2) |
C51 | 0.0245 (4) | 0.0157 (3) | 0.0137 (3) | 0.0078 (3) | 0.0070 (3) | 0.0059 (2) |
C52 | 0.0221 (3) | 0.0142 (3) | 0.0135 (3) | 0.0063 (3) | 0.0059 (3) | 0.0049 (2) |
C53 | 0.0206 (3) | 0.0162 (3) | 0.0143 (3) | 0.0070 (3) | 0.0060 (3) | 0.0044 (2) |
C54 | 0.0192 (3) | 0.0163 (3) | 0.0150 (3) | 0.0075 (3) | 0.0059 (3) | 0.0068 (2) |
C55 | 0.0243 (4) | 0.0234 (4) | 0.0189 (3) | 0.0120 (3) | 0.0102 (3) | 0.0119 (3) |
C56 | 0.0226 (4) | 0.0242 (4) | 0.0269 (4) | 0.0099 (3) | 0.0119 (3) | 0.0159 (3) |
C57 | 0.0207 (4) | 0.0194 (3) | 0.0278 (4) | 0.0057 (3) | 0.0071 (3) | 0.0111 (3) |
C58 | 0.0222 (4) | 0.0165 (3) | 0.0190 (3) | 0.0057 (3) | 0.0042 (3) | 0.0065 (3) |
C59 | 0.0202 (3) | 0.0158 (3) | 0.0150 (3) | 0.0078 (3) | 0.0065 (3) | 0.0071 (2) |
C60 | 0.0260 (4) | 0.0214 (4) | 0.0149 (3) | 0.0088 (3) | 0.0022 (3) | 0.0060 (3) |
C61 | 0.0238 (4) | 0.0219 (4) | 0.0229 (4) | 0.0070 (3) | 0.0005 (3) | 0.0041 (3) |
C62 | 0.0237 (4) | 0.0301 (5) | 0.0333 (5) | 0.0114 (4) | 0.0046 (4) | 0.0010 (4) |
C63 | 0.0242 (4) | 0.0281 (4) | 0.0259 (4) | 0.0074 (3) | 0.0098 (3) | −0.0006 (3) |
C64 | 0.0229 (4) | 0.0161 (3) | 0.0193 (4) | 0.0058 (3) | 0.0058 (3) | −0.0001 (3) |
O1—C1 | 1.2329 (9) | O51—C51 | 1.2317 (10) |
N1—H1N | 0.850 (14) | N51—H51N | 0.886 (16) |
N1—C1 | 1.3578 (9) | N51—C51 | 1.3589 (10) |
N1—C9 | 1.4142 (10) | N51—C59 | 1.4131 (11) |
N2—N3 | 1.3686 (10) | N52—N53 | 1.3663 (11) |
N2—C3 | 1.3229 (9) | N52—C53 | 1.3202 (11) |
N3—N4 | 1.2983 (10) | N53—N54 | 1.2992 (12) |
N4—N5 | 1.3640 (9) | N54—N55 | 1.3615 (10) |
N5—C3 | 1.3499 (9) | N55—C53 | 1.3524 (11) |
N5—C4 | 1.4225 (9) | N55—C54 | 1.4244 (11) |
N6—C2 | 1.4605 (10) | N56—C52 | 1.4632 (11) |
N6—C10 | 1.4752 (10) | N56—C60 | 1.4731 (11) |
N6—C14 | 1.4674 (10) | N56—C64 | 1.4748 (11) |
C1—C2 | 1.5351 (10) | C51—C52 | 1.5338 (11) |
C2—H2 | 0.982 (12) | C52—H52 | 1.026 (13) |
C2—C3 | 1.4944 (10) | C52—C53 | 1.4955 (11) |
C4—C5 | 1.3923 (10) | C54—C55 | 1.3908 (11) |
C4—C9 | 1.4004 (10) | C54—C59 | 1.4005 (11) |
C5—H5 | 1.002 (14) | C55—H55 | 0.974 (13) |
C5—C6 | 1.3897 (11) | C55—C56 | 1.3904 (13) |
C6—H6 | 0.936 (15) | C56—H56 | 0.951 (14) |
C6—C7 | 1.3959 (13) | C56—C57 | 1.3943 (14) |
C7—H7 | 0.947 (15) | C57—H57 | 0.992 (14) |
C7—C8 | 1.3877 (12) | C57—C58 | 1.3912 (13) |
C8—H8 | 1.007 (13) | C58—H58 | 0.983 (14) |
C8—C9 | 1.3988 (10) | C58—C59 | 1.3982 (12) |
C10—H10A | 1.014 (13) | C60—H60 | 0.982 (13) |
C10—H10B | 1.001 (14) | C60—H60B | 0.997 (14) |
C10—C11 | 1.5196 (12) | C60—C61 | 1.5258 (14) |
C11—H11A | 0.969 (15) | C61—H61A | 0.991 (16) |
C11—H11 | 0.996 (16) | C61—H61B | 1.016 (14) |
C11—C12 | 1.5275 (14) | C61—C62 | 1.5269 (14) |
C12—H12A | 0.996 (16) | C62—H62A | 1.005 (18) |
C12—H12B | 1.023 (16) | C62—H62B | 0.974 (17) |
C12—C13 | 1.5300 (15) | C62—C63 | 1.5300 (16) |
C13—H13A | 0.998 (15) | C63—H63A | 0.977 (16) |
C13—H13B | 0.979 (14) | C63—H63B | 0.965 (16) |
C13—C14 | 1.5252 (12) | C63—C64 | 1.5252 (14) |
C14—H14A | 0.998 (14) | C64—H64A | 0.973 (14) |
C14—H14B | 0.982 (14) | C64—H64B | 1.015 (14) |
H1N—N1—C1 | 114.3 (9) | H51N—N51—C51 | 115.8 (10) |
H1N—N1—C9 | 115.7 (9) | H51N—N51—C59 | 114.1 (10) |
C1—N1—C9 | 129.81 (6) | C51—N51—C59 | 130.00 (7) |
N3—N2—C3 | 105.55 (6) | N53—N52—C53 | 105.52 (7) |
N2—N3—N4 | 111.36 (6) | N52—N53—N54 | 111.29 (7) |
N3—N4—N5 | 106.08 (6) | N53—N54—N55 | 106.29 (7) |
N4—N5—C3 | 108.10 (6) | N54—N55—C53 | 107.76 (7) |
N4—N5—C4 | 122.45 (6) | N54—N55—C54 | 122.40 (7) |
C3—N5—C4 | 129.44 (6) | C53—N55—C54 | 129.82 (7) |
C2—N6—C10 | 111.02 (6) | C52—N56—C60 | 113.57 (7) |
C2—N6—C14 | 112.06 (6) | C52—N56—C64 | 110.57 (6) |
C10—N6—C14 | 109.94 (6) | C60—N56—C64 | 109.24 (7) |
O1—C1—N1 | 121.56 (7) | O51—C51—N51 | 121.40 (7) |
O1—C1—C2 | 120.43 (6) | O51—C51—C52 | 119.90 (7) |
N1—C1—C2 | 118.00 (6) | N51—C51—C52 | 118.64 (7) |
N6—C2—C1 | 111.27 (6) | N56—C52—C51 | 113.38 (7) |
N6—C2—H2 | 113.6 (7) | N56—C52—H52 | 113.6 (7) |
N6—C2—C3 | 109.40 (6) | N56—C52—C53 | 108.84 (7) |
C1—C2—H2 | 108.1 (7) | C51—C52—H52 | 105.9 (7) |
C1—C2—C3 | 107.10 (6) | C51—C52—C53 | 105.63 (6) |
H2—C2—C3 | 107.0 (7) | H52—C52—C53 | 109.1 (7) |
N2—C3—N5 | 108.91 (6) | N52—C53—N55 | 109.13 (7) |
N2—C3—C2 | 128.45 (7) | N52—C53—C52 | 128.94 (8) |
N5—C3—C2 | 122.63 (6) | N55—C53—C52 | 121.92 (7) |
N5—C4—C5 | 118.89 (7) | N55—C54—C55 | 119.38 (7) |
N5—C4—C9 | 119.78 (6) | N55—C54—C59 | 119.52 (7) |
C5—C4—C9 | 121.33 (7) | C55—C54—C59 | 121.06 (8) |
C4—C5—H5 | 119.5 (8) | C54—C55—H55 | 120.3 (8) |
C4—C5—C6 | 119.48 (7) | C54—C55—C56 | 119.71 (8) |
H5—C5—C6 | 121.0 (8) | H55—C55—C56 | 119.9 (8) |
C5—C6—H6 | 121.3 (9) | C55—C56—H56 | 120.7 (9) |
C5—C6—C7 | 119.99 (7) | C55—C56—C57 | 119.95 (8) |
H6—C6—C7 | 118.7 (9) | H56—C56—C57 | 119.3 (9) |
C6—C7—H7 | 120.5 (9) | C56—C57—H57 | 122.7 (8) |
C6—C7—C8 | 120.13 (7) | C56—C57—C58 | 120.12 (8) |
H7—C7—C8 | 119.4 (9) | H57—C57—C58 | 117.2 (8) |
C7—C8—H8 | 121.2 (8) | C57—C58—H58 | 119.8 (8) |
C7—C8—C9 | 120.79 (7) | C57—C58—C59 | 120.60 (8) |
H8—C8—C9 | 118.0 (8) | H58—C58—C59 | 119.6 (8) |
N1—C9—C4 | 123.90 (6) | N51—C59—C54 | 123.27 (7) |
N1—C9—C8 | 117.64 (7) | N51—C59—C58 | 117.95 (7) |
C4—C9—C8 | 118.27 (7) | C54—C59—C58 | 118.55 (7) |
N6—C10—H10A | 109.2 (7) | N56—C60—H60 | 109.4 (8) |
N6—C10—H10B | 109.5 (8) | N56—C60—H60B | 108.1 (8) |
N6—C10—C11 | 109.81 (7) | N56—C60—C61 | 108.76 (7) |
H10A—C10—H10B | 105.0 (11) | H60—C60—H60B | 111.6 (11) |
H10A—C10—C11 | 111.8 (8) | H60—C60—C61 | 109.8 (8) |
H10B—C10—C11 | 111.4 (8) | H60B—C60—C61 | 109.2 (8) |
C10—C11—H11A | 108.7 (9) | C60—C61—H61A | 108.9 (9) |
C10—C11—H11 | 108.8 (9) | C60—C61—H61B | 109.5 (8) |
C10—C11—C12 | 110.94 (8) | C60—C61—C62 | 111.39 (8) |
H11A—C11—H11 | 107.3 (13) | H61A—C61—H61B | 107.4 (12) |
H11A—C11—C12 | 111.0 (9) | H61A—C61—C62 | 110.2 (9) |
H11—C11—C12 | 109.9 (9) | H61B—C61—C62 | 109.4 (8) |
C11—C12—H12A | 110.7 (9) | C61—C62—H62A | 109.2 (10) |
C11—C12—H12B | 110.5 (9) | C61—C62—H62B | 109.1 (9) |
C11—C12—C13 | 110.97 (8) | C61—C62—C63 | 110.61 (8) |
H12A—C12—H12B | 105.6 (13) | H62A—C62—H62B | 102.9 (13) |
H12A—C12—C13 | 108.5 (9) | H62A—C62—C63 | 110.7 (10) |
H12B—C12—C13 | 110.4 (9) | H62B—C62—C63 | 114.0 (9) |
C12—C13—H13A | 110.2 (9) | C62—C63—H63A | 111.7 (10) |
C12—C13—H13B | 110.7 (8) | C62—C63—H63B | 111.2 (9) |
C12—C13—C14 | 111.35 (8) | C62—C63—C64 | 110.88 (9) |
H13A—C13—H13B | 110.0 (12) | H63A—C63—H63B | 105.8 (13) |
H13A—C13—C14 | 106.0 (8) | H63A—C63—C64 | 107.8 (9) |
H13B—C13—C14 | 108.4 (8) | H63B—C63—C64 | 109.4 (9) |
N6—C14—C13 | 109.53 (7) | N56—C64—C63 | 110.32 (7) |
N6—C14—H14A | 107.6 (8) | N56—C64—H64A | 108.6 (8) |
N6—C14—H14B | 109.8 (8) | N56—C64—H64B | 108.5 (8) |
C13—C14—H14A | 109.5 (8) | C63—C64—H64A | 110.7 (8) |
C13—C14—H14B | 109.4 (8) | C63—C64—H64B | 111.4 (8) |
H14A—C14—H14B | 111.0 (12) | H64A—C64—H64B | 107.2 (12) |
C3—N2—N3—N4 | 0.15 (9) | C53—N52—N53—N54 | 0.19 (10) |
N2—N3—N4—N5 | 0.29 (8) | N52—N53—N54—N55 | 0.05 (10) |
N3—N4—N5—C3 | −0.62 (8) | N53—N54—N55—C53 | −0.27 (9) |
N3—N4—N5—C4 | −179.48 (7) | N53—N54—N55—C54 | 177.97 (8) |
C9—N1—C1—O1 | 179.78 (7) | C59—N51—C51—O51 | 178.22 (9) |
C9—N1—C1—C2 | 1.11 (11) | C59—N51—C51—C52 | 0.99 (14) |
C10—N6—C2—C1 | −178.53 (6) | C60—N56—C52—C51 | −50.44 (9) |
C10—N6—C2—C3 | 63.32 (7) | C60—N56—C52—C53 | −167.67 (6) |
C14—N6—C2—C1 | −55.17 (8) | C64—N56—C52—C51 | −173.65 (7) |
C14—N6—C2—C3 | −173.31 (6) | C64—N56—C52—C53 | 69.12 (8) |
O1—C1—C2—N6 | 123.80 (7) | O51—C51—C52—N56 | 126.51 (9) |
O1—C1—C2—C3 | −116.68 (7) | O51—C51—C52—C53 | −114.40 (9) |
N1—C1—C2—N6 | −57.52 (8) | N51—C51—C52—N56 | −56.22 (10) |
N1—C1—C2—C3 | 62.01 (8) | N51—C51—C52—C53 | 62.87 (10) |
N3—N2—C3—N5 | −0.53 (8) | N53—N52—C53—N55 | −0.36 (9) |
N3—N2—C3—C2 | 178.55 (7) | N53—N52—C53—C52 | −179.19 (8) |
N4—N5—C3—N2 | 0.73 (8) | N54—N55—C53—N52 | 0.40 (9) |
N4—N5—C3—C2 | −178.43 (6) | N54—N55—C53—C52 | 179.32 (7) |
C4—N5—C3—N2 | 179.49 (7) | C54—N55—C53—N52 | −177.66 (8) |
C4—N5—C3—C2 | 0.33 (12) | C54—N55—C53—C52 | 1.26 (13) |
N6—C2—C3—N2 | −121.66 (8) | N56—C52—C53—N52 | −124.11 (9) |
N6—C2—C3—N5 | 57.31 (9) | N56—C52—C53—N55 | 57.19 (10) |
C1—C2—C3—N2 | 117.62 (8) | C51—C52—C53—N52 | 113.82 (9) |
C1—C2—C3—N5 | −63.41 (9) | C51—C52—C53—N55 | −64.87 (10) |
N4—N5—C4—C5 | 33.23 (10) | N54—N55—C54—C55 | 36.85 (11) |
N4—N5—C4—C9 | −146.46 (7) | N54—N55—C54—C59 | −140.99 (8) |
C3—N5—C4—C5 | −145.37 (8) | C53—N55—C54—C55 | −145.34 (9) |
C3—N5—C4—C9 | 34.94 (11) | C53—N55—C54—C59 | 36.82 (12) |
N5—C4—C5—C6 | 179.98 (7) | N55—C54—C55—C56 | −177.01 (8) |
C9—C4—C5—C6 | −0.34 (12) | C59—C54—C55—C56 | 0.80 (13) |
C4—C5—C6—C7 | −0.64 (12) | C54—C55—C56—C57 | −0.99 (13) |
C5—C6—C7—C8 | 0.98 (13) | C55—C56—C57—C58 | 0.65 (14) |
C6—C7—C8—C9 | −0.34 (13) | C56—C57—C58—C59 | −0.11 (14) |
C7—C8—C9—N1 | 174.59 (7) | C57—C58—C59—N51 | 174.60 (8) |
C7—C8—C9—C4 | −0.62 (11) | C57—C58—C59—C54 | −0.09 (13) |
N5—C4—C9—N1 | 5.76 (11) | N55—C54—C59—N51 | 3.16 (12) |
N5—C4—C9—C8 | −179.36 (7) | N55—C54—C59—C58 | 177.55 (7) |
C5—C4—C9—N1 | −173.92 (7) | C55—C54—C59—N51 | −174.65 (8) |
C5—C4—C9—C8 | 0.96 (11) | C55—C54—C59—C58 | −0.26 (12) |
C1—N1—C9—C4 | −43.24 (12) | C51—N51—C59—C54 | −41.97 (13) |
C1—N1—C9—C8 | 141.84 (8) | C51—N51—C59—C58 | 143.61 (9) |
C2—N6—C10—C11 | −171.45 (6) | C52—N56—C60—C61 | 171.56 (7) |
C14—N6—C10—C11 | 63.98 (8) | C64—N56—C60—C61 | −64.50 (9) |
N6—C10—C11—C12 | −57.34 (10) | N56—C60—C61—C62 | 58.95 (10) |
C10—C11—C12—C13 | 50.96 (11) | C60—C61—C62—C63 | −52.02 (12) |
C11—C12—C13—C14 | −50.81 (11) | C61—C62—C63—C64 | 50.42 (12) |
C2—N6—C14—C13 | 172.62 (7) | C52—N56—C64—C63 | −170.26 (8) |
C10—N6—C14—C13 | −63.41 (9) | C60—N56—C64—C63 | 64.06 (10) |
C12—C13—C14—N6 | 56.84 (10) | C62—C63—C64—N56 | −56.70 (11) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N···O1i | 0.850 (14) | 2.069 (14) | 2.9089 (9) | 169.4 (13) |
N51—H51N···O51ii | 0.886 (16) | 1.929 (16) | 2.8116 (10) | 173.6 (14) |
C6—H6···N2iii | 0.936 (15) | 2.531 (15) | 3.4638 (11) | 174.8 (12) |
C7—H7···O1iii | 0.947 (15) | 2.406 (15) | 3.3394 (10) | 168.4 (13) |
C55—H55···N54iv | 0.974 (13) | 2.548 (13) | 3.2293 (11) | 127.0 (10) |
Symmetry codes: (i) −x+1, −y, −z+1; (ii) −x+1, −y+1, −z; (iii) x+1, y, z; (iv) −x+1, −y+1, −z+1. |
Experimental details
Crystal data | |
Chemical formula | C14H16N6O |
Mr | 284.33 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 100 |
a, b, c (Å) | 8.8210 (7), 13.1802 (10), 13.4476 (11) |
α, β, γ (°) | 105.549 (2), 99.490 (2), 106.623 (2) |
V (Å3) | 1392.99 (19) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.09 |
Crystal size (mm) | 0.39 × 0.28 × 0.09 |
Data collection | |
Diffractometer | Bruker Kappa APEXII DUO CCD |
Absorption correction | Numerical (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.965, 0.992 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 51078, 12177, 9733 |
Rint | 0.029 |
(sin θ/λ)max (Å−1) | 0.806 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.043, 0.123, 1.05 |
No. of reflections | 12177 |
No. of parameters | 507 |
H-atom treatment | All H-atom parameters refined |
Δρmax, Δρmin (e Å−3) | 0.59, −0.23 |
Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al. 2008), SHELXTL (Sheldrick, 2008) and local programs.
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N···O1i | 0.850 (14) | 2.069 (14) | 2.9089 (9) | 169.4 (13) |
N51—H51N···O51ii | 0.886 (16) | 1.929 (16) | 2.8116 (10) | 173.6 (14) |
C6—H6···N2iii | 0.936 (15) | 2.531 (15) | 3.4638 (11) | 174.8 (12) |
C7—H7···O1iii | 0.947 (15) | 2.406 (15) | 3.3394 (10) | 168.4 (13) |
C55—H55···N54iv | 0.974 (13) | 2.548 (13) | 3.2293 (11) | 127.0 (10) |
Symmetry codes: (i) −x+1, −y, −z+1; (ii) −x+1, −y+1, −z; (iii) x+1, y, z; (iv) −x+1, −y+1, −z+1. |
Acknowledgements
The diffractometer was purchased with funding from NSF grant CHE-0741837.
References
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Gunawan, S., Nichol, G. S., Chappeta, S., Dietrich, J. & Hulme, C. (2010). Tetrahedron Lett. 51, 4689–4692 Web of Science CrossRef CAS PubMed Google Scholar
Hulme, C. & Dietrich, J. (2009). Mol. Divers. 13, 195–207. Web of Science CrossRef PubMed CAS Google Scholar
Hulme, C. & Gore, V. (2003). Curr. Med. Chem. 10, 51–80. Web of Science CrossRef PubMed CAS Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Ugi, I. & Steinbrückner, C. (1961). Chem. Ber. 94, 734–742. CrossRef CAS Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
At present there is a huge need for unique small molecules in the lead development stages of drug discovery. In this process, speed is paramount, and the development of high speed parallel synthesis in concert with isocyanide based multi-component reactions (MCRs) has enabled a revolution in high-throughput medicinal chemistry (Gunawan et al., (2010); Hulme & Dietrich (2009); Hulme & Gore (2003)). Following this theme, a novel two step solution phase protocol for the synthesis of an array of tricyclic fused tetrazole-benzodiazepines was recently investigated (Figure 1). The methodology employs ortho-N-Boc benzylisonitriles 1 and ethyl glyoxylate 2 in the 4-component TMS-N3 modified Ugi reaction (Ugi & Steinbrückner, 1961) to assemble the desired product 3. Subsequent treatment with trifluoroacetic acid unmasks an internal amino nucleophile and promotes cyclization to form the diazepine ring of the generic structure 4. Here we report the crystal structure of 4.
The asymmetric unit of 4 is shown in Figure 2. There are two crystallographically unique molecules in the asymmetric unit; the molecule composed of atoms O1 to C14 will henceforth be referred to as "molecule A" and the molecule composed of atoms O51 to C64 referred to as "molecule B". Where appropriate, discussion will be limited to molecule A with results for molecule B presented in square brackets. Molecular dimensions are unexceptional.
The molecule adopts a U-shaped conformation in which the 7-membered diazepinone ring has adopted a boat-like conformation (total Q parameter 0.8021 (8)Å [0.8177 (9) Å]; Cremer & Pople (1975)) and the chair conformation piperidinyl ring is an axial substituent on the diazepinone ring. Both molecules have a very similar overall shape as shown by an overlay, fitting N1, N5, C4 > C9 with N51, N55, C54 > C59 (these representing the largest planar moiety in the structure, Figure 3).
In the crystal each molecule forms hydrogen bonds with its respective symmetry equivalents. Hydrogen bonding between molecule A and symmetry equivalents forms two ring motifs (Bernstein et al., 1995), an R22(8) motif formed by inversion-related N—H···O interactions and an R22(9) motif formed by C—H···O and C—H···N interactions. The combination of both ring motifs results in the formation of an infinite double tape which propagates in the a axis direction (Figure 4). Hydrogen bonding between molecule B and symmetry equivalents forms one ring motif composed of an R22(8) motif formed by inversion-related N—H···O interactions and an R22(10) motif formed by C—H···O interactions (Figure 5). This propagates as a single tape parallel with the c axis.