metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Chlorido(η5-cyclo­penta­dien­yl)[(4a,4b,8a,9,9a-η)-fluoren­yl](fluorenyl-κC9)zirconium(IV) toluene solvate

aChemical Faculty, Gdansk University of Technology, Narutowicza 11/12, Gdansk PL-80233, Poland
*Correspondence e-mail: lukasz.ponikiewski@pg.gda.pl

(Received 1 December 2010; accepted 3 December 2010; online 8 December 2010)

In the title compound, [Zr(C5H5)(C13H9)2Cl]·C7H8, the ZrIV atom is coordinated by a Cl atom, a cyclo­penta­dienyl (Cp) ligand [Zr–centroid (Cp) = 2.199 (3) Å] and two fluorenyl ligands (Fl) [Zr–centroid (Fl) = 2.273 (2) Å and Zr—CH from fluorenyl = 2.355 (2) Å] in a distorted tetra­gonal geometry. The dihedral angles between the mean planes of the fluorenyl ring systems and the Cp ring are 36.62 (6)° for the η1-coordinated fluorenyl and 52.85 (6)° for the η5-coordinated fluorenyl, while the dihedral angle between the mean planes of the two fluorenyl ring systems is 76.18 (7)°.

Related literature

Unbridged metallocene complexes with fluorenyl ligands constitute precursors of catalysts for homogeneous polymerization of α-olefins, see: Schmid et al. (1995)[Schmid, M. A., Alt, H. G. & Milius, W. (1995). J. Organomet. Chem. 501, 101-106.]; Alt & Samuel (1998[Alt, H. G. & Samuel, E. (1998). Chem. Soc. Rev. 27, 323-329.]). Fluorenyl ligands can reduce the stability of complexes, see: Samuel & Setton (1965[Samuel, E. & Setton, R. (1965). J. Organomet. Chem. 4, 156-158.]). For the preparation of CpZrCl3·DME (DME = 1,2-dimethoxyethane), see: Lund & Livinghouse (1990[Lund, E. C. & Livinghouse, T. (1990). Organometallics, 9, 2426-2427.]).

[Scheme 1]

Experimental

Crystal data
  • [Zr(C5H5)(C13H9)2Cl]·C7H8

  • Mr = 614.3

  • Triclinic, [P \overline 1]

  • a = 9.3091 (4) Å

  • b = 10.7937 (4) Å

  • c = 15.1219 (8) Å

  • α = 77.231 (4)°

  • β = 81.966 (4)°

  • γ = 74.135 (4)°

  • V = 1420.31 (11) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.51 mm−1

  • T = 150 K

  • 0.35 × 0.16 × 0.07 mm

Data collection
  • Oxford Diffraction Xcalibur Sapphire2 diffractometer

  • Absorption correction: analytical (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.894, Tmax = 0.97

  • 8923 measured reflections

  • 5572 independent reflections

  • 4680 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.076

  • S = 1.05

  • 5572 reflections

  • 362 parameters

  • H-atom parameters constrained

  • Δρmax = 0.59 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Selected bond lengths (Å)

Cl1—Zr1 2.4537 (5)
Zr1—C1 2.521 (2)
Zr1—C2 2.515 (2)
Zr1—C3 2.490 (2)
Zr1—C4 2.467 (2)
Zr1—C5 2.499 (2)
Zr1—C6 2.355 (2)
Zr1—C19 2.468 (2)
Zr1—C28 2.6434 (19)
Zr1—C29 2.617 (2)
Zr1—C30 2.601 (2)
Zr1—C31 2.565 (2)

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); data reduction: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX32 (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The unbridged metallocene complexes with fluorenyl ligand constitute precursors of catalysts for homogeneous polymerization of α-olefins (Scmid et al. 1995; Alt et al. 1998). The fluorenyl ligands facile changes in hapticity η5 η1 (ring-slippage). This property influences the catalytic activity of this type of compounds, however it also hampers to syntheses and lowers the stability of the complexes, for example Flu2ZrCl2 is stable in donor solvent (THF) for only a short time (Samuel et al. 1965).

The structure exhibits an η5 ,η1 fluorenyl coordination to the zirconium mononuclear centre, completing the coordinations sphere of a chloride atom and cyclopentadienyl ligand (Fig. 1 and Table 1). The fluorenyl groups are not exactly planar, r.m.s. deviations of a best least-squares plane of the fluorenyl units are: for η1– coordinated is 0.042 (6) Å and for η5– coordinated is 0.132 (6) Å (the values were found for carbon atoms). The dihedral angles between the mean planes of the fluorenyl ring systems and the cyclopentadienyl ring are: η1– coordinated fluorenyl and Cp 36.62 (6)° and η5– coordinated fluorenyl and Cp 52.85 (6)°, however the dihedral angle between the mean planes of the two fluorenyl system ring system is 103.82 (7)°.

Related literature top

Unbridged metallocene complexes with fluorenyl ligands constitute precursors of catalysts for homogeneous polymerization of α-olefins, see: Schmid et al. (1995); Alt & Samuel (1998). Fluorenyl ligands can reduce the stability of complexes, see: Samuel & Setton (1965). For the preparation of CpZrCl3.DME, see: Lund & Livinghouse (1990).

Experimental top

All reactions and manipulations were carried aot under an atmosphere of ultra-high purified argon employing standard Schlenk techniques. Solvents were purified, dried and distilled prior to use from dark blue potassium or sodium diphenyl ketyl solution.

CpZrCl3.DME was prepared according to the literature (Lund et al. 1990). Fluorene is commercial product and was used without further purification.

A solution of fluorene in Et2O was treated with n-BuLi (1,6M in hexane). After the evolution of gas completes, an equimolar amount of CpZrCl3.DME was added. The mixture was stirred for 2 h. The solvent was removed in vaccum. The residue was extracted with toluene and the suspension was filtered through magnesium sulfate. The filtrated was concetrated and crystallised at 251 K (Schmid et al. 1995).

Refinement top

All H atoms were fixed geometrically and treated as riding with C—H = 0.95 Å (aromatic), 0.98 Å (methyl) and 1.00 Å (methine) with Uiso(H) = 1.2 Ueq (aromatic, methine, methylene) and Uiso(H) = 1.5Ueq (methyl).

Structure description top

The unbridged metallocene complexes with fluorenyl ligand constitute precursors of catalysts for homogeneous polymerization of α-olefins (Scmid et al. 1995; Alt et al. 1998). The fluorenyl ligands facile changes in hapticity η5 η1 (ring-slippage). This property influences the catalytic activity of this type of compounds, however it also hampers to syntheses and lowers the stability of the complexes, for example Flu2ZrCl2 is stable in donor solvent (THF) for only a short time (Samuel et al. 1965).

The structure exhibits an η5 ,η1 fluorenyl coordination to the zirconium mononuclear centre, completing the coordinations sphere of a chloride atom and cyclopentadienyl ligand (Fig. 1 and Table 1). The fluorenyl groups are not exactly planar, r.m.s. deviations of a best least-squares plane of the fluorenyl units are: for η1– coordinated is 0.042 (6) Å and for η5– coordinated is 0.132 (6) Å (the values were found for carbon atoms). The dihedral angles between the mean planes of the fluorenyl ring systems and the cyclopentadienyl ring are: η1– coordinated fluorenyl and Cp 36.62 (6)° and η5– coordinated fluorenyl and Cp 52.85 (6)°, however the dihedral angle between the mean planes of the two fluorenyl system ring system is 103.82 (7)°.

Unbridged metallocene complexes with fluorenyl ligands constitute precursors of catalysts for homogeneous polymerization of α-olefins, see: Schmid et al. (1995); Alt & Samuel (1998). Fluorenyl ligands can reduce the stability of complexes, see: Samuel & Setton (1965). For the preparation of CpZrCl3.DME, see: Lund & Livinghouse (1990).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX32 (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule with the atom-numbering. Displacement ellipsoids are drawn at the 30% probability level. The H atoms bonded to C atoms (except H6A) were omitted for clarity.
Chlorido(η5-cyclopentadienyl)[(4a,4b,8a,9,9a-η)- fluorenyl](fluorenyl-κC9)zirconium(IV) toluene solvate top
Crystal data top
[Zr(C5H5)(C13H9)2Cl]·C7H8Z = 2
Mr = 614.3F(000) = 632
Triclinic, P1Dx = 1.436 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.3091 (4) ÅCell parameters from 6309 reflections
b = 10.7937 (4) Åθ = 2.6–28.7°
c = 15.1219 (8) ŵ = 0.51 mm1
α = 77.231 (4)°T = 150 K
β = 81.966 (4)°Block, yellow
γ = 74.135 (4)°0.35 × 0.16 × 0.07 mm
V = 1420.31 (11) Å3
Data collection top
Oxford Diffraction Xcalibur Sapphire2 large Be window
diffractometer
5572 independent reflections
Graphite monochromator4680 reflections with I > 2σ(I)
Detector resolution: 8.1883 pixels mm-1Rint = 0.022
ω scansθmax = 26°, θmin = 2.6°
Absorption correction: analytical
(CrysAlis PRO; Oxford Diffraction, 2010)
h = 1011
Tmin = 0.894, Tmax = 0.97k = 1312
8923 measured reflectionsl = 1318
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.076H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0473P)2]
where P = (Fo2 + 2Fc2)/3
5572 reflections(Δ/σ)max = 0.001
362 parametersΔρmax = 0.59 e Å3
0 restraintsΔρmin = 0.33 e Å3
Crystal data top
[Zr(C5H5)(C13H9)2Cl]·C7H8γ = 74.135 (4)°
Mr = 614.3V = 1420.31 (11) Å3
Triclinic, P1Z = 2
a = 9.3091 (4) ÅMo Kα radiation
b = 10.7937 (4) ŵ = 0.51 mm1
c = 15.1219 (8) ÅT = 150 K
α = 77.231 (4)°0.35 × 0.16 × 0.07 mm
β = 81.966 (4)°
Data collection top
Oxford Diffraction Xcalibur Sapphire2 large Be window
diffractometer
5572 independent reflections
Absorption correction: analytical
(CrysAlis PRO; Oxford Diffraction, 2010)
4680 reflections with I > 2σ(I)
Tmin = 0.894, Tmax = 0.97Rint = 0.022
8923 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.076H-atom parameters constrained
S = 1.05Δρmax = 0.59 e Å3
5572 reflectionsΔρmin = 0.33 e Å3
362 parameters
Special details top

Experimental. CrysAlisPro, Oxford Diffraction Ltd., Version 1.171.33.66 (release 28-04-2010 CrysAlis171 .NET) (compiled Apr 28 2010,14:27:37) Analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by R.C. Clark & J.S. (Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897)

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.63228 (6)0.47339 (5)0.60738 (4)0.02355 (13)
Zr10.60062 (2)0.637778 (18)0.702371 (14)0.01694 (7)
C10.6240 (3)0.6138 (3)0.86975 (16)0.0380 (6)
H1A0.55880.67220.91040.046*
C20.6023 (3)0.4959 (3)0.85859 (17)0.0372 (7)
H2A0.52010.45480.89030.045*
C30.7277 (3)0.4361 (2)0.80616 (17)0.0325 (6)
H3A0.75110.34450.7950.039*
C40.8250 (3)0.5197 (2)0.78403 (16)0.0301 (5)
H4A0.93010.49690.75560.036*
C50.7600 (3)0.6282 (2)0.82490 (16)0.0328 (6)
H5A0.810.69770.82870.039*
C60.3404 (2)0.6697 (2)0.73870 (14)0.0191 (4)
H6A0.28740.72640.68520.023*
C70.2992 (2)0.8535 (2)0.83522 (16)0.0245 (5)
H7A0.34130.91150.78870.029*
C80.2488 (3)0.8869 (2)0.91958 (16)0.0280 (5)
H8A0.25610.96850.930.034*
C90.1876 (3)0.8034 (2)0.98953 (16)0.0302 (5)
H9A0.15430.82811.04690.036*
C100.1755 (2)0.6844 (2)0.97514 (15)0.0273 (5)
H10A0.13440.62681.02250.033*
C110.1724 (2)0.4232 (2)0.89921 (16)0.0259 (5)
H11A0.13330.41360.96110.031*
C120.1788 (2)0.3280 (2)0.84944 (17)0.0286 (5)
H12A0.14440.25230.87750.034*
C130.2356 (2)0.3428 (2)0.75838 (17)0.0273 (5)
H13A0.23680.27790.72470.033*
C140.2905 (2)0.4511 (2)0.71600 (16)0.0239 (5)
H14A0.32970.45980.65410.029*
C150.2880 (2)0.7342 (2)0.81871 (15)0.0203 (4)
C160.2244 (2)0.6503 (2)0.89033 (15)0.0220 (5)
C170.2242 (2)0.5333 (2)0.85688 (15)0.0222 (5)
C180.2872 (2)0.5465 (2)0.76560 (15)0.0210 (5)
C190.6192 (2)0.86760 (19)0.66605 (15)0.0224 (5)
H19A0.61120.92360.7120.027*
C200.3519 (2)0.9527 (2)0.60587 (16)0.0248 (5)
H20A0.31051.01210.64610.03*
C210.2667 (3)0.9381 (2)0.54421 (17)0.0298 (5)
H21A0.16590.98890.54160.036*
C220.3247 (3)0.8497 (2)0.48431 (16)0.0287 (5)
H22A0.26110.8390.44410.034*
C230.4706 (2)0.7793 (2)0.48319 (15)0.0235 (5)
H23A0.50940.72050.44220.028*
C240.8395 (2)0.6781 (2)0.49803 (15)0.0241 (5)
H24A0.81720.64180.45130.029*
C250.9851 (3)0.6621 (2)0.51474 (18)0.0312 (6)
H25A1.06450.61590.47840.037*
C261.0185 (3)0.7137 (2)0.58524 (18)0.0326 (6)
H26A1.12040.70210.59490.039*
C270.9089 (3)0.7794 (2)0.63988 (17)0.0282 (5)
H27A0.93390.8110.68810.034*
C280.5030 (2)0.87790 (19)0.60909 (15)0.0200 (4)
C290.5631 (2)0.79551 (19)0.54418 (14)0.0185 (4)
C300.7233 (2)0.74927 (19)0.55153 (14)0.0190 (4)
C310.7566 (2)0.80007 (19)0.62379 (14)0.0203 (4)
C320.8254 (3)1.0698 (2)0.77764 (16)0.0279 (5)
C330.6720 (3)1.1262 (2)0.77990 (17)0.0301 (5)
H33A0.63391.20320.7370.036*
C340.5739 (3)1.0711 (2)0.84437 (19)0.0356 (6)
H34A0.46941.11130.84590.043*
C350.6277 (3)0.9582 (2)0.90619 (18)0.0363 (6)
H35A0.56040.91940.94950.044*
C360.7790 (3)0.9024 (2)0.90458 (17)0.0352 (6)
H36A0.81650.82540.94760.042*
C370.8768 (3)0.9567 (2)0.84148 (17)0.0318 (6)
H37A0.98120.91640.84130.038*
C380.9341 (3)1.1292 (3)0.7093 (2)0.0481 (7)
H38A1.01081.1440.74120.072*
H38B0.88021.2130.67470.072*
H38C0.98211.06910.66760.072*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0294 (3)0.0187 (3)0.0243 (3)0.0091 (2)0.0016 (2)0.0063 (2)
Zr10.01916 (11)0.01453 (11)0.01689 (12)0.00478 (8)0.00162 (8)0.00174 (8)
C10.0457 (15)0.0388 (14)0.0186 (12)0.0117 (13)0.0128 (11)0.0042 (11)
C20.0289 (13)0.0523 (16)0.0242 (13)0.0176 (12)0.0132 (11)0.0214 (12)
C30.0466 (15)0.0167 (11)0.0339 (14)0.0034 (11)0.0220 (12)0.0015 (10)
C40.0216 (11)0.0386 (13)0.0254 (13)0.0013 (10)0.0077 (10)0.0007 (10)
C50.0491 (15)0.0287 (12)0.0262 (13)0.0144 (12)0.0207 (12)0.0002 (10)
C60.0175 (10)0.0193 (10)0.0193 (11)0.0051 (9)0.0007 (8)0.0012 (8)
C70.0220 (11)0.0239 (11)0.0265 (12)0.0056 (9)0.0016 (9)0.0036 (9)
C80.0292 (12)0.0284 (12)0.0280 (13)0.0052 (10)0.0063 (10)0.0085 (10)
C90.0310 (13)0.0362 (13)0.0225 (12)0.0028 (11)0.0046 (10)0.0092 (10)
C100.0234 (11)0.0345 (13)0.0218 (12)0.0067 (10)0.0022 (9)0.0014 (10)
C110.0215 (11)0.0263 (12)0.0258 (12)0.0062 (9)0.0028 (9)0.0042 (10)
C120.0249 (11)0.0232 (11)0.0362 (14)0.0096 (10)0.0053 (10)0.0034 (10)
C130.0247 (11)0.0213 (11)0.0368 (14)0.0060 (10)0.0050 (10)0.0060 (10)
C140.0219 (11)0.0243 (11)0.0250 (12)0.0059 (9)0.0022 (9)0.0032 (9)
C150.0152 (10)0.0212 (10)0.0226 (11)0.0020 (9)0.0059 (9)0.0010 (9)
C160.0178 (10)0.0256 (11)0.0211 (11)0.0038 (9)0.0043 (9)0.0013 (9)
C170.0174 (10)0.0232 (11)0.0239 (12)0.0037 (9)0.0039 (9)0.0004 (9)
C180.0171 (10)0.0206 (10)0.0239 (12)0.0042 (9)0.0052 (9)0.0002 (9)
C190.0312 (12)0.0148 (10)0.0226 (12)0.0083 (9)0.0019 (9)0.0034 (9)
C200.0271 (11)0.0163 (10)0.0244 (12)0.0031 (9)0.0050 (9)0.0022 (9)
C210.0212 (11)0.0235 (11)0.0355 (14)0.0036 (10)0.0020 (10)0.0103 (10)
C220.0260 (12)0.0322 (13)0.0279 (13)0.0142 (10)0.0083 (10)0.0062 (10)
C230.0292 (12)0.0224 (11)0.0201 (11)0.0112 (10)0.0038 (9)0.0004 (9)
C240.0281 (11)0.0201 (11)0.0222 (12)0.0071 (9)0.0029 (9)0.0022 (9)
C250.0239 (12)0.0235 (12)0.0387 (14)0.0042 (10)0.0068 (10)0.0018 (10)
C260.0204 (11)0.0300 (12)0.0439 (15)0.0125 (10)0.0059 (11)0.0101 (11)
C270.0280 (12)0.0269 (12)0.0320 (13)0.0145 (10)0.0106 (10)0.0038 (10)
C280.0238 (11)0.0130 (9)0.0217 (11)0.0068 (9)0.0001 (9)0.0012 (8)
C290.0209 (10)0.0160 (10)0.0173 (11)0.0073 (8)0.0005 (8)0.0024 (8)
C300.0214 (10)0.0147 (10)0.0204 (11)0.0079 (8)0.0006 (8)0.0015 (8)
C310.0253 (11)0.0168 (10)0.0207 (11)0.0111 (9)0.0031 (9)0.0007 (8)
C320.0325 (12)0.0286 (12)0.0262 (13)0.0101 (10)0.0011 (10)0.0103 (10)
C330.0387 (14)0.0213 (11)0.0325 (14)0.0042 (10)0.0100 (11)0.0093 (10)
C340.0261 (12)0.0378 (14)0.0484 (17)0.0069 (11)0.0005 (11)0.0232 (12)
C350.0465 (15)0.0375 (14)0.0322 (14)0.0217 (12)0.0089 (12)0.0155 (11)
C360.0528 (16)0.0246 (12)0.0286 (14)0.0077 (12)0.0066 (12)0.0066 (10)
C370.0304 (12)0.0284 (12)0.0355 (14)0.0001 (11)0.0058 (11)0.0114 (11)
C380.0502 (17)0.0554 (17)0.0418 (17)0.0236 (15)0.0075 (14)0.0098 (14)
Geometric parameters (Å, º) top
Cl1—Zr12.4537 (5)C15—C161.422 (3)
Zr1—C12.521 (2)C16—C171.462 (3)
Zr1—C22.515 (2)C17—C181.415 (3)
Zr1—C32.490 (2)C19—C311.430 (3)
Zr1—C42.467 (2)C19—C281.441 (3)
Zr1—C52.499 (2)C19—H19A1
Zr1—C62.355 (2)C20—C211.364 (3)
Zr1—C192.468 (2)C20—C281.419 (3)
Zr1—C282.6434 (19)C20—H20A0.95
Zr1—C292.617 (2)C21—C221.409 (4)
Zr1—C302.601 (2)C21—H21A0.95
Zr1—C312.565 (2)C22—C231.363 (3)
C1—C51.382 (4)C22—H22A0.95
C1—C21.391 (4)C23—C291.413 (3)
C1—H1A1C23—H23A0.95
C2—C31.401 (4)C24—C251.372 (3)
C2—H2A1C24—C301.411 (3)
C3—C41.405 (3)C24—H24A0.95
C3—H3A1C25—C261.411 (4)
C4—C51.396 (3)C25—H25A0.95
C4—H4A1C26—C271.362 (4)
C5—H5A1C26—H26A0.95
C6—C151.486 (3)C27—C311.421 (3)
C6—C181.497 (3)C27—H27A0.95
C6—H6A1C28—C291.424 (3)
C7—C81.386 (3)C29—C301.449 (3)
C7—C151.398 (3)C30—C311.430 (3)
C7—H7A0.95C32—C331.389 (3)
C8—C91.395 (3)C32—C371.393 (3)
C8—H8A0.95C32—C381.507 (4)
C9—C101.386 (3)C33—C341.390 (4)
C9—H9A0.95C33—H33A0.95
C10—C161.393 (3)C34—C351.379 (4)
C10—H10A0.95C34—H34A0.95
C11—C121.386 (3)C35—C361.371 (4)
C11—C171.395 (3)C35—H35A0.95
C11—H11A0.95C36—C371.372 (4)
C12—C131.395 (3)C36—H36A0.95
C12—H12A0.95C37—H37A0.95
C13—C141.394 (3)C38—H38A0.98
C13—H13A0.95C38—H38B0.98
C14—C181.394 (3)C38—H38C0.98
C14—H14A0.95
C6—Zr1—Cl197.23 (5)C10—C9—C8119.9 (2)
C6—Zr1—C4134.90 (8)C10—C9—H9A120.1
Cl1—Zr1—C494.36 (6)C8—C9—H9A120.1
C6—Zr1—C19100.25 (7)C9—C10—C16119.1 (2)
Cl1—Zr1—C19132.29 (5)C9—C10—H10A120.4
C4—Zr1—C19103.51 (8)C16—C10—H10A120.4
C6—Zr1—C3107.72 (8)C12—C11—C17118.9 (2)
Cl1—Zr1—C379.54 (6)C12—C11—H11A120.6
C4—Zr1—C332.94 (8)C17—C11—H11A120.6
C19—Zr1—C3134.22 (7)C11—C12—C13120.4 (2)
C6—Zr1—C5118.29 (8)C11—C12—H12A119.8
Cl1—Zr1—C5126.93 (6)C13—C12—H12A119.8
C4—Zr1—C532.65 (8)C14—C13—C12121.2 (2)
C19—Zr1—C581.20 (7)C14—C13—H13A119.4
C3—Zr1—C553.79 (8)C12—C13—H13A119.4
C6—Zr1—C280.83 (8)C18—C14—C13119.2 (2)
Cl1—Zr1—C2100.73 (7)C18—C14—H14A120.4
C4—Zr1—C254.18 (8)C13—C14—H14A120.4
C19—Zr1—C2125.66 (9)C7—C15—C16118.1 (2)
C3—Zr1—C232.51 (9)C7—C15—C6131.6 (2)
C5—Zr1—C253.37 (8)C16—C15—C6110.13 (18)
C6—Zr1—C187.22 (8)C10—C16—C15121.5 (2)
Cl1—Zr1—C1131.38 (6)C10—C16—C17130.5 (2)
C4—Zr1—C153.73 (8)C15—C16—C17107.99 (19)
C19—Zr1—C193.64 (8)C11—C17—C18121.1 (2)
C3—Zr1—C153.45 (8)C11—C17—C16130.9 (2)
C5—Zr1—C131.95 (9)C18—C17—C16108.07 (18)
C2—Zr1—C132.06 (9)C14—C18—C17119.29 (19)
C6—Zr1—C31130.91 (7)C14—C18—C6130.6 (2)
Cl1—Zr1—C31108.22 (5)C17—C18—C6110.08 (19)
C4—Zr1—C3185.07 (7)C31—C19—C28106.77 (19)
C19—Zr1—C3132.94 (7)C31—C19—Zr177.25 (11)
C3—Zr1—C31117.58 (8)C28—C19—Zr180.45 (12)
C5—Zr1—C3178.16 (8)C31—C19—H19A125
C2—Zr1—C31131.50 (7)C28—C19—H19A125
C1—Zr1—C31104.49 (8)Zr1—C19—H19A125
C6—Zr1—C30124.42 (7)C21—C20—C28119.2 (2)
Cl1—Zr1—C3079.07 (5)C21—C20—H20A120.4
C4—Zr1—C30100.54 (7)C28—C20—H20A120.4
C19—Zr1—C3054.50 (7)C20—C21—C22121.6 (2)
C3—Zr1—C30125.39 (8)C20—C21—H21A119.2
C5—Zr1—C30106.38 (8)C22—C21—H21A119.2
C2—Zr1—C30154.72 (7)C23—C22—C21121.0 (2)
C1—Zr1—C30135.89 (8)C23—C22—H22A119.5
C31—Zr1—C3032.12 (7)C21—C22—H22A119.5
C6—Zr1—C2992.19 (7)C22—C23—C29118.7 (2)
Cl1—Zr1—C2981.15 (5)C22—C23—H23A120.7
C4—Zr1—C29132.72 (7)C29—C23—H23A120.7
C19—Zr1—C2954.28 (7)C25—C24—C30118.8 (2)
C3—Zr1—C29153.75 (8)C25—C24—H24A120.6
C5—Zr1—C29130.64 (7)C30—C24—H24A120.6
C2—Zr1—C29172.92 (7)C24—C25—C26120.8 (2)
C1—Zr1—C29147.29 (8)C24—C25—H25A119.6
C31—Zr1—C2953.15 (6)C26—C25—H25A119.6
C30—Zr1—C2932.23 (6)C27—C26—C25121.9 (2)
C6—Zr1—C2879.51 (7)C27—C26—H26A119
Cl1—Zr1—C28111.11 (5)C25—C26—H26A119
C4—Zr1—C28135.02 (7)C26—C27—C31119.1 (2)
C19—Zr1—C2832.52 (7)C26—C27—H27A120.5
C3—Zr1—C28166.71 (7)C31—C27—H27A120.5
C5—Zr1—C28113.06 (7)C20—C28—C29118.6 (2)
C2—Zr1—C28144.26 (8)C20—C28—C19133.0 (2)
C1—Zr1—C28117.27 (8)C29—C28—C19108.38 (18)
C31—Zr1—C2852.49 (6)C20—C28—Zr1126.77 (14)
C30—Zr1—C2852.44 (6)C29—C28—Zr173.29 (11)
C29—Zr1—C2831.41 (7)C19—C28—Zr167.03 (11)
C5—C1—C2108.6 (2)C23—C29—C28120.66 (19)
C5—C1—Zr173.16 (14)C23—C29—C30131.6 (2)
C2—C1—Zr173.72 (14)C28—C29—C30107.53 (18)
C5—C1—H1A125.4C23—C29—Zr1120.95 (14)
C2—C1—H1A125.4C28—C29—Zr175.30 (11)
Zr1—C1—H1A125.4C30—C29—Zr173.25 (11)
C1—C2—C3107.7 (2)C24—C30—C31120.6 (2)
C1—C2—Zr174.21 (13)C24—C30—C29131.9 (2)
C3—C2—Zr172.78 (13)C31—C30—C29107.33 (19)
C1—C2—H2A125.9C24—C30—Zr1122.46 (13)
C3—C2—H2A125.9C31—C30—Zr172.55 (12)
Zr1—C2—H2A125.9C29—C30—Zr174.51 (11)
C2—C3—C4107.9 (2)C27—C31—C30118.9 (2)
C2—C3—Zr174.71 (12)C27—C31—C19132.4 (2)
C4—C3—Zr172.61 (12)C30—C31—C19108.75 (18)
C2—C3—H3A125.7C27—C31—Zr1122.10 (14)
C4—C3—H3A125.7C30—C31—Zr175.33 (12)
Zr1—C3—H3A125.7C19—C31—Zr169.81 (11)
C5—C4—C3107.3 (2)C33—C32—C37117.9 (2)
C5—C4—Zr174.96 (13)C33—C32—C38121.5 (2)
C3—C4—Zr174.45 (12)C37—C32—C38120.5 (2)
C5—C4—H4A125.8C32—C33—C34120.6 (2)
C3—C4—H4A125.8C32—C33—H33A119.7
Zr1—C4—H4A125.8C34—C33—H33A119.7
C1—C5—C4108.5 (2)C35—C34—C33120.3 (2)
C1—C5—Zr174.89 (14)C35—C34—H34A119.9
C4—C5—Zr172.39 (13)C33—C34—H34A119.9
C1—C5—H5A125.5C36—C35—C34119.4 (2)
C4—C5—H5A125.5C36—C35—H35A120.3
Zr1—C5—H5A125.5C34—C35—H35A120.3
C15—C6—C18103.35 (17)C35—C36—C37120.7 (2)
C15—C6—Zr1111.95 (13)C35—C36—H36A119.6
C18—C6—Zr1115.03 (13)C37—C36—H36A119.6
C15—C6—H6A108.8C36—C37—C32121.1 (2)
C18—C6—H6A108.8C36—C37—H37A119.5
Zr1—C6—H6A108.8C32—C37—H37A119.5
C8—C7—C15119.8 (2)C32—C38—H38A109.5
C8—C7—H7A120.1C32—C38—H38B109.5
C15—C7—H7A120.1H38A—C38—H38B109.5
C7—C8—C9121.5 (2)C32—C38—H38C109.5
C7—C8—H8A119.2H38A—C38—H38C109.5
C9—C8—H8A119.2H38B—C38—H38C109.5
C6—Zr1—C1—C5167.02 (15)C1—Zr1—C19—C28138.95 (13)
Cl1—Zr1—C1—C595.79 (15)C31—Zr1—C19—C28109.75 (18)
C4—Zr1—C1—C537.18 (14)C30—Zr1—C19—C2874.09 (13)
C19—Zr1—C1—C566.94 (15)C29—Zr1—C19—C2834.14 (11)
C3—Zr1—C1—C578.42 (16)C28—C20—C21—C220.7 (3)
C2—Zr1—C1—C5115.8 (2)C20—C21—C22—C232.9 (3)
C31—Zr1—C1—C535.38 (16)C21—C22—C23—C290.6 (3)
C30—Zr1—C1—C527.30 (19)C30—C24—C25—C261.3 (3)
C29—Zr1—C1—C577.34 (19)C24—C25—C26—C270.7 (3)
C28—Zr1—C1—C590.34 (15)C25—C26—C27—C311.8 (3)
C6—Zr1—C1—C277.13 (15)C21—C20—C28—C293.5 (3)
Cl1—Zr1—C1—C220.06 (19)C21—C20—C28—C19178.2 (2)
C4—Zr1—C1—C278.67 (16)C21—C20—C28—Zr186.5 (2)
C19—Zr1—C1—C2177.22 (15)C31—C19—C28—C20167.0 (2)
C3—Zr1—C1—C237.42 (14)Zr1—C19—C28—C20119.6 (2)
C5—Zr1—C1—C2115.8 (2)C31—C19—C28—C2911.5 (2)
C31—Zr1—C1—C2151.22 (14)Zr1—C19—C28—C2961.97 (14)
C30—Zr1—C1—C2143.15 (14)C31—C19—C28—Zr173.46 (13)
C29—Zr1—C1—C2166.81 (14)C6—Zr1—C28—C201.41 (19)
C28—Zr1—C1—C2153.82 (14)Cl1—Zr1—C28—C2095.19 (19)
C5—C1—C2—C30.3 (3)C4—Zr1—C28—C20144.70 (18)
Zr1—C1—C2—C365.63 (15)C19—Zr1—C28—C20127.4 (3)
C5—C1—C2—Zr165.38 (16)C3—Zr1—C28—C20122.8 (3)
C6—Zr1—C2—C199.48 (16)C5—Zr1—C28—C20115.01 (19)
Cl1—Zr1—C2—C1164.82 (14)C2—Zr1—C28—C2056.2 (2)
C4—Zr1—C2—C177.19 (16)C1—Zr1—C28—C2079.9 (2)
C19—Zr1—C2—C13.41 (19)C31—Zr1—C28—C20167.6 (2)
C3—Zr1—C2—C1114.7 (2)C30—Zr1—C28—C20151.6 (2)
C5—Zr1—C2—C136.41 (14)C29—Zr1—C28—C20113.6 (2)
C31—Zr1—C2—C138.50 (19)C6—Zr1—C28—C29112.19 (12)
C30—Zr1—C2—C177.7 (3)Cl1—Zr1—C28—C2918.41 (12)
C28—Zr1—C2—C142.2 (2)C4—Zr1—C28—C29101.70 (14)
C6—Zr1—C2—C3145.82 (15)C19—Zr1—C28—C29119.00 (18)
Cl1—Zr1—C2—C350.11 (14)C3—Zr1—C28—C29123.5 (3)
C4—Zr1—C2—C337.51 (14)C5—Zr1—C28—C29131.39 (13)
C19—Zr1—C2—C3118.12 (15)C2—Zr1—C28—C29169.84 (13)
C5—Zr1—C2—C378.29 (15)C1—Zr1—C28—C29166.51 (12)
C1—Zr1—C2—C3114.7 (2)C31—Zr1—C28—C2978.83 (13)
C31—Zr1—C2—C376.21 (18)C30—Zr1—C28—C2938.00 (11)
C30—Zr1—C2—C337.0 (3)C6—Zr1—C28—C19128.81 (14)
C28—Zr1—C2—C3156.90 (13)Cl1—Zr1—C28—C19137.42 (12)
C1—C2—C3—C41.0 (2)C4—Zr1—C28—C1917.31 (17)
Zr1—C2—C3—C465.55 (15)C3—Zr1—C28—C194.5 (4)
C1—C2—C3—Zr166.56 (15)C5—Zr1—C28—C1912.39 (15)
C6—Zr1—C3—C235.61 (16)C2—Zr1—C28—C1971.16 (17)
Cl1—Zr1—C3—C2129.94 (15)C1—Zr1—C28—C1947.51 (15)
C4—Zr1—C3—C2114.8 (2)C31—Zr1—C28—C1940.18 (12)
C19—Zr1—C3—C289.24 (17)C30—Zr1—C28—C1981.01 (13)
C5—Zr1—C3—C276.88 (16)C29—Zr1—C28—C19119.00 (18)
C1—Zr1—C3—C236.89 (14)C22—C23—C29—C283.6 (3)
C31—Zr1—C3—C2124.87 (15)C22—C23—C29—C30170.9 (2)
C30—Zr1—C3—C2161.63 (14)C22—C23—C29—Zr194.3 (2)
C29—Zr1—C3—C2173.21 (15)C20—C28—C29—C235.7 (3)
C28—Zr1—C3—C285.8 (4)C19—C28—C29—C23175.60 (18)
C6—Zr1—C3—C4150.38 (14)Zr1—C28—C29—C23117.56 (18)
Cl1—Zr1—C3—C4115.29 (15)C20—C28—C29—C30170.04 (17)
C19—Zr1—C3—C425.5 (2)C19—C28—C29—C308.7 (2)
C5—Zr1—C3—C437.89 (14)Zr1—C28—C29—C3066.71 (13)
C2—Zr1—C3—C4114.8 (2)C20—C28—C29—Zr1123.25 (17)
C1—Zr1—C3—C477.87 (16)C19—C28—C29—Zr158.04 (14)
C31—Zr1—C3—C410.10 (17)C6—Zr1—C29—C2351.57 (17)
C30—Zr1—C3—C446.87 (17)Cl1—Zr1—C29—C2345.42 (16)
C29—Zr1—C3—C472.0 (2)C4—Zr1—C29—C23133.18 (17)
C28—Zr1—C3—C428.9 (4)C19—Zr1—C29—C23152.6 (2)
C2—C3—C4—C51.4 (2)C3—Zr1—C29—C2388.4 (2)
Zr1—C3—C4—C568.33 (15)C5—Zr1—C29—C23177.32 (16)
C2—C3—C4—Zr166.94 (15)C1—Zr1—C29—C23139.79 (18)
C6—Zr1—C4—C571.66 (18)C31—Zr1—C29—C23166.2 (2)
Cl1—Zr1—C4—C5176.38 (14)C30—Zr1—C29—C23128.9 (2)
C19—Zr1—C4—C548.18 (16)C28—Zr1—C29—C23117.2 (2)
C3—Zr1—C4—C5113.3 (2)C6—Zr1—C29—C2865.66 (12)
C2—Zr1—C4—C576.30 (16)Cl1—Zr1—C29—C28162.65 (12)
C1—Zr1—C4—C536.36 (14)C4—Zr1—C29—C28109.60 (14)
C31—Zr1—C4—C575.67 (15)C19—Zr1—C29—C2835.39 (12)
C30—Zr1—C4—C5103.94 (15)C3—Zr1—C29—C28154.35 (15)
C29—Zr1—C4—C5101.64 (16)C5—Zr1—C29—C2865.46 (15)
C28—Zr1—C4—C557.65 (18)C1—Zr1—C29—C2822.6 (2)
C6—Zr1—C4—C341.64 (19)C31—Zr1—C29—C2876.56 (13)
Cl1—Zr1—C4—C363.08 (14)C30—Zr1—C29—C28113.83 (17)
C19—Zr1—C4—C3161.48 (14)C6—Zr1—C29—C30179.49 (12)
C5—Zr1—C4—C3113.3 (2)Cl1—Zr1—C29—C3083.52 (11)
C2—Zr1—C4—C337.00 (15)C4—Zr1—C29—C304.24 (16)
C1—Zr1—C4—C376.95 (16)C19—Zr1—C29—C3078.44 (13)
C31—Zr1—C4—C3171.02 (15)C3—Zr1—C29—C3040.5 (2)
C30—Zr1—C4—C3142.76 (14)C5—Zr1—C29—C3048.38 (16)
C29—Zr1—C4—C3145.06 (14)C1—Zr1—C29—C3091.27 (18)
C28—Zr1—C4—C3170.95 (13)C31—Zr1—C29—C3037.27 (12)
C2—C1—C5—C40.6 (3)C28—Zr1—C29—C30113.83 (17)
Zr1—C1—C5—C465.13 (15)C25—C24—C30—C312.1 (3)
C2—C1—C5—Zr165.75 (16)C25—C24—C30—C29171.7 (2)
C3—C4—C5—C11.2 (2)C25—C24—C30—Zr190.0 (2)
Zr1—C4—C5—C166.76 (16)C23—C29—C30—C243.1 (4)
C3—C4—C5—Zr168.00 (15)C28—C29—C30—C24171.9 (2)
C6—Zr1—C5—C114.76 (17)Zr1—C29—C30—C24119.9 (2)
Cl1—Zr1—C5—C1110.94 (14)C23—C29—C30—C31177.6 (2)
C4—Zr1—C5—C1115.5 (2)C28—C29—C30—C312.5 (2)
C19—Zr1—C5—C1111.70 (15)Zr1—C29—C30—C3165.62 (14)
C3—Zr1—C5—C177.23 (16)C23—C29—C30—Zr1116.8 (2)
C2—Zr1—C5—C136.53 (15)C28—C29—C30—Zr168.11 (13)
C31—Zr1—C5—C1145.06 (16)C6—Zr1—C30—C24130.72 (17)
C30—Zr1—C5—C1160.57 (14)Cl1—Zr1—C30—C2439.38 (16)
C29—Zr1—C5—C1136.00 (14)C4—Zr1—C30—C2453.06 (18)
C28—Zr1—C5—C1105.00 (15)C19—Zr1—C30—C24152.2 (2)
C6—Zr1—C5—C4130.21 (14)C3—Zr1—C30—C2429.3 (2)
Cl1—Zr1—C5—C44.51 (17)C5—Zr1—C30—C2486.14 (18)
C19—Zr1—C5—C4132.85 (15)C2—Zr1—C30—C2452.6 (3)
C3—Zr1—C5—C438.22 (14)C1—Zr1—C30—C24100.80 (19)
C2—Zr1—C5—C478.92 (15)C31—Zr1—C30—C24115.6 (2)
C1—Zr1—C5—C4115.5 (2)C29—Zr1—C30—C24130.1 (2)
C31—Zr1—C5—C499.48 (15)C28—Zr1—C30—C24167.1 (2)
C30—Zr1—C5—C483.98 (15)C6—Zr1—C30—C31113.67 (12)
C29—Zr1—C5—C4108.55 (14)Cl1—Zr1—C30—C31155.00 (12)
C28—Zr1—C5—C4139.55 (13)C4—Zr1—C30—C3162.55 (13)
Cl1—Zr1—C6—C15162.55 (13)C19—Zr1—C30—C3136.62 (12)
C4—Zr1—C6—C1558.99 (18)C3—Zr1—C30—C3186.36 (14)
C19—Zr1—C6—C1562.03 (15)C5—Zr1—C30—C3129.47 (14)
C3—Zr1—C6—C1581.28 (15)C2—Zr1—C30—C3163.0 (2)
C5—Zr1—C6—C1523.42 (16)C1—Zr1—C30—C3114.81 (17)
C2—Zr1—C6—C1562.80 (15)C29—Zr1—C30—C31114.28 (17)
C1—Zr1—C6—C1531.18 (14)C28—Zr1—C30—C3177.33 (13)
C31—Zr1—C6—C1575.65 (16)C6—Zr1—C30—C290.61 (15)
C30—Zr1—C6—C15115.76 (14)Cl1—Zr1—C30—C2990.72 (11)
C29—Zr1—C6—C15116.09 (14)C4—Zr1—C30—C29176.83 (12)
C28—Zr1—C6—C1587.23 (14)C19—Zr1—C30—C2977.66 (13)
Cl1—Zr1—C6—C1844.97 (15)C3—Zr1—C30—C29159.36 (12)
C4—Zr1—C6—C1858.59 (19)C5—Zr1—C30—C29143.75 (12)
C19—Zr1—C6—C18179.61 (15)C2—Zr1—C30—C29177.28 (18)
C3—Zr1—C6—C1836.31 (16)C1—Zr1—C30—C29129.09 (13)
C5—Zr1—C6—C1894.16 (16)C31—Zr1—C30—C29114.28 (17)
C2—Zr1—C6—C1854.78 (16)C28—Zr1—C30—C2936.95 (11)
C1—Zr1—C6—C1886.40 (16)C26—C27—C31—C300.9 (3)
C31—Zr1—C6—C18166.76 (13)C26—C27—C31—C19177.6 (2)
C30—Zr1—C6—C18126.66 (14)C26—C27—C31—Zr191.2 (2)
C29—Zr1—C6—C18126.33 (15)C24—C30—C31—C271.0 (3)
C28—Zr1—C6—C18155.19 (16)C29—C30—C31—C27174.14 (17)
C15—C7—C8—C90.5 (3)Zr1—C30—C31—C27118.90 (18)
C7—C8—C9—C100.3 (3)C24—C30—C31—C19179.87 (18)
C8—C9—C10—C160.3 (3)C29—C30—C31—C194.7 (2)
C17—C11—C12—C130.3 (3)Zr1—C30—C31—C1962.27 (14)
C11—C12—C13—C141.6 (3)C24—C30—C31—Zr1117.86 (18)
C12—C13—C14—C180.5 (3)C29—C30—C31—Zr166.96 (13)
C8—C7—C15—C160.0 (3)C28—C19—C31—C27168.7 (2)
C8—C7—C15—C6175.5 (2)Zr1—C19—C31—C27115.6 (2)
C18—C6—C15—C7178.3 (2)C28—C19—C31—C309.9 (2)
Zr1—C6—C15—C757.3 (3)Zr1—C19—C31—C3065.83 (14)
C18—C6—C15—C165.9 (2)C28—C19—C31—Zr175.78 (13)
Zr1—C6—C15—C16118.47 (15)C6—Zr1—C31—C27153.34 (17)
C9—C10—C16—C150.8 (3)Cl1—Zr1—C31—C2789.24 (18)
C9—C10—C16—C17179.7 (2)C4—Zr1—C31—C273.73 (19)
C7—C15—C16—C100.6 (3)C19—Zr1—C31—C27128.1 (2)
C6—C15—C16—C10175.82 (18)C3—Zr1—C31—C271.8 (2)
C7—C15—C16—C17179.76 (18)C5—Zr1—C31—C2736.02 (19)
C6—C15—C16—C173.8 (2)C2—Zr1—C31—C2734.3 (2)
C12—C11—C17—C182.1 (3)C1—Zr1—C31—C2754.3 (2)
C12—C11—C17—C16176.5 (2)C30—Zr1—C31—C27115.1 (2)
C10—C16—C17—C111.6 (4)C29—Zr1—C31—C27152.6 (2)
C15—C16—C17—C11178.8 (2)C28—Zr1—C31—C27167.7 (2)
C10—C16—C17—C18179.6 (2)C6—Zr1—C31—C3091.52 (14)
C15—C16—C17—C180.1 (2)Cl1—Zr1—C31—C3025.90 (12)
C13—C14—C18—C171.9 (3)C4—Zr1—C31—C30118.88 (13)
C13—C14—C18—C6178.66 (19)C19—Zr1—C31—C30116.76 (17)
C11—C17—C18—C143.2 (3)C3—Zr1—C31—C30113.38 (13)
C16—C17—C18—C14175.69 (18)C5—Zr1—C31—C30151.16 (13)
C11—C17—C18—C6177.20 (18)C2—Zr1—C31—C30149.45 (13)
C16—C17—C18—C63.9 (2)C1—Zr1—C31—C30169.41 (12)
C15—C6—C18—C14173.6 (2)C29—Zr1—C31—C3037.43 (11)
Zr1—C6—C18—C1464.1 (3)C28—Zr1—C31—C3077.13 (13)
C15—C6—C18—C175.9 (2)C6—Zr1—C31—C1925.23 (16)
Zr1—C6—C18—C17116.40 (16)Cl1—Zr1—C31—C19142.66 (11)
C6—Zr1—C19—C31160.89 (12)C4—Zr1—C31—C19124.37 (13)
Cl1—Zr1—C19—C3151.17 (14)C3—Zr1—C31—C19129.86 (13)
C4—Zr1—C19—C3157.76 (13)C5—Zr1—C31—C1992.08 (13)
C3—Zr1—C19—C3171.70 (16)C2—Zr1—C31—C1993.79 (15)
C5—Zr1—C19—C3181.77 (13)C1—Zr1—C31—C1973.83 (13)
C2—Zr1—C19—C31113.11 (13)C30—Zr1—C31—C19116.76 (17)
C1—Zr1—C19—C31111.30 (13)C29—Zr1—C31—C1979.33 (13)
C30—Zr1—C19—C3135.67 (11)C28—Zr1—C31—C1939.63 (12)
C29—Zr1—C19—C3175.61 (13)C37—C32—C33—C340.3 (3)
C28—Zr1—C19—C31109.75 (18)C38—C32—C33—C34179.0 (2)
C6—Zr1—C19—C2851.14 (13)C32—C33—C34—C351.0 (4)
Cl1—Zr1—C19—C2858.58 (14)C33—C34—C35—C361.3 (4)
C4—Zr1—C19—C28167.51 (12)C34—C35—C36—C371.0 (4)
C3—Zr1—C19—C28178.54 (13)C35—C36—C37—C320.3 (4)
C5—Zr1—C19—C28168.48 (14)C33—C32—C37—C360.1 (3)
C2—Zr1—C19—C28137.14 (12)C38—C32—C37—C36179.4 (2)

Experimental details

Crystal data
Chemical formula[Zr(C5H5)(C13H9)2Cl]·C7H8
Mr614.3
Crystal system, space groupTriclinic, P1
Temperature (K)150
a, b, c (Å)9.3091 (4), 10.7937 (4), 15.1219 (8)
α, β, γ (°)77.231 (4), 81.966 (4), 74.135 (4)
V3)1420.31 (11)
Z2
Radiation typeMo Kα
µ (mm1)0.51
Crystal size (mm)0.35 × 0.16 × 0.07
Data collection
DiffractometerOxford Diffraction Xcalibur Sapphire2 large Be window
Absorption correctionAnalytical
(CrysAlis PRO; Oxford Diffraction, 2010)
Tmin, Tmax0.894, 0.97
No. of measured, independent and
observed [I > 2σ(I)] reflections
8923, 5572, 4680
Rint0.022
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.076, 1.05
No. of reflections5572
No. of parameters362
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.59, 0.33

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX32 (Farrugia, 1999).

Selected bond lengths (Å) top
Cl1—Zr12.4537 (5)Zr1—C62.355 (2)
Zr1—C12.521 (2)Zr1—C192.468 (2)
Zr1—C22.515 (2)Zr1—C282.6434 (19)
Zr1—C32.490 (2)Zr1—C292.617 (2)
Zr1—C42.467 (2)Zr1—C302.601 (2)
Zr1—C52.499 (2)Zr1—C312.565 (2)
 

Acknowledgements

AŁ-K and JP thank the Polish State Committee of Scientific Research (project No. N N204 145038) for financial support.

References

First citationAlt, H. G. & Samuel, E. (1998). Chem. Soc. Rev. 27, 323–329.  CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationLund, E. C. & Livinghouse, T. (1990). Organometallics, 9, 2426–2427.  CrossRef CAS Web of Science Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSamuel, E. & Setton, R. (1965). J. Organomet. Chem. 4, 156–158.  CrossRef CAS Web of Science Google Scholar
First citationSchmid, M. A., Alt, H. G. & Milius, W. (1995). J. Organomet. Chem. 501, 101–106.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds