organic compounds
Bis(2-methoxyphenyl)(phenyl)phosphine selenide
aResearch Centre in Synthesis and Catalysis, Department of Chemistry, University of Johannesburg (APK Campus), PO Box 524, Auckland Park, Johannesburg 2006, South Africa
*Correspondence e-mail: mulleraj@uj.ac.za
The title compound, C20H19O2PSe or SePPh(2-OMe-C6H3)2, crystallizes with two distinct orientations for the methoxy groups. The Se=P bond is 2.1170 (7) Å and the cone angle is 176.0°. Intramolecular C—H⋯Se interactions occur. In the crystal, molecules are linked by intermolecular C—H⋯Se interactions.
Related literature
For bond-length data, see: Allen et al. (2002). For our study of phosphorus ligands, see: Muller et al. (2006, 2008). For the cone angle, see: Tolman (1977). For the synthesis of ortho-substituted arylalkylphosphanes, see: Riihimäki et al. (2003).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2005); cell SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus and XPREP (Bruker, 2004); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
https://doi.org/10.1107/S1600536810051317/kp2295sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810051317/kp2295Isup2.hkl
PPh(2-OMe-C6H4)2 were prepared either by direct ortho metallation of anisole with BuLi followed the addition of the appropriate chlorophosphine or by metal/halogen exchange between BuLi and 1-bromo-2-methoxybenzene followed by the addition of PPhCl2 according to established methods (Riihimäki et al. 2003).
Eqimolar amounts of KSeCN and the PPh(2-OMe-C6H4)2 compound (ca. 0.04 mmol) were dissolved in the minimum amounts of methanol (10 – 20 mL). The KSeCN solution was added drop wise (5 min.) to the phosphine solution with stirring at room temperature. The final solution was left to evaporate slowly until dry to give crystals suitable for a single crystal X-ray study.
Analytical data: 31P {H} NMR (CDCl3, 121.42 MHz): For PPh(2-OMe-C6H4)2 δ = -26.41 (s) For SePPh(2-OMe-C6H4)2 δ = 28.42 (t, 1JP-Se = 717.5 Hz)
The aromatic and methylene H atoms were placed in geometrically idealised positions (C—H = 0.93 – 0.98 Å) and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C) and Uiso(H) = 1.5Ueq(C) respectively, with torsion angles refined from the electron density for the methyl groups. The highest residual electron density was located 1.01 Å from Se.
The evaluation of the electronic parameter of tertiary
is a study that spans over several decades, and even today attracts attention due to its importance. As part of a systematic investigation we are studying selenium bonded phosphorus ligands (see Muller et al. 2008) to give insight on the nature of these ligands. There is no steric crowding effect, albeit crystal packing effects, as normally found in transition metal complexes with bulky ligands, e.g. in trans-[Rh(CO)Cl{P(OC6H5)3}2] cone angle variations from 156° to 167° was observed for the two phosphite ligands (Muller, et al. 2006). Using the geometries obtained from the selenium bonded phosphorus ligands and the 31P NMR J(31P-77Se) couplings, it would be possible to obtain more information regarding the nature of the phosphorous substituted ligands.Geometrical parameters of the molecule are as expected (Allen, 2002). Selenium atom and the three
adopt a distorted tetrahedral arrangement about phosphorous (Fig. 1). The cone angle of 176.0 ° can be calculated for the Se—P distance adjusted to 2.28 Å (the default value from Tolman, 1977). The cone value observed in the title compound is close to the value 178 (7) ° calculated from data of 5 metal bonded extracted from Cambridge Structural Database (Version 5.31, update of August; Allen, 2002).Two different orientations for the methoxy moieties might be explained by some weak interactions (Table 2) forcing them into the conformations observed.
For bond-length data, see: Allen et al. (2002). For our study of selenium-bonded phosphorus ligands, see: Muller et al. (2006, 2008). For the cone angle, see: Tolman (1977). For the synthesis of ortho-substituted arylalkylphosphanes, see: Riihimäki et al. (2003).
Data collection: APEX2 (Bruker, 2005); cell
SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus and XPREP (Bruker, 2004); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 1999).C20H19O2PSe | F(000) = 816 |
Mr = 401.28 | Dx = 1.454 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 7311 reflections |
a = 8.9552 (4) Å | θ = 2.4–28.7° |
b = 13.2737 (6) Å | µ = 2.14 mm−1 |
c = 15.9593 (6) Å | T = 100 K |
β = 104.885 (1)° | Cuboid, colourless |
V = 1833.40 (14) Å3 | 0.1 × 0.07 × 0.06 mm |
Z = 4 |
Bruker X8 APEXII 4K Kappa CCD diffractometer | 5078 independent reflections |
Graphite monochromator | 3483 reflections with I > 2σ(I) |
Detector resolution: 8.4 pixels mm-1 | Rint = 0.068 |
ω and φ scans | θmax = 29.5°, θmin = 2.4° |
Absorption correction: multi-scan (SADABS; Bruker, 2004) | h = −12→12 |
Tmin = 0.814, Tmax = 0.882 | k = −18→18 |
37384 measured reflections | l = −21→21 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.039 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.096 | H-atom parameters constrained |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0352P)2 + 1.667P] where P = (Fo2 + 2Fc2)/3 |
5078 reflections | (Δ/σ)max = 0.001 |
219 parameters | Δρmax = 0.66 e Å−3 |
0 restraints | Δρmin = −0.56 e Å−3 |
C20H19O2PSe | V = 1833.40 (14) Å3 |
Mr = 401.28 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 8.9552 (4) Å | µ = 2.14 mm−1 |
b = 13.2737 (6) Å | T = 100 K |
c = 15.9593 (6) Å | 0.1 × 0.07 × 0.06 mm |
β = 104.885 (1)° |
Bruker X8 APEXII 4K Kappa CCD diffractometer | 5078 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2004) | 3483 reflections with I > 2σ(I) |
Tmin = 0.814, Tmax = 0.882 | Rint = 0.068 |
37384 measured reflections |
R[F2 > 2σ(F2)] = 0.039 | 0 restraints |
wR(F2) = 0.096 | H-atom parameters constrained |
S = 1.05 | Δρmax = 0.66 e Å−3 |
5078 reflections | Δρmin = −0.56 e Å−3 |
219 parameters |
Experimental. The intensity data was collected on a Bruker X8 Apex II 4 K Kappa CCD diffractometer using an exposure time of 20 s/frame. A total of 1897 frames were collected with a frame width of 0.5° covering up to θ = 29.48° with 99.6% completeness accomplished. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
P1 | 0.79534 (8) | 0.29050 (5) | 0.06864 (4) | 0.02021 (14) | |
Se1 | 0.73477 (4) | 0.42323 (2) | 0.125712 (17) | 0.02827 (9) | |
C11 | 0.6822 (3) | 0.27995 (19) | −0.04376 (16) | 0.0203 (5) | |
C12 | 0.7089 (3) | 0.2045 (2) | −0.09973 (16) | 0.0233 (5) | |
C13 | 0.6251 (3) | 0.2023 (2) | −0.18633 (17) | 0.0308 (6) | |
H13 | 0.6437 | 0.1511 | −0.224 | 0.037* | |
C14 | 0.5148 (4) | 0.2752 (3) | −0.21685 (19) | 0.0377 (7) | |
H14 | 0.4577 | 0.2739 | −0.2759 | 0.045* | |
C15 | 0.4862 (3) | 0.3496 (2) | −0.16343 (18) | 0.0338 (7) | |
H15 | 0.4095 | 0.399 | −0.1854 | 0.041* | |
C16 | 0.5697 (3) | 0.3522 (2) | −0.07726 (16) | 0.0248 (6) | |
H16 | 0.5499 | 0.4041 | −0.0405 | 0.03* | |
O1 | 0.8187 (2) | 0.13463 (15) | −0.06510 (12) | 0.0325 (5) | |
C1 | 0.8732 (4) | 0.0704 (2) | −0.1232 (2) | 0.0415 (8) | |
H1A | 0.7933 | 0.0209 | −0.1487 | 0.062* | |
H1B | 0.9668 | 0.0353 | −0.0913 | 0.062* | |
H1C | 0.8967 | 0.1112 | −0.1694 | 0.062* | |
C21 | 0.7630 (3) | 0.17564 (19) | 0.12269 (17) | 0.0237 (6) | |
C22 | 0.8553 (3) | 0.1529 (2) | 0.20616 (17) | 0.0265 (6) | |
C23 | 0.8299 (4) | 0.0648 (2) | 0.2478 (2) | 0.0374 (7) | |
H23 | 0.8943 | 0.0484 | 0.3033 | 0.045* | |
C24 | 0.7099 (4) | 0.0011 (2) | 0.2076 (2) | 0.0439 (8) | |
H24 | 0.6929 | −0.0592 | 0.2359 | 0.053* | |
C25 | 0.6152 (4) | 0.0241 (2) | 0.1272 (2) | 0.0400 (8) | |
H25 | 0.5316 | −0.0189 | 0.1009 | 0.048* | |
C26 | 0.6430 (3) | 0.1103 (2) | 0.08520 (19) | 0.0300 (6) | |
H26 | 0.5787 | 0.1254 | 0.0294 | 0.036* | |
O2 | 0.9673 (2) | 0.22128 (15) | 0.24085 (12) | 0.0317 (5) | |
C2 | 1.0661 (4) | 0.2012 (3) | 0.32533 (19) | 0.0404 (8) | |
H2A | 1.0043 | 0.1997 | 0.3679 | 0.061* | |
H2B | 1.1444 | 0.2543 | 0.3409 | 0.061* | |
H2C | 1.117 | 0.1359 | 0.3249 | 0.061* | |
C31 | 0.9970 (3) | 0.2904 (2) | 0.06549 (16) | 0.0235 (5) | |
C32 | 1.0691 (3) | 0.3820 (2) | 0.05993 (17) | 0.0307 (6) | |
H32 | 1.0143 | 0.4433 | 0.0597 | 0.037* | |
C33 | 1.2217 (4) | 0.3836 (3) | 0.0548 (2) | 0.0405 (8) | |
H33 | 1.2704 | 0.4461 | 0.0499 | 0.049* | |
C34 | 1.3027 (4) | 0.2952 (3) | 0.05663 (19) | 0.0413 (8) | |
H34 | 1.407 | 0.2968 | 0.0532 | 0.05* | |
C35 | 1.2326 (4) | 0.2042 (3) | 0.0634 (2) | 0.0387 (7) | |
H35 | 1.2887 | 0.1432 | 0.0648 | 0.046* | |
C36 | 1.0799 (3) | 0.2014 (2) | 0.06837 (18) | 0.0302 (6) | |
H36 | 1.0321 | 0.1386 | 0.0737 | 0.036* |
U11 | U22 | U33 | U12 | U13 | U23 | |
P1 | 0.0238 (3) | 0.0198 (3) | 0.0160 (3) | −0.0016 (3) | 0.0031 (3) | 0.0015 (2) |
Se1 | 0.04196 (18) | 0.02334 (14) | 0.02004 (13) | 0.00041 (13) | 0.00894 (11) | −0.00166 (11) |
C11 | 0.0204 (13) | 0.0229 (12) | 0.0172 (12) | −0.0029 (10) | 0.0042 (10) | 0.0016 (10) |
C12 | 0.0245 (14) | 0.0251 (13) | 0.0207 (13) | −0.0018 (11) | 0.0066 (11) | 0.0018 (10) |
C13 | 0.0346 (16) | 0.0380 (16) | 0.0201 (13) | −0.0036 (13) | 0.0075 (12) | −0.0070 (12) |
C14 | 0.0349 (17) | 0.055 (2) | 0.0203 (14) | 0.0018 (15) | 0.0012 (12) | −0.0016 (14) |
C15 | 0.0277 (15) | 0.0454 (18) | 0.0257 (14) | 0.0090 (13) | 0.0021 (12) | 0.0057 (13) |
C16 | 0.0237 (14) | 0.0315 (14) | 0.0197 (12) | 0.0023 (11) | 0.0066 (10) | 0.0019 (11) |
O1 | 0.0420 (12) | 0.0289 (11) | 0.0252 (10) | 0.0084 (9) | 0.0059 (9) | −0.0014 (8) |
C1 | 0.054 (2) | 0.0318 (16) | 0.0398 (18) | 0.0110 (15) | 0.0138 (15) | −0.0044 (14) |
C21 | 0.0283 (15) | 0.0211 (12) | 0.0219 (13) | −0.0011 (10) | 0.0068 (11) | 0.0023 (10) |
C22 | 0.0294 (15) | 0.0259 (14) | 0.0240 (13) | −0.0015 (12) | 0.0062 (11) | 0.0026 (11) |
C23 | 0.0465 (19) | 0.0331 (16) | 0.0324 (16) | 0.0027 (14) | 0.0097 (14) | 0.0134 (13) |
C24 | 0.064 (2) | 0.0269 (15) | 0.0427 (19) | −0.0082 (16) | 0.0174 (17) | 0.0090 (14) |
C25 | 0.049 (2) | 0.0314 (16) | 0.0401 (18) | −0.0156 (14) | 0.0119 (15) | 0.0000 (13) |
C26 | 0.0355 (17) | 0.0276 (14) | 0.0271 (14) | −0.0092 (12) | 0.0083 (12) | −0.0004 (11) |
O2 | 0.0335 (11) | 0.0362 (11) | 0.0200 (9) | −0.0051 (9) | −0.0031 (8) | 0.0062 (8) |
C2 | 0.0351 (18) | 0.051 (2) | 0.0277 (16) | 0.0066 (15) | −0.0059 (13) | 0.0060 (14) |
C31 | 0.0256 (14) | 0.0280 (14) | 0.0153 (12) | −0.0040 (11) | 0.0021 (10) | 0.0015 (10) |
C32 | 0.0339 (16) | 0.0315 (15) | 0.0238 (14) | −0.0094 (12) | 0.0024 (12) | 0.0050 (12) |
C33 | 0.0368 (18) | 0.052 (2) | 0.0302 (16) | −0.0214 (16) | 0.0039 (14) | 0.0105 (14) |
C34 | 0.0243 (15) | 0.070 (2) | 0.0283 (16) | −0.0084 (16) | 0.0037 (12) | 0.0134 (16) |
C35 | 0.0276 (16) | 0.053 (2) | 0.0331 (16) | 0.0055 (15) | 0.0036 (13) | 0.0103 (15) |
C36 | 0.0261 (15) | 0.0331 (15) | 0.0293 (15) | −0.0013 (12) | 0.0031 (12) | 0.0044 (12) |
P1—C21 | 1.811 (3) | C23—C24 | 1.388 (5) |
P1—C31 | 1.820 (3) | C23—H23 | 0.95 |
P1—C11 | 1.825 (3) | C24—C25 | 1.379 (5) |
P1—Se1 | 2.1170 (7) | C24—H24 | 0.95 |
C11—C16 | 1.395 (4) | C25—C26 | 1.381 (4) |
C11—C12 | 1.403 (4) | C25—H25 | 0.95 |
C12—O1 | 1.361 (3) | C26—H26 | 0.95 |
C12—C13 | 1.393 (4) | O2—C2 | 1.435 (3) |
C13—C14 | 1.379 (4) | C2—H2A | 0.98 |
C13—H13 | 0.95 | C2—H2B | 0.98 |
C14—C15 | 1.370 (4) | C2—H2C | 0.98 |
C14—H14 | 0.95 | C31—C32 | 1.389 (4) |
C15—C16 | 1.387 (4) | C31—C36 | 1.390 (4) |
C15—H15 | 0.95 | C32—C33 | 1.390 (4) |
C16—H16 | 0.95 | C32—H32 | 0.95 |
O1—C1 | 1.435 (3) | C33—C34 | 1.376 (5) |
C1—H1A | 0.98 | C33—H33 | 0.95 |
C1—H1B | 0.98 | C34—C35 | 1.378 (5) |
C1—H1C | 0.98 | C34—H34 | 0.95 |
C21—C26 | 1.391 (4) | C35—C36 | 1.390 (4) |
C21—C22 | 1.408 (4) | C35—H35 | 0.95 |
C22—O2 | 1.361 (3) | C36—H36 | 0.95 |
C22—C23 | 1.392 (4) | ||
C21—P1—C31 | 107.09 (12) | C24—C23—C22 | 119.6 (3) |
C21—P1—C11 | 106.69 (12) | C24—C23—H23 | 120.2 |
C31—P1—C11 | 106.10 (11) | C22—C23—H23 | 120.2 |
C21—P1—Se1 | 113.94 (9) | C25—C24—C23 | 120.8 (3) |
C31—P1—Se1 | 112.21 (9) | C25—C24—H24 | 119.6 |
C11—P1—Se1 | 110.36 (9) | C23—C24—H24 | 119.6 |
C16—C11—C12 | 118.1 (2) | C24—C25—C26 | 119.4 (3) |
C16—C11—P1 | 119.21 (19) | C24—C25—H25 | 120.3 |
C12—C11—P1 | 122.6 (2) | C26—C25—H25 | 120.3 |
O1—C12—C13 | 122.5 (2) | C25—C26—C21 | 121.6 (3) |
O1—C12—C11 | 116.8 (2) | C25—C26—H26 | 119.2 |
C13—C12—C11 | 120.7 (2) | C21—C26—H26 | 119.2 |
C14—C13—C12 | 119.3 (3) | C22—O2—C2 | 118.1 (2) |
C14—C13—H13 | 120.3 | O2—C2—H2A | 109.5 |
C12—C13—H13 | 120.3 | O2—C2—H2B | 109.5 |
C15—C14—C13 | 121.1 (3) | H2A—C2—H2B | 109.5 |
C15—C14—H14 | 119.4 | O2—C2—H2C | 109.5 |
C13—C14—H14 | 119.4 | H2A—C2—H2C | 109.5 |
C14—C15—C16 | 119.8 (3) | H2B—C2—H2C | 109.5 |
C14—C15—H15 | 120.1 | C32—C31—C36 | 119.5 (3) |
C16—C15—H15 | 120.1 | C32—C31—P1 | 118.9 (2) |
C15—C16—C11 | 121.0 (3) | C36—C31—P1 | 121.6 (2) |
C15—C16—H16 | 119.5 | C31—C32—C33 | 119.9 (3) |
C11—C16—H16 | 119.5 | C31—C32—H32 | 120.1 |
C12—O1—C1 | 118.2 (2) | C33—C32—H32 | 120.1 |
O1—C1—H1A | 109.5 | C34—C33—C32 | 120.4 (3) |
O1—C1—H1B | 109.5 | C34—C33—H33 | 119.8 |
H1A—C1—H1B | 109.5 | C32—C33—H33 | 119.8 |
O1—C1—H1C | 109.5 | C33—C34—C35 | 120.1 (3) |
H1A—C1—H1C | 109.5 | C33—C34—H34 | 120 |
H1B—C1—H1C | 109.5 | C35—C34—H34 | 120 |
C26—C21—C22 | 118.3 (2) | C34—C35—C36 | 120.2 (3) |
C26—C21—P1 | 121.3 (2) | C34—C35—H35 | 119.9 |
C22—C21—P1 | 120.3 (2) | C36—C35—H35 | 119.9 |
O2—C22—C23 | 124.1 (2) | C35—C36—C31 | 120.0 (3) |
O2—C22—C21 | 115.7 (2) | C35—C36—H36 | 120 |
C23—C22—C21 | 120.2 (3) | C31—C36—H36 | 120 |
C21—P1—C11—C16 | 121.2 (2) | P1—C21—C22—O2 | −0.7 (3) |
C31—P1—C11—C16 | −124.8 (2) | C26—C21—C22—C23 | 2.7 (4) |
Se1—P1—C11—C16 | −3.0 (2) | P1—C21—C22—C23 | 179.7 (2) |
C21—P1—C11—C12 | −62.0 (2) | O2—C22—C23—C24 | 178.4 (3) |
C31—P1—C11—C12 | 51.9 (2) | C21—C22—C23—C24 | −2.1 (5) |
Se1—P1—C11—C12 | 173.69 (19) | C22—C23—C24—C25 | −0.2 (5) |
C16—C11—C12—O1 | −179.6 (2) | C23—C24—C25—C26 | 1.8 (5) |
P1—C11—C12—O1 | 3.6 (3) | C24—C25—C26—C21 | −1.1 (5) |
C16—C11—C12—C13 | 0.1 (4) | C22—C21—C26—C25 | −1.2 (4) |
P1—C11—C12—C13 | −176.6 (2) | P1—C21—C26—C25 | −178.1 (2) |
O1—C12—C13—C14 | 179.6 (3) | C23—C22—O2—C2 | 0.3 (4) |
C11—C12—C13—C14 | −0.1 (4) | C21—C22—O2—C2 | −179.2 (2) |
C12—C13—C14—C15 | −0.1 (5) | C21—P1—C31—C32 | −154.9 (2) |
C13—C14—C15—C16 | 0.3 (5) | C11—P1—C31—C32 | 91.4 (2) |
C14—C15—C16—C11 | −0.3 (4) | Se1—P1—C31—C32 | −29.2 (2) |
C12—C11—C16—C15 | 0.1 (4) | C21—P1—C31—C36 | 25.2 (2) |
P1—C11—C16—C15 | 177.0 (2) | C11—P1—C31—C36 | −88.5 (2) |
C13—C12—O1—C1 | 13.8 (4) | Se1—P1—C31—C36 | 150.9 (2) |
C11—C12—O1—C1 | −166.5 (2) | C36—C31—C32—C33 | 1.9 (4) |
C31—P1—C21—C26 | −127.6 (2) | P1—C31—C32—C33 | −178.0 (2) |
C11—P1—C21—C26 | −14.3 (3) | C31—C32—C33—C34 | −1.1 (4) |
Se1—P1—C21—C26 | 107.7 (2) | C32—C33—C34—C35 | 0.2 (5) |
C31—P1—C21—C22 | 55.5 (2) | C33—C34—C35—C36 | 0.1 (5) |
C11—P1—C21—C22 | 168.8 (2) | C34—C35—C36—C31 | 0.7 (4) |
Se1—P1—C21—C22 | −69.2 (2) | C32—C31—C36—C35 | −1.6 (4) |
C26—C21—C22—O2 | −177.7 (2) | P1—C31—C36—C35 | 178.2 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
C13—H13···Se1i | 0.95 | 2.9 | 3.775 (3) | 154 |
C15—H15···Se1ii | 0.95 | 2.96 | 3.740 (3) | 140 |
C16—H16···Se1 | 0.95 | 2.75 | 3.333 (3) | 120 |
C32—H32···Se1 | 0.95 | 2.97 | 3.462 (3) | 114 |
Symmetry codes: (i) x, −y+1/2, z−1/2; (ii) −x+1, −y+1, −z. |
Experimental details
Crystal data | |
Chemical formula | C20H19O2PSe |
Mr | 401.28 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 100 |
a, b, c (Å) | 8.9552 (4), 13.2737 (6), 15.9593 (6) |
β (°) | 104.885 (1) |
V (Å3) | 1833.40 (14) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 2.14 |
Crystal size (mm) | 0.1 × 0.07 × 0.06 |
Data collection | |
Diffractometer | Bruker X8 APEXII 4K Kappa CCD |
Absorption correction | Multi-scan (SADABS; Bruker, 2004) |
Tmin, Tmax | 0.814, 0.882 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 37384, 5078, 3483 |
Rint | 0.068 |
(sin θ/λ)max (Å−1) | 0.692 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.039, 0.096, 1.05 |
No. of reflections | 5078 |
No. of parameters | 219 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.66, −0.56 |
Computer programs: APEX2 (Bruker, 2005), SAINT-Plus (Bruker, 2004), SAINT-Plus and XPREP (Bruker, 2004), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2005), WinGX (Farrugia, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
C13—H13···Se1i | 0.95 | 2.9 | 3.775 (3) | 154 |
C15—H15···Se1ii | 0.95 | 2.96 | 3.740 (3) | 140 |
C16—H16···Se1 | 0.95 | 2.75 | 3.333 (3) | 120 |
C32—H32···Se1 | 0.95 | 2.97 | 3.462 (3) | 114 |
Symmetry codes: (i) x, −y+1/2, z−1/2; (ii) −x+1, −y+1, −z. |
Acknowledgements
The University of the Free State (Professor A. Roodt) is thanked for the use of its diffractometer.
References
Allen, F. H. (2002). Acta Cryst. B58, 380–388. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119. Web of Science CrossRef CAS IUCr Journals Google Scholar
Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2004). SADABS, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Muller, A., Meijboom, R. & Roodt, A. (2006). J. Organomet. Chem. 691, 5794–5801. Web of Science CSD CrossRef CAS Google Scholar
Muller, A., Otto, S. & Roodt, A. (2008). Dalton Trans. pp. 650–657. Web of Science CSD CrossRef PubMed Google Scholar
Riihimäki, H., Kangas, T., Suomalainen, P., Reinius, H. K., Jääskeläinen, S., Haukka, M., Krause, A. O. I., Pakkanen, T. A. & Pursiainen, J. T. (2003). J. Mol. Catal. A Chem. 200, 81–94. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tolman, C. A. (1977). Chem. Rev. 77, 313–348. CrossRef CAS Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The evaluation of the electronic parameter of tertiary phosphines is a study that spans over several decades, and even today attracts attention due to its importance. As part of a systematic investigation we are studying selenium bonded phosphorus ligands (see Muller et al. 2008) to give insight on the nature of these ligands. There is no steric crowding effect, albeit crystal packing effects, as normally found in transition metal complexes with bulky ligands, e.g. in trans-[Rh(CO)Cl{P(OC6H5)3}2] cone angle variations from 156° to 167° was observed for the two phosphite ligands (Muller, et al. 2006). Using the geometries obtained from the selenium bonded phosphorus ligands and the 31P NMR J(31P-77Se) couplings, it would be possible to obtain more information regarding the nature of the phosphorous substituted ligands.
Geometrical parameters of the molecule are as expected (Allen, 2002). Selenium atom and the three aryl groups adopt a distorted tetrahedral arrangement about phosphorous (Fig. 1). The cone angle of 176.0 ° can be calculated for the Se—P distance adjusted to 2.28 Å (the default value from Tolman, 1977). The cone value observed in the title compound is close to the value 178 (7) ° calculated from data of 5 metal bonded phosphines extracted from Cambridge Structural Database (Version 5.31, update of August; Allen, 2002).
Two different orientations for the methoxy moieties might be explained by some weak interactions (Table 2) forcing them into the conformations observed.