organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(2-{2-[2-(benzyl­carbamo­yl)phen­­oxy]acetamido}­eth­yl)ammonium nitrate ethanol disolvate

aKey Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering and State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, People's Republic of China
*Correspondence e-mail: zhanggl@lzu.edu.cn

(Received 13 November 2010; accepted 15 December 2010; online 24 December 2010)

In the title compound, C36H40N5O6+·NO3·2C2H5OH, the nitrate anion is disordered over the two orientations of equal occupancy while the solvent mol­ecule reveals large displacement parameters. The cation is formed by protonation of the N atom of a secondary amine in the middle of the flexible chain and the whole compound has crystallographically imposed C-2 symmetry with the crystallographic b axis. An O atom of the nitrate anion links the acidic H atoms of the cation via N—H⋯O hydrogen bonding. In addition, neighbouring cations are connected by inter­molecular N—H⋯O hydrogen bonds and ππ inter­actions between the benzamide groups of the cations [centroid–centroid distance = 4.000 (3) Å], forming a chain along [001]. The ethanol solvent mol­ecules are arranged on the side of the chain through O—H⋯O hydrogen bonds.

Related literature

Luminescent lanthanide complexes have attracted intense research inter­est due to their very narrow emission bands and large Stokes shifts, see: Wang et al. (2009[Wang, Q., Tang, K., Liu, W., Tang, Y. & Tan, M. (2009). J. Solid State Chem. 182, 3118-3124.]); Bunzli & Piguet (2005[Bunzli, J. G. & Piguet, C. (2005). Chem. Soc. Rev. 34, 1048-1077.]); Stein & Wurzberg (1975[Stein, G. & Wurzberg, E. (1975). J. Chem. Phys. 62, 208-213.]). For amide-type open-chain ligands, see: Liu et al. (2009[Liu, D., Kou, Z., Li, Y., Tang, K., Tang, Y., Liu, W. & Tan, M. (2009). Inorg. Chem. Commun. 12, 461-464.]); Yi et al. (2007[Yi, C., Tang, Y., Liu, W. & Tan, M. (2007). Inorg. Chem. Commun. 10, 1505-1509.]); Hamann et al. (2004[Hamann, C. S., Zelewsky, A. V., Barbieri, A., Barigelletti, F., Muller, G., Riehl, J. P. & Neels, A. (2004). J. Am. Chem. Soc. 126, 9339-9348.]).

[Scheme 1]

Experimental

Crystal data
  • C36H40N5O6+·NO3·2C2H6O

  • Mr = 792.88

  • Monoclinic, C 2

  • a = 16.978 (3) Å

  • b = 11.405 (2) Å

  • c = 11.164 (2) Å

  • β = 108.04 (3)°

  • V = 2055.6 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.22 × 0.18 × 0.17 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.980, Tmax = 0.984

  • 4901 measured reflections

  • 1995 independent reflections

  • 1334 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.063

  • wR(F2) = 0.190

  • S = 1.03

  • 1995 reflections

  • 277 parameters

  • 45 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—HN3⋯O5i 0.95 (4) 2.49 (5) 2.905 (9) 106 (3)
N3—HN3⋯O5ii 0.95 (4) 2.41 (5) 2.905 (9) 112 (3)
N3—HN3⋯O1ii 0.95 (4) 2.01 (4) 2.780 (3) 137 (4)
O4—H4A⋯O3iii 0.85 1.89 2.740 (11) 178
N1—H1A⋯O2 0.86 1.99 2.645 (5) 132
N2—H2A⋯O5ii 0.86 2.14 2.813 (9) 135
N2—H2A⋯O6i 0.86 2.35 3.185 (9) 163
Symmetry codes: (i) x, y, z-1; (ii) -x, y, -z; (iii) x, y, z+1.

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Luminescent lanthanide complexes have attracted intense research interest from both material and biological science mainly due to their very narrow emission bands and large Stokes shifts, etc (Wang et al., 2009; Bunzli & Piguet, 2005; Stein & Wurzberg, 1975). Since the lanthanides have low absorptivities and poor quantum yields, fluorescence enhancement has generally been achieved through ligand sensitisation. Among various kinds of ligands, amide type open-chain ligands have drawn much attention in past ten years, mainly due to their flexible structure, selective coordinating capacity and hard binding sites, which could stabilise their lanthanide complexes, acquire novel coordination structure and shield the encapsulated ion from interaction with the surroundings (Liu et al., 2009; Yi et al., 2007; Hamann et al., 2004). There is a need to prepare a new series of amide type ligands to further widen the scope of research on the chemical and physical properties of lanthanide complexes. In this paper, we present the structure of the title compound, a nitrate salt of a free ligand. The asymmetric unit comprises a half of cation C36H40N5O6+ nitrate anion, and ethanol molecule(Fig. 1). In C36H40N5O6+cation, the N atom of secondary amine in the middle of flexible chain is protonated adding more hydrogen bondind donor sites. An O atom of nitrate anion links the acidic H atoms and adjacent one of amide groups via N–H···O hydrogen bonding (Table 1) forming the S-shape organic cation. The carbonyl groups of benzamide at both ends of organic cation are involved in intermolecular N–H···O hydrogen bonds connecting acidic H atoms of neighbouring C36H40N5O6+cations to form a chain. The chain is further stabilised by ππ interactions between the benzamide groups from cations (Fig. 2). Ethanol molecules are arranged on the side of the chain and linked the O atoms of the acetamide groups via O–H···O hydrogen bonds.

Related literature top

Luminescent lanthanide complexes have attracted intense research interest due to their very narrow emission bands and large Stokes shifts, see: Wang et al. (2009); Bunzli & Piguet (2005); Stein & Wurzberg (1975). For amide-type open-chain ligands, see: Liu et al. (2009); Yi et al. (2007); Hamann et al. (2004).

Experimental top

Ethyl 2-(2-(benzylcarbamoyl)phenoxy)acetate was firstly synthesised as a white solid via a simple prepared by reaction of N-benzylsalicylamide (2.27 g, 10.0 mmol) with ethyl chloroacetate (1.83 g, 15.0 mmol) in 80% yield using an excess amount of anhydrous potassium carbonate in refluxing acetone. Then the ligand, N,N'-iminodiethylenebis{[(2'-benzylaminoformyl)phenoxyl]acetamide}, was obtained in 18% yield by treating the ethyl 2-(2-(benzylcarbamoyl)phenoxy)acetate (1.88 g, 6 mmol) with 0.5 equiv of diethylenetriamine (0.258 g,2.5 mmol) in methanol at 333-338 K for 8 h (m.p. 372-374 K). Single crystals of the title compound suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution (6 mL) containing Tb(NO3)3.6H2O (67.9 mg, 0.15 mmol) and N,N'-iminodiethylenebis{[(2'-benzylaminoformyl)phenoxyl]acetamide} (95.6 mg, 0.15 mmol) after two weeks at room temperature in 75% yield. The preparation was aimed to obtain an Tb(III) nitrate complex with the title ligand but instead the ligand was crystallised.

Refinement top

The nitrate group is disordered over two orientations where oxygen atoms of these two orientations revealed occupancies of 0.50 respectively. Furthermore, the anisotropic displacement parameters of the minor occupancy atoms C19, C20 and O4 of ethanol solvent were constrained by using the SHELX command ISOR and SIMU. The ammonium H atoms were located from the difference Fourier map and refined freely. H atoms were positioned geometrically with N—H = 0.86 for amide. All other H atoms were positioned geometrically with C—H = 0.93 and 0.97 Å for aromatic and methylene H atoms, respectively. They were constrained to ride on their parent atoms with Uiso(H)= 1.2Ueq(C) or 1.5 Ueq(C).

Structure description top

Luminescent lanthanide complexes have attracted intense research interest from both material and biological science mainly due to their very narrow emission bands and large Stokes shifts, etc (Wang et al., 2009; Bunzli & Piguet, 2005; Stein & Wurzberg, 1975). Since the lanthanides have low absorptivities and poor quantum yields, fluorescence enhancement has generally been achieved through ligand sensitisation. Among various kinds of ligands, amide type open-chain ligands have drawn much attention in past ten years, mainly due to their flexible structure, selective coordinating capacity and hard binding sites, which could stabilise their lanthanide complexes, acquire novel coordination structure and shield the encapsulated ion from interaction with the surroundings (Liu et al., 2009; Yi et al., 2007; Hamann et al., 2004). There is a need to prepare a new series of amide type ligands to further widen the scope of research on the chemical and physical properties of lanthanide complexes. In this paper, we present the structure of the title compound, a nitrate salt of a free ligand. The asymmetric unit comprises a half of cation C36H40N5O6+ nitrate anion, and ethanol molecule(Fig. 1). In C36H40N5O6+cation, the N atom of secondary amine in the middle of flexible chain is protonated adding more hydrogen bondind donor sites. An O atom of nitrate anion links the acidic H atoms and adjacent one of amide groups via N–H···O hydrogen bonding (Table 1) forming the S-shape organic cation. The carbonyl groups of benzamide at both ends of organic cation are involved in intermolecular N–H···O hydrogen bonds connecting acidic H atoms of neighbouring C36H40N5O6+cations to form a chain. The chain is further stabilised by ππ interactions between the benzamide groups from cations (Fig. 2). Ethanol molecules are arranged on the side of the chain and linked the O atoms of the acetamide groups via O–H···O hydrogen bonds.

Luminescent lanthanide complexes have attracted intense research interest due to their very narrow emission bands and large Stokes shifts, see: Wang et al. (2009); Bunzli & Piguet (2005); Stein & Wurzberg (1975). For amide-type open-chain ligands, see: Liu et al. (2009); Yi et al. (2007); Hamann et al. (2004).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level. Symmetry code used to generate the complete cation: -x, y, -1 - z.
[Figure 2] Fig. 2. The hydrogen bonded chain dominates the crystal packing. Hydrogen bonds are shown as turquiose dashed lines. H atoms not involved in hydrogen bonding have been omitted for clarity. The π···π interactions between benzamide groups are shown as light-blue dashed lines.
Bis(2-{2-[2-(benzylcarbamoyl)phenoxy]acetamido}ethyl)ammonium nitrate ethanol disolvate top
Crystal data top
C36H40N5O6+·NO3·2C2H6OF(000) = 844
Mr = 792.88Dx = 1.281 Mg m3
Monoclinic, C2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: C2yCell parameters from 1019 reflections
a = 16.978 (3) Åθ = 2.5–20.9°
b = 11.405 (2) ŵ = 0.09 mm1
c = 11.164 (2) ÅT = 296 K
β = 108.04 (3)°Block, colourless
V = 2055.6 (7) Å30.22 × 0.18 × 0.17 mm
Z = 2
Data collection top
Bruker SMART CCD area-detector
diffractometer
1995 independent reflections
Radiation source: fine-focus sealed tube1334 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
φ and ω scansθmax = 25.5°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
h = 2020
Tmin = 0.980, Tmax = 0.984k = 1313
4901 measured reflectionsl = 813
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.063Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.190H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.1204P)2]
where P = (Fo2 + 2Fc2)/3
1995 reflections(Δ/σ)max < 0.001
277 parametersΔρmax = 0.26 e Å3
45 restraintsΔρmin = 0.32 e Å3
Crystal data top
C36H40N5O6+·NO3·2C2H6OV = 2055.6 (7) Å3
Mr = 792.88Z = 2
Monoclinic, C2Mo Kα radiation
a = 16.978 (3) ŵ = 0.09 mm1
b = 11.405 (2) ÅT = 296 K
c = 11.164 (2) Å0.22 × 0.18 × 0.17 mm
β = 108.04 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
1995 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
1334 reflections with I > 2σ(I)
Tmin = 0.980, Tmax = 0.984Rint = 0.035
4901 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.06345 restraints
wR(F2) = 0.190H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.26 e Å3
1995 reflectionsΔρmin = 0.32 e Å3
277 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. The structure is non-centrosymmetric with only atoms lighter than silicon, MoKa measured Friedel data can not be used to determine absolute structure.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.1027 (3)0.7751 (5)0.3251 (4)0.0729 (14)
H10.05130.80710.28230.088*
C20.1500 (4)0.8244 (5)0.4399 (4)0.0853 (17)
H20.12990.88780.47420.102*
C30.2259 (4)0.7777 (5)0.5003 (5)0.0903 (18)
H30.25850.81020.57580.108*
C40.2544 (4)0.6830 (6)0.4502 (5)0.0860 (17)
H40.30600.65120.49230.103*
C50.2075 (3)0.6351 (5)0.3391 (4)0.0723 (14)
H50.22750.57080.30620.087*
C60.1309 (3)0.6806 (4)0.2748 (4)0.0573 (11)
C70.0779 (3)0.6306 (4)0.1506 (4)0.0614 (12)
H7A0.02010.63960.14530.074*
H7B0.08720.67620.08280.074*
C80.0726 (2)0.4235 (4)0.1984 (3)0.0492 (11)
C90.0862 (2)0.2966 (4)0.1713 (3)0.0477 (10)
C100.0729 (3)0.2155 (4)0.2537 (4)0.0645 (13)
H100.05610.24110.32100.077*
C110.0839 (4)0.0971 (5)0.2393 (5)0.0802 (16)
H110.07410.04410.29630.096*
C120.1088 (4)0.0581 (5)0.1432 (5)0.0833 (16)
H120.11610.02180.13380.100*
C130.1236 (3)0.1374 (4)0.0576 (4)0.0739 (14)
H130.14170.11080.00810.089*
C140.1113 (2)0.2551 (4)0.0710 (3)0.0506 (11)
C150.1448 (3)0.3013 (4)0.1168 (3)0.0582 (12)
H15A0.10310.24910.16910.070*
H15B0.19730.26020.09000.070*
C160.1516 (3)0.4089 (4)0.1880 (4)0.0583 (12)
C170.1515 (3)0.4860 (5)0.3908 (4)0.0755 (15)
H17A0.16350.45310.46340.091*
H17B0.19780.53550.34640.091*
C180.0744 (3)0.5599 (4)0.4352 (4)0.0633 (12)
H18A0.06550.59930.36350.076*
H18B0.08200.61950.49270.076*
C190.1576 (7)0.8011 (10)0.8043 (10)0.190 (4)
H19A0.11670.77350.72800.227*
H19B0.21200.78570.79650.227*
C200.1476 (8)0.9286 (12)0.8154 (13)0.220 (5)
H20A0.09670.94410.83320.330*
H20B0.14620.96600.73770.330*
H20C0.19320.95890.88250.330*
N10.0936 (2)0.5070 (3)0.1313 (3)0.0555 (9)
H1A0.11690.48810.07560.067*
N20.1437 (2)0.3914 (4)0.3083 (3)0.0627 (10)
H2A0.13360.32170.33850.075*
N30.00000.4879 (5)0.50000.0538 (13)
HN30.004 (2)0.437 (4)0.435 (4)0.061 (12)*
N40.00000.1418 (5)0.50000.0692 (16)
O10.04311 (19)0.4475 (3)0.2828 (3)0.0665 (9)
O20.1223 (2)0.3375 (3)0.0115 (2)0.0659 (8)
O30.1642 (2)0.5043 (4)0.1375 (3)0.0879 (12)
O40.1490 (5)0.7383 (9)0.9064 (8)0.206 (3)
H4A0.15490.66620.89240.247*
O50.0303 (5)0.2373 (6)0.4705 (7)0.086 (3)0.50
O60.0685 (4)0.1426 (7)0.5858 (8)0.100 (3)0.50
O70.0314 (6)0.0489 (6)0.4703 (11)0.133 (4)0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.106 (3)0.055 (3)0.059 (2)0.008 (3)0.028 (2)0.008 (2)
C20.161 (5)0.036 (2)0.068 (3)0.008 (3)0.049 (3)0.002 (2)
C30.118 (4)0.083 (4)0.061 (3)0.036 (3)0.016 (3)0.004 (3)
C40.084 (3)0.094 (4)0.073 (3)0.021 (3)0.013 (3)0.002 (3)
C50.083 (3)0.073 (3)0.062 (3)0.006 (3)0.025 (2)0.003 (2)
C60.084 (3)0.049 (2)0.0445 (18)0.001 (2)0.0277 (19)0.0087 (18)
C70.086 (3)0.052 (3)0.046 (2)0.005 (2)0.021 (2)0.0030 (19)
C80.056 (2)0.056 (3)0.0357 (17)0.001 (2)0.0152 (16)0.0003 (18)
C90.057 (2)0.053 (2)0.0344 (16)0.0033 (19)0.0158 (15)0.0026 (17)
C100.085 (3)0.066 (3)0.049 (2)0.008 (2)0.030 (2)0.013 (2)
C110.122 (4)0.068 (3)0.056 (2)0.004 (3)0.035 (3)0.013 (2)
C120.128 (4)0.052 (3)0.079 (3)0.000 (3)0.046 (3)0.011 (2)
C130.108 (3)0.063 (3)0.065 (2)0.002 (3)0.048 (2)0.003 (2)
C140.065 (2)0.050 (2)0.0426 (19)0.005 (2)0.0251 (17)0.0017 (18)
C150.082 (2)0.063 (3)0.0391 (17)0.005 (2)0.0330 (17)0.0049 (19)
C160.069 (2)0.066 (3)0.0455 (19)0.002 (2)0.0255 (18)0.004 (2)
C170.076 (2)0.107 (4)0.053 (2)0.004 (3)0.034 (2)0.019 (3)
C180.090 (3)0.055 (3)0.053 (2)0.015 (2)0.033 (2)0.003 (2)
C190.183 (6)0.205 (8)0.190 (7)0.004 (7)0.071 (6)0.009 (7)
C200.218 (7)0.219 (8)0.221 (8)0.005 (7)0.066 (6)0.043 (7)
N10.075 (2)0.054 (2)0.0423 (16)0.0008 (18)0.0244 (15)0.0025 (16)
N20.088 (2)0.067 (2)0.0447 (16)0.011 (2)0.0376 (15)0.0073 (17)
N30.078 (3)0.051 (3)0.038 (2)0.0000.027 (2)0.000
N40.072 (3)0.078 (4)0.069 (3)0.0000.038 (3)0.000
O10.0891 (18)0.070 (2)0.0545 (14)0.0011 (17)0.0420 (14)0.0032 (15)
O20.113 (2)0.0502 (18)0.0509 (13)0.0028 (16)0.0492 (14)0.0024 (13)
O30.125 (3)0.080 (2)0.0584 (17)0.033 (2)0.0280 (18)0.0035 (18)
O40.236 (6)0.214 (7)0.200 (5)0.015 (5)0.117 (5)0.006 (5)
O50.127 (7)0.065 (4)0.079 (5)0.017 (4)0.049 (5)0.018 (4)
O60.113 (5)0.063 (5)0.138 (7)0.013 (5)0.061 (5)0.002 (5)
O70.185 (11)0.070 (5)0.165 (8)0.055 (5)0.084 (7)0.062 (6)
Geometric parameters (Å, º) top
C1—C61.367 (7)C16—O31.214 (6)
C1—C21.402 (7)C16—N21.322 (5)
C1—H10.9300C17—N21.452 (6)
C2—C31.365 (8)C17—C181.506 (7)
C2—H20.9300C17—H17A0.9700
C3—C41.371 (8)C17—H17B0.9700
C3—H30.9300C18—N31.493 (5)
C4—C51.364 (7)C18—H18A0.9700
C4—H40.9300C18—H18B0.9700
C5—C61.378 (6)C19—O41.392 (11)
C5—H50.9300C19—C201.475 (14)
C6—C71.512 (6)C19—H19A0.9700
C7—N11.464 (6)C19—H19B0.9700
C7—H7A0.9700C20—H20A0.9600
C7—H7B0.9700C20—H20B0.9600
C8—O11.226 (5)C20—H20C0.9600
C8—N11.327 (5)N1—H1A0.8600
C8—C91.511 (6)N2—H2A0.8600
C9—C101.372 (6)N3—C18i1.493 (5)
C9—C141.398 (5)N3—HN30.95 (4)
C10—C111.380 (8)N4—O7ii1.186 (8)
C10—H100.9300N4—O71.186 (8)
C11—C121.344 (8)N4—O5ii1.205 (8)
C11—H110.9300N4—O51.205 (8)
C12—C131.395 (7)N4—O61.258 (7)
C12—H120.9300N4—O6ii1.258 (7)
C13—C141.374 (7)O4—H4A0.8491
C13—H130.9300O5—O5ii1.035 (14)
C14—O21.368 (5)O5—O6ii1.316 (10)
C15—O21.406 (5)O6—O7ii1.298 (12)
C15—C161.486 (6)O6—O5ii1.316 (10)
C15—H15A0.9700O7—O7ii1.066 (18)
C15—H15B0.9700O7—O6ii1.298 (12)
C6—C1—C2121.2 (5)O2—C15—H15B110.3
C6—C1—H1119.4C16—C15—H15B110.3
C2—C1—H1119.4H15A—C15—H15B108.6
C3—C2—C1118.7 (5)O3—C16—N2123.7 (4)
C3—C2—H2120.7O3—C16—C15121.6 (4)
C1—C2—H2120.7N2—C16—C15114.8 (4)
C2—C3—C4120.3 (5)N2—C17—C18112.6 (4)
C2—C3—H3119.8N2—C17—H17A109.1
C4—C3—H3119.8C18—C17—H17A109.1
C5—C4—C3120.4 (5)N2—C17—H17B109.1
C5—C4—H4119.8C18—C17—H17B109.1
C3—C4—H4119.8H17A—C17—H17B107.8
C4—C5—C6120.9 (5)N3—C18—C17111.7 (4)
C4—C5—H5119.5N3—C18—H18A109.3
C6—C5—H5119.5C17—C18—H18A109.3
C1—C6—C5118.5 (4)N3—C18—H18B109.3
C1—C6—C7119.3 (4)C17—C18—H18B109.3
C5—C6—C7122.2 (4)H18A—C18—H18B107.9
N1—C7—C6114.5 (4)O4—C19—C20113.2 (12)
N1—C7—H7A108.6O4—C19—H19A108.9
C6—C7—H7A108.6C20—C19—H19A108.9
N1—C7—H7B108.6O4—C19—H19B108.9
C6—C7—H7B108.6C20—C19—H19B108.9
H7A—C7—H7B107.6H19A—C19—H19B107.7
O1—C8—N1121.3 (4)C19—C20—H20A109.5
O1—C8—C9119.5 (4)C19—C20—H20B109.5
N1—C8—C9119.2 (3)H20A—C20—H20B109.5
C10—C9—C14117.6 (4)C19—C20—H20C109.5
C10—C9—C8116.4 (4)H20A—C20—H20C109.5
C14—C9—C8126.0 (4)H20B—C20—H20C109.5
C9—C10—C11121.7 (5)C8—N1—C7121.0 (4)
C9—C10—H10119.1C8—N1—H1A119.5
C11—C10—H10119.1C7—N1—H1A119.5
C12—C11—C10120.3 (5)C16—N2—C17122.1 (4)
C12—C11—H11119.9C16—N2—H2A118.9
C10—C11—H11119.9C17—N2—H2A118.9
C11—C12—C13120.0 (5)C18—N3—C18i113.2 (5)
C11—C12—H12120.0C18—N3—HN3102 (2)
C13—C12—H12120.0C18i—N3—HN3117 (2)
C14—C13—C12119.6 (5)O7ii—N4—O5ii127.9 (6)
C14—C13—H13120.2O7—N4—O5127.9 (6)
C12—C13—H13120.2O7—N4—O6116.6 (8)
O2—C14—C13122.8 (4)O5—N4—O6114.7 (7)
O2—C14—C9116.4 (4)O7ii—N4—O6ii116.6 (8)
C13—C14—C9120.8 (4)O5ii—N4—O6ii114.7 (7)
O2—C15—C16106.9 (4)C14—O2—C15119.3 (3)
O2—C15—H15A110.3C19—O4—H4A107.3
C16—C15—H15A110.3
C6—C1—C2—C31.2 (8)C12—C13—C14—O2178.0 (4)
C1—C2—C3—C41.2 (8)C12—C13—C14—C91.7 (7)
C2—C3—C4—C50.5 (9)C10—C9—C14—O2178.5 (4)
C3—C4—C5—C60.1 (8)C8—C9—C14—O21.8 (5)
C2—C1—C6—C50.5 (7)C10—C9—C14—C131.2 (6)
C2—C1—C6—C7179.8 (5)C8—C9—C14—C13178.5 (4)
C4—C5—C6—C10.1 (7)O2—C15—C16—O323.1 (6)
C4—C5—C6—C7179.2 (5)O2—C15—C16—N2157.5 (4)
C1—C6—C7—N1155.0 (4)N2—C17—C18—N356.5 (5)
C5—C6—C7—N125.7 (7)O1—C8—N1—C73.7 (5)
O1—C8—C9—C107.0 (5)C9—C8—N1—C7177.2 (3)
N1—C8—C9—C10172.1 (4)C6—C7—N1—C869.5 (5)
O1—C8—C9—C14173.3 (3)O3—C16—N2—C171.6 (7)
N1—C8—C9—C147.6 (5)C15—C16—N2—C17177.8 (4)
C14—C9—C10—C110.2 (6)C18—C17—N2—C1678.9 (5)
C8—C9—C10—C11179.6 (4)C17—C18—N3—C18i169.9 (4)
C9—C10—C11—C120.4 (8)C13—C14—O2—C151.8 (6)
C10—C11—C12—C130.0 (9)C9—C14—O2—C15177.9 (3)
C11—C12—C13—C141.1 (8)C16—C15—O2—C14179.8 (3)
Symmetry codes: (i) x, y, z1; (ii) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—HN3···O5iii0.95 (4)2.49 (5)2.905 (9)106 (3)
N3—HN3···O5iv0.95 (4)2.41 (5)2.905 (9)112 (3)
N3—HN3···O1iv0.95 (4)2.01 (4)2.780 (3)137 (4)
O4—H4A···O3v0.851.892.740 (11)178
N1—H1A···O20.861.992.645 (5)132
N2—H2A···O5iv0.862.142.813 (9)135
N2—H2A···O6iii0.862.353.185 (9)163
Symmetry codes: (iii) x, y, z1; (iv) x, y, z; (v) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC36H40N5O6+·NO3·2C2H6O
Mr792.88
Crystal system, space groupMonoclinic, C2
Temperature (K)296
a, b, c (Å)16.978 (3), 11.405 (2), 11.164 (2)
β (°) 108.04 (3)
V3)2055.6 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.22 × 0.18 × 0.17
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 1997)
Tmin, Tmax0.980, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
4901, 1995, 1334
Rint0.035
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.063, 0.190, 1.03
No. of reflections1995
No. of parameters277
No. of restraints45
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.26, 0.32

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—HN3···O5i0.95 (4)2.49 (5)2.905 (9)106 (3)
N3—HN3···O5ii0.95 (4)2.41 (5)2.905 (9)112 (3)
N3—HN3···O1ii0.95 (4)2.01 (4)2.780 (3)137 (4)
O4—H4A···O3iii0.851.892.740 (11)178
N1—H1A···O20.861.992.645 (5)132
N2—H2A···O5ii0.862.142.813 (9)135
N2—H2A···O6i0.862.353.185 (9)163
Symmetry codes: (i) x, y, z1; (ii) x, y, z; (iii) x, y, z+1.
 

Acknowledgements

This work was supported financially by the National Natural Science Foundation of China (grant Nos. 20771048, 20931003, 21001059) and the Fundamental Research Funds for the Central Universities (lzujbky-2009-k06, lzujbky-2009–114).

References

First citationBruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBunzli, J. G. & Piguet, C. (2005). Chem. Soc. Rev. 34, 1048–1077.  Web of Science PubMed Google Scholar
First citationHamann, C. S., Zelewsky, A. V., Barbieri, A., Barigelletti, F., Muller, G., Riehl, J. P. & Neels, A. (2004). J. Am. Chem. Soc. 126, 9339–9348.  Web of Science PubMed Google Scholar
First citationLiu, D., Kou, Z., Li, Y., Tang, K., Tang, Y., Liu, W. & Tan, M. (2009). Inorg. Chem. Commun. 12, 461–464.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStein, G. & Wurzberg, E. (1975). J. Chem. Phys. 62, 208–213.  CrossRef CAS Web of Science Google Scholar
First citationWang, Q., Tang, K., Liu, W., Tang, Y. & Tan, M. (2009). J. Solid State Chem. 182, 3118–3124.  Web of Science CrossRef CAS Google Scholar
First citationYi, C., Tang, Y., Liu, W. & Tan, M. (2007). Inorg. Chem. Commun. 10, 1505–1509.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds