organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

rac-Di­ethyl 6-hy­dr­oxy-4-[(2-hy­dr­oxy­eth­yl)amino]-6-methyl-2-phenyl­cyclo­hex-3-ene-1,3-di­carboxyl­ate

aBaku State University, Z. Khalilov St. 23, Baku, AZ-1148, Azerbaijan
*Correspondence e-mail: orglab@mail.ru

(Received 11 December 2010; accepted 15 December 2010; online 18 December 2010)

The title compound, C21H29NO6, is chiral with three stereogenic centres. The crystal is a racemate and consists of enanti­omeric pairs with the relative configuration rac-(2R*,3S*,4R*). The ethyl fragment of the eth­oxy­carbonyl group at position 1 is disordered in a 0.60:0.40 ratio. The crystal packing displays inter­molecular O—H⋯O hydrogen bonding. An intra­molecular N—H⋯O hydrogen bond also occurs.

Related literature

β-Cyclo­ketoles and their nitro­genous derivatives possess a wide spectrum of biological activity, see: Krivenko et al. (2003[Krivenko, A. P., Kozlova, E. A., Grigorev, A. V. & Sorokin, V. V. (2003). Molecules, 8, 251-255]).

[Scheme 1]

Experimental

Crystal data
  • C21H29NO6

  • Mr = 391.45

  • Monoclinic, C 2/c

  • a = 41.078 (14) Å

  • b = 5.940 (2) Å

  • c = 18.683 (6) Å

  • β = 113.581 (13)°

  • V = 4178 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 K

  • 0.30 × 0.30 × 0.30 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1998[Sheldrick, G. M. (1998). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.973, Tmax = 0.973

  • 18275 measured reflections

  • 4530 independent reflections

  • 3052 reflections with I > 2σ(I)

  • Rint = 0.060

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.143

  • S = 1.00

  • 4530 reflections

  • 263 parameters

  • 8 restraints

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O⋯O6i 0.94 1.92 2.802 (2) 157
O6—H6O⋯O1ii 0.95 1.78 2.727 (2) 172
N1—H1N⋯O2 0.91 1.91 2.650 (2) 137
Symmetry codes: (i) [x, -y+1, z-{\script{1\over 2}}]; (ii) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

β-Cycloketoles and their nitrogenous derivatives possess a wide spectrum of biological activity (Krivenko et al. 2003). The reactions of β-cycloketoles with ethanolamine possibly lead to valuable compounds of practical use but remain unexplored. Reaction β-cycloketoles with ethanolamine has not been studied. Several reaction paths may be expected: one or two reactive centres of the substrate and reagent may be involved. Enamines or the products of heterocyclisation or spirocyclisation may be produced.

The cyclohexene ring has a distorted half-chair conformation. Phenyl ring is in a pseudo-equatorial position (Fig. 1). Torsion angle between the ethoxycarbonyl group and the phenyl substituent, C12—C2—C3—C18 is 59,04 (18) °, indicating the pseudo-axial location of hydrogen atoms at C2 and C3. The crystal structure involves O—H···O intermolecular and O—H···O and N—H···O intramolecular hydrogen bonds (Table 1 and Fig. 2).

Related literature top

β-Cycloketoles and their nitrogenous derivatives possess a wide spectrum of biological activity, see: Krivenko et al. (2003).

Experimental top

(rac)-Diethyl-4-hydroxy-4-methyl-6-oxo-2-phenyl-1,3-dicarboxylate (20 mmol), monoethanolamine (20 mmol) were dissolved in 20 mL ethanol. The mixture was stirred at 345–350 K within 10 h. After cooling to a room temperature white crystals were obtained. The crystals were filtered and washed with ethanol. Then the crystals obtained were recrystallised from 50 mL ethanol to yield colourless block-shaped crystals of the title compound.

Refinement top

The hydrogen atoms of the NH and OH-groups of (I) were localized in the difference-Fourier map and included in the refinement with fixed positional and isotropic displacement parameters [Uiso(H) = 1.5Ueq(C) for CH3-group and Uiso(H) = 1.2Ueq(N) for amino groups]. The other hydrogen atoms were placed in calculated positions with and refined in the riding model with fixed isotropic displacement parameters [Uiso(H) = 1.2Ueq(C)].

Structure description top

β-Cycloketoles and their nitrogenous derivatives possess a wide spectrum of biological activity (Krivenko et al. 2003). The reactions of β-cycloketoles with ethanolamine possibly lead to valuable compounds of practical use but remain unexplored. Reaction β-cycloketoles with ethanolamine has not been studied. Several reaction paths may be expected: one or two reactive centres of the substrate and reagent may be involved. Enamines or the products of heterocyclisation or spirocyclisation may be produced.

The cyclohexene ring has a distorted half-chair conformation. Phenyl ring is in a pseudo-equatorial position (Fig. 1). Torsion angle between the ethoxycarbonyl group and the phenyl substituent, C12—C2—C3—C18 is 59,04 (18) °, indicating the pseudo-axial location of hydrogen atoms at C2 and C3. The crystal structure involves O—H···O intermolecular and O—H···O and N—H···O intramolecular hydrogen bonds (Table 1 and Fig. 2).

β-Cycloketoles and their nitrogenous derivatives possess a wide spectrum of biological activity, see: Krivenko et al. (2003).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atomic numbering scheme. Displacement ellipsoids were drawn at the 30% probability level.
[Figure 2] Fig. 2. Crystal packing of the title compound with hydrogen bonds (dashed lines). H atoms not involved in hydrogen bonding have been omitted for clarity.
rac-Diethyl 6-hydroxy-4-[(2-hydroxyethyl)amino]-6-methyl-2-phenylcyclohex-3-ene-1,3- dicarboxylate top
Crystal data top
C21H29NO6F(000) = 1680
Mr = 391.45Dx = 1.245 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2594 reflections
a = 41.078 (14) Åθ = 2.4–30.1°
b = 5.940 (2) ŵ = 0.09 mm1
c = 18.683 (6) ÅT = 100 K
β = 113.581 (13)°Prism, colourless
V = 4178 (2) Å30.30 × 0.30 × 0.30 mm
Z = 8
Data collection top
Bruker APEXII CCD
diffractometer
4530 independent reflections
Radiation source: fine-focus sealed tube3052 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.060
φ and ω scansθmax = 27.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1998)
h = 5248
Tmin = 0.973, Tmax = 0.973k = 77
18275 measured reflectionsl = 2323
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: difference Fourier map
wR(F2) = 0.143H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.070P)2 + 1.6P]
where P = (Fo2 + 2Fc2)/3
4530 reflections(Δ/σ)max < 0.001
263 parametersΔρmax = 0.27 e Å3
8 restraintsΔρmin = 0.25 e Å3
Crystal data top
C21H29NO6V = 4178 (2) Å3
Mr = 391.45Z = 8
Monoclinic, C2/cMo Kα radiation
a = 41.078 (14) ŵ = 0.09 mm1
b = 5.940 (2) ÅT = 100 K
c = 18.683 (6) Å0.30 × 0.30 × 0.30 mm
β = 113.581 (13)°
Data collection top
Bruker APEXII CCD
diffractometer
4530 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1998)
3052 reflections with I > 2σ(I)
Tmin = 0.973, Tmax = 0.973Rint = 0.060
18275 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0528 restraints
wR(F2) = 0.143H-atom parameters constrained
S = 1.00Δρmax = 0.27 e Å3
4530 reflectionsΔρmin = 0.25 e Å3
263 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.45627 (3)0.6020 (2)0.27020 (7)0.0437 (3)
H1O0.45580.63890.22110.065*
O20.40537 (4)0.7311 (3)0.49029 (7)0.0610 (4)
O30.38193 (4)0.9619 (2)0.38680 (7)0.0524 (4)
O40.39044 (4)0.6792 (3)0.11937 (8)0.0648 (4)
O50.35176 (4)0.4026 (3)0.10896 (7)0.0627 (4)
O60.47333 (4)0.3324 (3)0.64070 (7)0.0546 (4)
H6O0.49840.34820.66840.082*
N10.44548 (4)0.3995 (3)0.47590 (8)0.0457 (4)
H1N0.43590.47760.50460.055*
C10.40713 (5)0.6258 (3)0.36860 (9)0.0373 (4)
C20.38927 (5)0.6718 (3)0.28057 (9)0.0375 (4)
H20.40050.80890.26900.045*
C30.39557 (5)0.4713 (3)0.23451 (9)0.0385 (4)
H30.38220.33880.24170.046*
C40.43481 (5)0.4067 (3)0.26514 (9)0.0390 (4)
C50.44550 (5)0.3190 (3)0.34878 (9)0.0399 (4)
H5A0.43690.16230.34610.048*
H5B0.47170.31500.37470.048*
C60.43160 (5)0.4552 (3)0.39896 (9)0.0368 (4)
C70.47043 (6)0.2210 (3)0.51284 (10)0.0471 (5)
H7A0.49490.27370.52460.056*
H7B0.46550.09050.47710.056*
C80.46723 (6)0.1506 (4)0.58791 (10)0.0506 (5)
H8A0.44320.08920.57530.061*
H8B0.48460.02950.61320.061*
C90.39840 (5)0.7687 (3)0.42100 (10)0.0424 (4)
C100.36501 (6)1.0945 (4)0.42722 (13)0.0575 (6)
H10A0.37041.25610.42460.069*
H10B0.37421.04960.48280.069*
C110.32549 (7)1.0567 (5)0.38929 (16)0.0751 (7)
H11A0.31381.15010.41520.113*
H11B0.32030.89770.39400.113*
H11C0.31671.09770.33390.113*
C120.34941 (5)0.7105 (3)0.24955 (10)0.0426 (4)
C130.32735 (6)0.5590 (4)0.26467 (13)0.0601 (6)
H130.33750.43440.29810.072*
C140.29093 (7)0.5856 (5)0.23212 (17)0.0806 (8)
H140.27630.47970.24330.097*
C150.27578 (7)0.7649 (6)0.18358 (16)0.0840 (8)
H150.25070.78300.16110.101*
C160.29710 (7)0.9171 (5)0.16787 (15)0.0774 (8)
H160.28681.04200.13480.093*
C170.33352 (6)0.8901 (4)0.19988 (12)0.0561 (5)
H170.34800.99550.18780.067*
C180.38008 (5)0.5315 (3)0.14896 (9)0.0448 (4)
C190.32971 (18)0.4777 (12)0.0292 (2)0.0852 (16)0.60
H19A0.34220.45030.00570.102*0.60
H19B0.32470.64080.02880.102*0.60
C200.29543 (14)0.3442 (11)0.0017 (4)0.090 (2)0.60
H20A0.28230.36550.05460.135*0.60
H20B0.28090.39660.02920.135*0.60
H20C0.30090.18410.01280.135*0.60
C19'0.3332 (3)0.440 (2)0.0253 (2)0.0852 (16)0.40
H19C0.33870.31780.00400.102*0.40
H19D0.34090.58490.01060.102*0.40
C20'0.2936 (2)0.446 (2)0.0062 (7)0.090 (2)0.40
H20D0.28050.47220.04990.135*0.40
H20E0.28850.56800.03560.135*0.40
H20F0.28630.30210.02060.135*0.40
C210.44184 (6)0.2255 (4)0.21482 (11)0.0509 (5)
H21A0.43790.28860.16350.076*
H21B0.42570.09840.20830.076*
H21C0.46650.17360.24040.076*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0424 (7)0.0596 (8)0.0284 (6)0.0073 (6)0.0136 (5)0.0000 (5)
O20.0842 (11)0.0693 (10)0.0328 (7)0.0258 (8)0.0268 (7)0.0055 (7)
O30.0640 (9)0.0523 (8)0.0420 (7)0.0161 (7)0.0223 (7)0.0043 (6)
O40.0747 (11)0.0811 (11)0.0362 (7)0.0125 (9)0.0197 (7)0.0125 (7)
O50.0593 (10)0.0871 (11)0.0297 (7)0.0186 (8)0.0051 (6)0.0025 (7)
O60.0460 (8)0.0852 (10)0.0295 (6)0.0036 (7)0.0118 (6)0.0072 (7)
N10.0523 (10)0.0588 (10)0.0246 (7)0.0163 (8)0.0140 (7)0.0048 (7)
C10.0379 (10)0.0466 (10)0.0266 (8)0.0022 (8)0.0122 (7)0.0019 (7)
C20.0402 (10)0.0437 (9)0.0268 (7)0.0006 (8)0.0114 (7)0.0038 (7)
C30.0416 (10)0.0462 (10)0.0258 (8)0.0044 (8)0.0115 (7)0.0019 (7)
C40.0437 (11)0.0481 (10)0.0263 (8)0.0017 (8)0.0152 (7)0.0005 (7)
C50.0440 (11)0.0482 (10)0.0278 (8)0.0061 (8)0.0146 (7)0.0024 (7)
C60.0378 (10)0.0476 (10)0.0242 (7)0.0014 (8)0.0115 (7)0.0007 (7)
C70.0525 (12)0.0580 (12)0.0284 (8)0.0146 (9)0.0138 (8)0.0051 (8)
C80.0570 (13)0.0608 (12)0.0293 (9)0.0069 (10)0.0124 (8)0.0079 (8)
C90.0430 (11)0.0497 (10)0.0329 (8)0.0041 (9)0.0136 (8)0.0002 (8)
C100.0666 (15)0.0548 (12)0.0534 (12)0.0160 (11)0.0264 (11)0.0000 (10)
C110.0705 (17)0.0824 (17)0.0780 (16)0.0095 (14)0.0355 (14)0.0034 (14)
C120.0402 (11)0.0537 (11)0.0306 (8)0.0018 (9)0.0106 (7)0.0046 (8)
C130.0475 (13)0.0747 (15)0.0566 (12)0.0020 (11)0.0193 (10)0.0196 (11)
C140.0495 (15)0.109 (2)0.0837 (18)0.0089 (15)0.0269 (13)0.0163 (16)
C150.0408 (14)0.121 (2)0.0760 (17)0.0139 (15)0.0087 (12)0.0119 (17)
C160.0581 (16)0.0904 (19)0.0672 (15)0.0222 (14)0.0079 (12)0.0212 (14)
C170.0514 (13)0.0600 (13)0.0484 (11)0.0060 (10)0.0111 (10)0.0112 (10)
C180.0442 (11)0.0573 (11)0.0304 (8)0.0019 (9)0.0122 (8)0.0004 (8)
C190.066 (2)0.145 (3)0.0269 (11)0.014 (2)0.0000 (12)0.0007 (15)
C200.066 (2)0.125 (7)0.0596 (19)0.000 (3)0.0030 (16)0.003 (4)
C19'0.066 (2)0.145 (3)0.0269 (11)0.014 (2)0.0000 (12)0.0007 (15)
C20'0.066 (2)0.125 (7)0.0596 (19)0.000 (3)0.0030 (16)0.003 (4)
C210.0642 (14)0.0573 (12)0.0362 (9)0.0049 (10)0.0253 (9)0.0034 (9)
Geometric parameters (Å, º) top
O1—C41.437 (2)C10—C111.506 (3)
O1—H1O0.9360C10—H10A0.9900
O2—C91.229 (2)C10—H10B0.9900
O3—C91.356 (2)C11—H11A0.9800
O3—C101.447 (2)C11—H11B0.9800
O4—C181.202 (2)C11—H11C0.9800
O5—C181.343 (2)C12—C131.384 (3)
O5—C19'1.456 (3)C12—C171.393 (3)
O5—C191.470 (3)C13—C141.380 (3)
O6—C81.416 (2)C13—H130.9500
O6—H6O0.9543C14—C151.376 (4)
N1—C61.358 (2)C14—H140.9500
N1—C71.444 (2)C15—C161.370 (4)
N1—H1N0.9087C15—H150.9500
C1—C61.380 (3)C16—C171.381 (3)
C1—C91.445 (2)C16—H160.9500
C1—C21.534 (2)C17—H170.9500
C2—C121.520 (3)C19—C201.515 (3)
C2—C31.550 (2)C19—H19A0.9900
C2—H21.0000C19—H19B0.9900
C3—C181.508 (2)C20—H20A0.9800
C3—C41.528 (3)C20—H20B0.9800
C3—H31.0000C20—H20C0.9800
C4—C211.531 (2)C19'—C20'1.523 (3)
C4—C51.535 (2)C19'—H19C0.9900
C5—C61.512 (2)C19'—H19D0.9900
C5—H5A0.9900C20'—H20D0.9800
C5—H5B0.9900C20'—H20E0.9800
C7—C81.519 (2)C20'—H20F0.9800
C7—H7A0.9900C21—H21A0.9800
C7—H7B0.9900C21—H21B0.9800
C8—H8A0.9900C21—H21C0.9800
C8—H8B0.9900
C4—O1—H1O110.6C11—C10—H10A109.9
C9—O3—C10117.92 (15)O3—C10—H10B109.9
C18—O5—C19'118.3 (3)C11—C10—H10B109.9
C18—O5—C19115.9 (2)H10A—C10—H10B108.3
C19'—O5—C1911.3 (10)C10—C11—H11A109.5
C8—O6—H6O107.7C10—C11—H11B109.5
C6—N1—C7126.98 (15)H11A—C11—H11B109.5
C6—N1—H1N113.8C10—C11—H11C109.5
C7—N1—H1N119.0H11A—C11—H11C109.5
C6—C1—C9119.37 (15)H11B—C11—H11C109.5
C6—C1—C2121.94 (15)C13—C12—C17117.61 (19)
C9—C1—C2118.67 (15)C13—C12—C2121.15 (17)
C12—C2—C1114.57 (14)C17—C12—C2121.05 (17)
C12—C2—C3107.33 (14)C14—C13—C12121.2 (2)
C1—C2—C3110.10 (14)C14—C13—H13119.4
C12—C2—H2108.2C12—C13—H13119.4
C1—C2—H2108.2C15—C14—C13120.3 (2)
C3—C2—H2108.2C15—C14—H14119.9
C18—C3—C4113.02 (14)C13—C14—H14119.9
C18—C3—C2108.21 (15)C16—C15—C14119.5 (2)
C4—C3—C2111.72 (14)C16—C15—H15120.2
C18—C3—H3107.9C14—C15—H15120.2
C4—C3—H3107.9C15—C16—C17120.4 (2)
C2—C3—H3107.9C15—C16—H16119.8
O1—C4—C3110.45 (14)C17—C16—H16119.8
O1—C4—C21110.28 (14)C16—C17—C12121.0 (2)
C3—C4—C21112.11 (15)C16—C17—H17119.5
O1—C4—C5106.80 (14)C12—C17—H17119.5
C3—C4—C5107.19 (13)O4—C18—O5123.21 (15)
C21—C4—C5109.82 (15)O4—C18—C3125.72 (16)
C6—C5—C4115.09 (15)O5—C18—C3111.03 (16)
C6—C5—H5A108.5O5—C19—C20107.3 (3)
C4—C5—H5A108.5O5—C19—H19A110.3
C6—C5—H5B108.5C20—C19—H19A110.3
C4—C5—H5B108.5O5—C19—H19B110.3
H5A—C5—H5B107.5C20—C19—H19B110.3
N1—C6—C1122.83 (15)H19A—C19—H19B108.5
N1—C6—C5115.03 (15)O5—C19'—C20'107.8 (3)
C1—C6—C5122.12 (14)O5—C19'—H19C110.1
N1—C7—C8109.65 (15)C20'—C19'—H19C110.1
N1—C7—H7A109.7O5—C19'—H19D110.1
C8—C7—H7A109.7C20'—C19'—H19D110.1
N1—C7—H7B109.7H19C—C19'—H19D108.5
C8—C7—H7B109.7C19'—C20'—H20D109.5
H7A—C7—H7B108.2C19'—C20'—H20E109.5
O6—C8—C7112.12 (17)H20D—C20'—H20E109.5
O6—C8—H8A109.2C19'—C20'—H20F109.5
C7—C8—H8A109.2H20D—C20'—H20F109.5
O6—C8—H8B109.2H20E—C20'—H20F109.5
C7—C8—H8B109.2C4—C21—H21A109.5
H8A—C8—H8B107.9C4—C21—H21B109.5
O2—C9—O3120.81 (16)H21A—C21—H21B109.5
O2—C9—C1126.18 (17)C4—C21—H21C109.5
O3—C9—C1112.98 (15)H21A—C21—H21C109.5
O3—C10—C11109.02 (18)H21B—C21—H21C109.5
O3—C10—H10A109.9
C6—C1—C2—C12134.86 (18)C6—C1—C9—O214.7 (3)
C9—C1—C2—C1246.3 (2)C2—C1—C9—O2166.41 (19)
C6—C1—C2—C313.8 (2)C6—C1—C9—O3163.31 (16)
C9—C1—C2—C3167.34 (16)C2—C1—C9—O315.6 (2)
C12—C2—C3—C1859.04 (18)C9—O3—C10—C11102.7 (2)
C1—C2—C3—C18175.64 (14)C1—C2—C12—C1352.1 (2)
C12—C2—C3—C4175.91 (13)C3—C2—C12—C1370.5 (2)
C1—C2—C3—C450.59 (18)C1—C2—C12—C17133.07 (19)
C18—C3—C4—O171.70 (18)C3—C2—C12—C17104.3 (2)
C2—C3—C4—O150.64 (17)C17—C12—C13—C140.4 (3)
C18—C3—C4—C2151.7 (2)C2—C12—C13—C14175.5 (2)
C2—C3—C4—C21174.06 (14)C12—C13—C14—C150.0 (4)
C18—C3—C4—C5172.31 (15)C13—C14—C15—C160.1 (4)
C2—C3—C4—C565.35 (18)C14—C15—C16—C170.6 (4)
O1—C4—C5—C675.18 (19)C15—C16—C17—C121.0 (4)
C3—C4—C5—C643.2 (2)C13—C12—C17—C160.9 (3)
C21—C4—C5—C6165.23 (16)C2—C12—C17—C16175.9 (2)
C7—N1—C6—C1178.34 (19)C19'—O5—C18—O41.5 (8)
C7—N1—C6—C52.8 (3)C19—O5—C18—O411.0 (5)
C9—C1—C6—N16.8 (3)C19'—O5—C18—C3179.3 (7)
C2—C1—C6—N1174.32 (17)C19—O5—C18—C3166.8 (5)
C9—C1—C6—C5171.97 (17)C4—C3—C18—O458.8 (3)
C2—C1—C6—C56.9 (3)C2—C3—C18—O465.5 (3)
C4—C5—C6—N1170.10 (16)C4—C3—C18—O5123.50 (18)
C4—C5—C6—C18.8 (3)C2—C3—C18—O5112.22 (18)
C6—N1—C7—C8156.00 (19)C18—O5—C19—C20167.3 (4)
N1—C7—C8—O658.2 (2)C19'—O5—C19—C2088 (2)
C10—O3—C9—O215.2 (3)C18—O5—C19'—C20'133.8 (6)
C10—O3—C9—C1166.70 (17)C19—O5—C19'—C20'53 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···O6i0.941.922.802 (2)157
O1—H1O···O40.942.613.061 (2)110
O6—H6O···O1ii0.951.782.727 (2)172
N1—H1N···O20.911.912.650 (2)137
Symmetry codes: (i) x, y+1, z1/2; (ii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC21H29NO6
Mr391.45
Crystal system, space groupMonoclinic, C2/c
Temperature (K)100
a, b, c (Å)41.078 (14), 5.940 (2), 18.683 (6)
β (°) 113.581 (13)
V3)4178 (2)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.30 × 0.30 × 0.30
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1998)
Tmin, Tmax0.973, 0.973
No. of measured, independent and
observed [I > 2σ(I)] reflections
18275, 4530, 3052
Rint0.060
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.143, 1.00
No. of reflections4530
No. of parameters263
No. of restraints8
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.25

Computer programs: APEX2 (Bruker, 2005), SAINT-Plus (Bruker, 2001), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···O6i0.9361.9162.802 (2)157
O6—H6O···O1ii0.9541.7782.727 (2)172
N1—H1N···O20.9091.9092.650 (2)137
Symmetry codes: (i) x, y+1, z1/2; (ii) x+1, y+1, z+1.
 

Acknowledgements

We thank Professor Victor N. Khrustalev for fruitful discussions and help with this work.

References

First citationBruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKrivenko, A. P., Kozlova, E. A., Grigorev, A. V. & Sorokin, V. V. (2003). Molecules, 8, 251–255  CAS Google Scholar
First citationSheldrick, G. M. (1998). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds