organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(2-meth­­oxy­phen­yl)(phen­yl)phosphine selenide

aResearch Centre in Synthesis and Catalysis, Department of Chemistry, University of Johannesburg (APK Campus), PO Box 524, Auckland Park, Johannesburg 2006, South Africa
*Correspondence e-mail: mulleraj@uj.ac.za

(Received 3 December 2010; accepted 7 December 2010; online 11 December 2010)

The title compound, C20H19O2PSe or SePPh(2-OMe-C6H3)2, crystallizes with two distinct orientations for the meth­oxy groups. The Se=P bond is 2.1170 (7) Å and the cone angle is 176.0°. Intra­molecular C—H⋯Se inter­actions occur. In the crystal, mol­ecules are linked by inter­molecular C—H⋯Se inter­actions.

Related literature

For bond-length data, see: Allen et al. (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]). For our study of phospho­rus ligands, see: Muller et al. (2006[Muller, A., Meijboom, R. & Roodt, A. (2006). J. Organomet. Chem. 691, 5794-5801.], 2008[Muller, A., Otto, S. & Roodt, A. (2008). Dalton Trans. pp. 650-657.]). For the cone angle, see: Tolman (1977[Tolman, C. A. (1977). Chem. Rev. 77, 313-348.]). For the synthesis of ortho-substituted aryl­alkyl­phosphanes, see: Riihimäki et al. (2003[Riihimäki, H., Kangas, T., Suomalainen, P., Reinius, H. K., Jääskeläinen, S., Haukka, M., Krause, A. O. I., Pakkanen, T. A. & Pursiainen, J. T. (2003). J. Mol. Catal. A Chem. 200, 81-94.]).

[Scheme 1]

Experimental

Crystal data
  • C20H19O2PSe

  • Mr = 401.28

  • Monoclinic, P 21 /c

  • a = 8.9552 (4) Å

  • b = 13.2737 (6) Å

  • c = 15.9593 (6) Å

  • β = 104.885 (1)°

  • V = 1833.40 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.14 mm−1

  • T = 100 K

  • 0.1 × 0.07 × 0.06 mm

Data collection
  • Bruker X8 APEXII 4K Kappa CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). SADABS, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.814, Tmax = 0.882

  • 37384 measured reflections

  • 5078 independent reflections

  • 3483 reflections with I > 2σ(I)

  • Rint = 0.068

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.096

  • S = 1.05

  • 5078 reflections

  • 219 parameters

  • H-atom parameters constrained

  • Δρmax = 0.66 e Å−3

  • Δρmin = −0.56 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13⋯Se1i 0.95 2.9 3.775 (3) 154
C15—H15⋯Se1ii 0.95 2.96 3.740 (3) 140
C16—H16⋯Se1 0.95 2.75 3.333 (3) 120
C32—H32⋯Se1 0.95 2.97 3.462 (3) 114
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) -x+1, -y+1, -z.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2004[Bruker (2004). SADABS, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus and XPREP (Bruker, 2004[Bruker (2004). SADABS, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The evaluation of the electronic parameter of tertiary phosphines is a study that spans over several decades, and even today attracts attention due to its importance. As part of a systematic investigation we are studying selenium bonded phosphorus ligands (see Muller et al. 2008) to give insight on the nature of these ligands. There is no steric crowding effect, albeit crystal packing effects, as normally found in transition metal complexes with bulky ligands, e.g. in trans-[Rh(CO)Cl{P(OC6H5)3}2] cone angle variations from 156° to 167° was observed for the two phosphite ligands (Muller, et al. 2006). Using the geometries obtained from the selenium bonded phosphorus ligands and the 31P NMR J(31P-77Se) couplings, it would be possible to obtain more information regarding the nature of the phosphorous substituted ligands.

Geometrical parameters of the molecule are as expected (Allen, 2002). Selenium atom and the three aryl groups adopt a distorted tetrahedral arrangement about phosphorous (Fig. 1). The cone angle of 176.0 ° can be calculated for the Se—P distance adjusted to 2.28 Å (the default value from Tolman, 1977). The cone value observed in the title compound is close to the value 178 (7) ° calculated from data of 5 metal bonded phosphines extracted from Cambridge Structural Database (Version 5.31, update of August; Allen, 2002).

Two different orientations for the methoxy moieties might be explained by some weak interactions (Table 2) forcing them into the conformations observed.

Related literature top

For bond-length data, see: Allen et al. (2002). For our study of selenium-bonded phosphorus ligands, see: Muller et al. (2006, 2008). For the cone angle, see: Tolman (1977). For the synthesis of ortho-substituted arylalkylphosphanes, see: Riihimäki et al. (2003).

Experimental top

PPh(2-OMe-C6H4)2 were prepared either by direct ortho metallation of anisole with BuLi followed the addition of the appropriate chlorophosphine or by metal/halogen exchange between BuLi and 1-bromo-2-methoxybenzene followed by the addition of PPhCl2 according to established methods (Riihimäki et al. 2003).

Eqimolar amounts of KSeCN and the PPh(2-OMe-C6H4)2 compound (ca. 0.04 mmol) were dissolved in the minimum amounts of methanol (10 – 20 mL). The KSeCN solution was added drop wise (5 min.) to the phosphine solution with stirring at room temperature. The final solution was left to evaporate slowly until dry to give crystals suitable for a single crystal X-ray study.

Analytical data: 31P {H} NMR (CDCl3, 121.42 MHz): For PPh(2-OMe-C6H4)2 δ = -26.41 (s) For SePPh(2-OMe-C6H4)2 δ = 28.42 (t, 1JP-Se = 717.5 Hz)

Refinement top

The aromatic and methylene H atoms were placed in geometrically idealised positions (C—H = 0.93 – 0.98 Å) and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C) and Uiso(H) = 1.5Ueq(C) respectively, with torsion angles refined from the electron density for the methyl groups. The highest residual electron density was located 1.01 Å from Se.

Structure description top

The evaluation of the electronic parameter of tertiary phosphines is a study that spans over several decades, and even today attracts attention due to its importance. As part of a systematic investigation we are studying selenium bonded phosphorus ligands (see Muller et al. 2008) to give insight on the nature of these ligands. There is no steric crowding effect, albeit crystal packing effects, as normally found in transition metal complexes with bulky ligands, e.g. in trans-[Rh(CO)Cl{P(OC6H5)3}2] cone angle variations from 156° to 167° was observed for the two phosphite ligands (Muller, et al. 2006). Using the geometries obtained from the selenium bonded phosphorus ligands and the 31P NMR J(31P-77Se) couplings, it would be possible to obtain more information regarding the nature of the phosphorous substituted ligands.

Geometrical parameters of the molecule are as expected (Allen, 2002). Selenium atom and the three aryl groups adopt a distorted tetrahedral arrangement about phosphorous (Fig. 1). The cone angle of 176.0 ° can be calculated for the Se—P distance adjusted to 2.28 Å (the default value from Tolman, 1977). The cone value observed in the title compound is close to the value 178 (7) ° calculated from data of 5 metal bonded phosphines extracted from Cambridge Structural Database (Version 5.31, update of August; Allen, 2002).

Two different orientations for the methoxy moieties might be explained by some weak interactions (Table 2) forcing them into the conformations observed.

For bond-length data, see: Allen et al. (2002). For our study of selenium-bonded phosphorus ligands, see: Muller et al. (2006, 2008). For the cone angle, see: Tolman (1977). For the synthesis of ortho-substituted arylalkylphosphanes, see: Riihimäki et al. (2003).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus and XPREP (Bruker, 2004); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. View of (I) (50% probability displacement ellipsoids). H atoms have been omitted for clarity. For the C atoms, the first digit indicates the ring number and the second digit indicates the position of the atom in the ring.
Bis(2-methoxyphenyl)(phenyl)phosphine selenide top
Crystal data top
C20H19O2PSeF(000) = 816
Mr = 401.28Dx = 1.454 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 7311 reflections
a = 8.9552 (4) Åθ = 2.4–28.7°
b = 13.2737 (6) ŵ = 2.14 mm1
c = 15.9593 (6) ÅT = 100 K
β = 104.885 (1)°Cuboid, colourless
V = 1833.40 (14) Å30.1 × 0.07 × 0.06 mm
Z = 4
Data collection top
Bruker X8 APEXII 4K Kappa CCD
diffractometer
5078 independent reflections
Graphite monochromator3483 reflections with I > 2σ(I)
Detector resolution: 8.4 pixels mm-1Rint = 0.068
ω and φ scansθmax = 29.5°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1212
Tmin = 0.814, Tmax = 0.882k = 1818
37384 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0352P)2 + 1.667P]
where P = (Fo2 + 2Fc2)/3
5078 reflections(Δ/σ)max = 0.001
219 parametersΔρmax = 0.66 e Å3
0 restraintsΔρmin = 0.56 e Å3
Crystal data top
C20H19O2PSeV = 1833.40 (14) Å3
Mr = 401.28Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.9552 (4) ŵ = 2.14 mm1
b = 13.2737 (6) ÅT = 100 K
c = 15.9593 (6) Å0.1 × 0.07 × 0.06 mm
β = 104.885 (1)°
Data collection top
Bruker X8 APEXII 4K Kappa CCD
diffractometer
5078 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
3483 reflections with I > 2σ(I)
Tmin = 0.814, Tmax = 0.882Rint = 0.068
37384 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.096H-atom parameters constrained
S = 1.05Δρmax = 0.66 e Å3
5078 reflectionsΔρmin = 0.56 e Å3
219 parameters
Special details top

Experimental. The intensity data was collected on a Bruker X8 Apex II 4 K Kappa CCD diffractometer using an exposure time of 20 s/frame. A total of 1897 frames were collected with a frame width of 0.5° covering up to θ = 29.48° with 99.6% completeness accomplished.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.79534 (8)0.29050 (5)0.06864 (4)0.02021 (14)
Se10.73477 (4)0.42323 (2)0.125712 (17)0.02827 (9)
C110.6822 (3)0.27995 (19)0.04376 (16)0.0203 (5)
C120.7089 (3)0.2045 (2)0.09973 (16)0.0233 (5)
C130.6251 (3)0.2023 (2)0.18633 (17)0.0308 (6)
H130.64370.15110.2240.037*
C140.5148 (4)0.2752 (3)0.21685 (19)0.0377 (7)
H140.45770.27390.27590.045*
C150.4862 (3)0.3496 (2)0.16343 (18)0.0338 (7)
H150.40950.3990.18540.041*
C160.5697 (3)0.3522 (2)0.07726 (16)0.0248 (6)
H160.54990.40410.04050.03*
O10.8187 (2)0.13463 (15)0.06510 (12)0.0325 (5)
C10.8732 (4)0.0704 (2)0.1232 (2)0.0415 (8)
H1A0.79330.02090.14870.062*
H1B0.96680.03530.09130.062*
H1C0.89670.11120.16940.062*
C210.7630 (3)0.17564 (19)0.12269 (17)0.0237 (6)
C220.8553 (3)0.1529 (2)0.20616 (17)0.0265 (6)
C230.8299 (4)0.0648 (2)0.2478 (2)0.0374 (7)
H230.89430.04840.30330.045*
C240.7099 (4)0.0011 (2)0.2076 (2)0.0439 (8)
H240.69290.05920.23590.053*
C250.6152 (4)0.0241 (2)0.1272 (2)0.0400 (8)
H250.53160.01890.10090.048*
C260.6430 (3)0.1103 (2)0.08520 (19)0.0300 (6)
H260.57870.12540.02940.036*
O20.9673 (2)0.22128 (15)0.24085 (12)0.0317 (5)
C21.0661 (4)0.2012 (3)0.32533 (19)0.0404 (8)
H2A1.00430.19970.36790.061*
H2B1.14440.25430.34090.061*
H2C1.1170.13590.32490.061*
C310.9970 (3)0.2904 (2)0.06549 (16)0.0235 (5)
C321.0691 (3)0.3820 (2)0.05993 (17)0.0307 (6)
H321.01430.44330.05970.037*
C331.2217 (4)0.3836 (3)0.0548 (2)0.0405 (8)
H331.27040.44610.04990.049*
C341.3027 (4)0.2952 (3)0.05663 (19)0.0413 (8)
H341.4070.29680.05320.05*
C351.2326 (4)0.2042 (3)0.0634 (2)0.0387 (7)
H351.28870.14320.06480.046*
C361.0799 (3)0.2014 (2)0.06837 (18)0.0302 (6)
H361.03210.13860.07370.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0238 (3)0.0198 (3)0.0160 (3)0.0016 (3)0.0031 (3)0.0015 (2)
Se10.04196 (18)0.02334 (14)0.02004 (13)0.00041 (13)0.00894 (11)0.00166 (11)
C110.0204 (13)0.0229 (12)0.0172 (12)0.0029 (10)0.0042 (10)0.0016 (10)
C120.0245 (14)0.0251 (13)0.0207 (13)0.0018 (11)0.0066 (11)0.0018 (10)
C130.0346 (16)0.0380 (16)0.0201 (13)0.0036 (13)0.0075 (12)0.0070 (12)
C140.0349 (17)0.055 (2)0.0203 (14)0.0018 (15)0.0012 (12)0.0016 (14)
C150.0277 (15)0.0454 (18)0.0257 (14)0.0090 (13)0.0021 (12)0.0057 (13)
C160.0237 (14)0.0315 (14)0.0197 (12)0.0023 (11)0.0066 (10)0.0019 (11)
O10.0420 (12)0.0289 (11)0.0252 (10)0.0084 (9)0.0059 (9)0.0014 (8)
C10.054 (2)0.0318 (16)0.0398 (18)0.0110 (15)0.0138 (15)0.0044 (14)
C210.0283 (15)0.0211 (12)0.0219 (13)0.0011 (10)0.0068 (11)0.0023 (10)
C220.0294 (15)0.0259 (14)0.0240 (13)0.0015 (12)0.0062 (11)0.0026 (11)
C230.0465 (19)0.0331 (16)0.0324 (16)0.0027 (14)0.0097 (14)0.0134 (13)
C240.064 (2)0.0269 (15)0.0427 (19)0.0082 (16)0.0174 (17)0.0090 (14)
C250.049 (2)0.0314 (16)0.0401 (18)0.0156 (14)0.0119 (15)0.0000 (13)
C260.0355 (17)0.0276 (14)0.0271 (14)0.0092 (12)0.0083 (12)0.0004 (11)
O20.0335 (11)0.0362 (11)0.0200 (9)0.0051 (9)0.0031 (8)0.0062 (8)
C20.0351 (18)0.051 (2)0.0277 (16)0.0066 (15)0.0059 (13)0.0060 (14)
C310.0256 (14)0.0280 (14)0.0153 (12)0.0040 (11)0.0021 (10)0.0015 (10)
C320.0339 (16)0.0315 (15)0.0238 (14)0.0094 (12)0.0024 (12)0.0050 (12)
C330.0368 (18)0.052 (2)0.0302 (16)0.0214 (16)0.0039 (14)0.0105 (14)
C340.0243 (15)0.070 (2)0.0283 (16)0.0084 (16)0.0037 (12)0.0134 (16)
C350.0276 (16)0.053 (2)0.0331 (16)0.0055 (15)0.0036 (13)0.0103 (15)
C360.0261 (15)0.0331 (15)0.0293 (15)0.0013 (12)0.0031 (12)0.0044 (12)
Geometric parameters (Å, º) top
P1—C211.811 (3)C23—C241.388 (5)
P1—C311.820 (3)C23—H230.95
P1—C111.825 (3)C24—C251.379 (5)
P1—Se12.1170 (7)C24—H240.95
C11—C161.395 (4)C25—C261.381 (4)
C11—C121.403 (4)C25—H250.95
C12—O11.361 (3)C26—H260.95
C12—C131.393 (4)O2—C21.435 (3)
C13—C141.379 (4)C2—H2A0.98
C13—H130.95C2—H2B0.98
C14—C151.370 (4)C2—H2C0.98
C14—H140.95C31—C321.389 (4)
C15—C161.387 (4)C31—C361.390 (4)
C15—H150.95C32—C331.390 (4)
C16—H160.95C32—H320.95
O1—C11.435 (3)C33—C341.376 (5)
C1—H1A0.98C33—H330.95
C1—H1B0.98C34—C351.378 (5)
C1—H1C0.98C34—H340.95
C21—C261.391 (4)C35—C361.390 (4)
C21—C221.408 (4)C35—H350.95
C22—O21.361 (3)C36—H360.95
C22—C231.392 (4)
C21—P1—C31107.09 (12)C24—C23—C22119.6 (3)
C21—P1—C11106.69 (12)C24—C23—H23120.2
C31—P1—C11106.10 (11)C22—C23—H23120.2
C21—P1—Se1113.94 (9)C25—C24—C23120.8 (3)
C31—P1—Se1112.21 (9)C25—C24—H24119.6
C11—P1—Se1110.36 (9)C23—C24—H24119.6
C16—C11—C12118.1 (2)C24—C25—C26119.4 (3)
C16—C11—P1119.21 (19)C24—C25—H25120.3
C12—C11—P1122.6 (2)C26—C25—H25120.3
O1—C12—C13122.5 (2)C25—C26—C21121.6 (3)
O1—C12—C11116.8 (2)C25—C26—H26119.2
C13—C12—C11120.7 (2)C21—C26—H26119.2
C14—C13—C12119.3 (3)C22—O2—C2118.1 (2)
C14—C13—H13120.3O2—C2—H2A109.5
C12—C13—H13120.3O2—C2—H2B109.5
C15—C14—C13121.1 (3)H2A—C2—H2B109.5
C15—C14—H14119.4O2—C2—H2C109.5
C13—C14—H14119.4H2A—C2—H2C109.5
C14—C15—C16119.8 (3)H2B—C2—H2C109.5
C14—C15—H15120.1C32—C31—C36119.5 (3)
C16—C15—H15120.1C32—C31—P1118.9 (2)
C15—C16—C11121.0 (3)C36—C31—P1121.6 (2)
C15—C16—H16119.5C31—C32—C33119.9 (3)
C11—C16—H16119.5C31—C32—H32120.1
C12—O1—C1118.2 (2)C33—C32—H32120.1
O1—C1—H1A109.5C34—C33—C32120.4 (3)
O1—C1—H1B109.5C34—C33—H33119.8
H1A—C1—H1B109.5C32—C33—H33119.8
O1—C1—H1C109.5C33—C34—C35120.1 (3)
H1A—C1—H1C109.5C33—C34—H34120
H1B—C1—H1C109.5C35—C34—H34120
C26—C21—C22118.3 (2)C34—C35—C36120.2 (3)
C26—C21—P1121.3 (2)C34—C35—H35119.9
C22—C21—P1120.3 (2)C36—C35—H35119.9
O2—C22—C23124.1 (2)C35—C36—C31120.0 (3)
O2—C22—C21115.7 (2)C35—C36—H36120
C23—C22—C21120.2 (3)C31—C36—H36120
C21—P1—C11—C16121.2 (2)P1—C21—C22—O20.7 (3)
C31—P1—C11—C16124.8 (2)C26—C21—C22—C232.7 (4)
Se1—P1—C11—C163.0 (2)P1—C21—C22—C23179.7 (2)
C21—P1—C11—C1262.0 (2)O2—C22—C23—C24178.4 (3)
C31—P1—C11—C1251.9 (2)C21—C22—C23—C242.1 (5)
Se1—P1—C11—C12173.69 (19)C22—C23—C24—C250.2 (5)
C16—C11—C12—O1179.6 (2)C23—C24—C25—C261.8 (5)
P1—C11—C12—O13.6 (3)C24—C25—C26—C211.1 (5)
C16—C11—C12—C130.1 (4)C22—C21—C26—C251.2 (4)
P1—C11—C12—C13176.6 (2)P1—C21—C26—C25178.1 (2)
O1—C12—C13—C14179.6 (3)C23—C22—O2—C20.3 (4)
C11—C12—C13—C140.1 (4)C21—C22—O2—C2179.2 (2)
C12—C13—C14—C150.1 (5)C21—P1—C31—C32154.9 (2)
C13—C14—C15—C160.3 (5)C11—P1—C31—C3291.4 (2)
C14—C15—C16—C110.3 (4)Se1—P1—C31—C3229.2 (2)
C12—C11—C16—C150.1 (4)C21—P1—C31—C3625.2 (2)
P1—C11—C16—C15177.0 (2)C11—P1—C31—C3688.5 (2)
C13—C12—O1—C113.8 (4)Se1—P1—C31—C36150.9 (2)
C11—C12—O1—C1166.5 (2)C36—C31—C32—C331.9 (4)
C31—P1—C21—C26127.6 (2)P1—C31—C32—C33178.0 (2)
C11—P1—C21—C2614.3 (3)C31—C32—C33—C341.1 (4)
Se1—P1—C21—C26107.7 (2)C32—C33—C34—C350.2 (5)
C31—P1—C21—C2255.5 (2)C33—C34—C35—C360.1 (5)
C11—P1—C21—C22168.8 (2)C34—C35—C36—C310.7 (4)
Se1—P1—C21—C2269.2 (2)C32—C31—C36—C351.6 (4)
C26—C21—C22—O2177.7 (2)P1—C31—C36—C35178.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13···Se1i0.952.93.775 (3)154
C15—H15···Se1ii0.952.963.740 (3)140
C16—H16···Se10.952.753.333 (3)120
C32—H32···Se10.952.973.462 (3)114
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC20H19O2PSe
Mr401.28
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)8.9552 (4), 13.2737 (6), 15.9593 (6)
β (°) 104.885 (1)
V3)1833.40 (14)
Z4
Radiation typeMo Kα
µ (mm1)2.14
Crystal size (mm)0.1 × 0.07 × 0.06
Data collection
DiffractometerBruker X8 APEXII 4K Kappa CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.814, 0.882
No. of measured, independent and
observed [I > 2σ(I)] reflections
37384, 5078, 3483
Rint0.068
(sin θ/λ)max1)0.692
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.096, 1.05
No. of reflections5078
No. of parameters219
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.66, 0.56

Computer programs: APEX2 (Bruker, 2005), SAINT-Plus (Bruker, 2004), SAINT-Plus and XPREP (Bruker, 2004), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2005), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13···Se1i0.952.93.775 (3)154
C15—H15···Se1ii0.952.963.740 (3)140
C16—H16···Se10.952.753.333 (3)120
C32—H32···Se10.952.973.462 (3)114
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+1, y+1, z.
 

Acknowledgements

The University of the Free State (Professor A. Roodt) is thanked for the use of its diffractometer.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2004). SADABS, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationMuller, A., Meijboom, R. & Roodt, A. (2006). J. Organomet. Chem. 691, 5794–5801.  Web of Science CSD CrossRef CAS Google Scholar
First citationMuller, A., Otto, S. & Roodt, A. (2008). Dalton Trans. pp. 650–657.  Web of Science CSD CrossRef PubMed Google Scholar
First citationRiihimäki, H., Kangas, T., Suomalainen, P., Reinius, H. K., Jääskeläinen, S., Haukka, M., Krause, A. O. I., Pakkanen, T. A. & Pursiainen, J. T. (2003). J. Mol. Catal. A Chem. 200, 81–94.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTolman, C. A. (1977). Chem. Rev. 77, 313–348.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds