organic compounds
(E)-Isopropyl 3-(3,4-dihydroxyphenyl)acrylate
aCollege of Life Sciences, Northwest University, Xi'an 710069, People's Republic of China, and bAffiliated High School, Northwest University, Xi'an 710069, People's Republic of China
*Correspondence e-mail: zhengxh@nwu.edu.cn
In the title compound, C12H14O4, a derivative of caffeic acid [(E)-3-(3,4-dihydroxyphenyl)-2-propenoic acid], an intramolecular O—H⋯O hydrogen bond forms an S(5) ring. In the crystal, intermolecular O—H⋯O hydrogen bonds link molecules into chains propagating in [110].
Related literature
For the properties of caffeate et al. (2008); Buzzi et al. (2009); Calheiros et al.(2008); Xia et al.(2008). For the preparation of the title compound, see: Hu et al. (2006). For hydrogen-bond motifs, see: Bernstein et al. (1995).
see: UwaiExperimental
Crystal data
|
Data collection
|
Refinement
|
Data collection: APEX2 (Bruker, 2009); cell SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
https://doi.org/10.1107/S1600536810044272/lh5158sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810044272/lh5158Isup2.hkl
The synthesis follows the method of Hu et al. (2006). To a solution of 0.02 M caffeic acid in 120 ml of 2-propanol at room temperature, 0.2 M HCl in 2-propanol was added. After the solution had been allowed to stir and reflux for 16 h, the solvent was removed under reduced pressure. The residue was extracted with ethyl acetate three times and filtered. The filtrate was washed successively with dilute saturated aqueous NaHCO3 solution, saturated aqueous NaCl, dried over MgSO4, and evaporated. The crude products were purified by χm-1): 3464, 3310, 2973, 2926, 1675, 1629, 1599, 1529, 1370, 1276; 1H NMR (DMSO, δ, p.p.m.): 9.606 (s, 1 H), 9.146 (s, 1 H), 7.424—7.464 (d, 1 H), 7.029 (s, 1 H), 6.990—7.011 (d, 1 H), 6.742—6.762 (d, 1 H), 6.246—6.206(d, 1 H), 4.951—5.013(m, 1 H), 1.245 (s, 3 H), 1.229 (s, 3 H).
(SiO2; elution with petroleum ether-acetoacetate, 6:1 v/v). Yield 80%. X-ray quality crystals were grown from a solution of the title compound in acetone and toluene at room temperature. Spectroscopic analysis: IR(KBr,H atoms were placed in calculated positions with O—H = 0.82Å and C—H = 0.93–0.96 Å with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(Cmethyl, O).
Caffeate
have been shown to have, an inhibitory effect on lipopolysaccharide-induced nitric oxide production, antinociceptive properties, and anticancer activity (Uwai et al., 2008; Buzzi et al., 2009; Calheiros et al., 2008; Xia et al., 2008).The molecular structure of the title compound (I) is shown in Fig. 1. An intramolecular O-H···O hydrogen bond forms an S(5) ring (Bernstein et al., 1995). In the
intermolecular O—H···O hydrogen bonds link molecules into one-dimensional chains along [110] (see Fig .2).For the properties of caffeate
see: Uwai et al. (2008); Buzzi et al. (2009); Calheiros et al.(2008); Xia et al.(2008). For the preparation of the title compound, see: Hu et al. (2006). For hydrogen-bond motifs, see: Bernstein et al. (1995).Data collection: APEX2 (Bruker, 2009); cell
SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C12H14O4 | Z = 2 |
Mr = 222.23 | F(000) = 236 |
Triclinic, P1 | Dx = 1.267 Mg m−3 |
Hall symbol: -P 1 | Melting point: 415 K |
a = 5.8830 (14) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 9.644 (2) Å | Cell parameters from 966 reflections |
c = 11.428 (3) Å | θ = 2.4–26.5° |
α = 65.690 (2)° | µ = 0.10 mm−1 |
β = 89.370 (3)° | T = 296 K |
γ = 81.018 (3)° | Block, colorless |
V = 582.6 (2) Å3 | 0.31 × 0.27 × 0.19 mm |
Bruker APEXII CCD diffractometer | 1436 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.015 |
Graphite monochromator | θmax = 25.1°, θmin = 2.0° |
φ and ω scans | h = −7→4 |
2938 measured reflections | k = −11→11 |
2042 independent reflections | l = −13→13 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.045 | H-atom parameters constrained |
wR(F2) = 0.151 | w = 1/[σ2(Fo2) + (0.0822P)2 + 0.0498P] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max < 0.001 |
2042 reflections | Δρmax = 0.16 e Å−3 |
150 parameters | Δρmin = −0.13 e Å−3 |
0 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.059 (11) |
C12H14O4 | γ = 81.018 (3)° |
Mr = 222.23 | V = 582.6 (2) Å3 |
Triclinic, P1 | Z = 2 |
a = 5.8830 (14) Å | Mo Kα radiation |
b = 9.644 (2) Å | µ = 0.10 mm−1 |
c = 11.428 (3) Å | T = 296 K |
α = 65.690 (2)° | 0.31 × 0.27 × 0.19 mm |
β = 89.370 (3)° |
Bruker APEXII CCD diffractometer | 1436 reflections with I > 2σ(I) |
2938 measured reflections | Rint = 0.015 |
2042 independent reflections |
R[F2 > 2σ(F2)] = 0.045 | 0 restraints |
wR(F2) = 0.151 | H-atom parameters constrained |
S = 1.05 | Δρmax = 0.16 e Å−3 |
2042 reflections | Δρmin = −0.13 e Å−3 |
150 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.2370 (2) | −0.06896 (13) | 0.33802 (11) | 0.0681 (4) | |
O2 | −0.0059 (3) | 0.11022 (15) | 0.18106 (14) | 0.0914 (6) | |
O3 | 0.3441 (2) | 0.87422 (13) | −0.01294 (13) | 0.0716 (4) | |
H3 | 0.2302 | 0.8794 | −0.0562 | 0.107* | |
O4 | 0.7644 (2) | 0.80457 (15) | 0.11324 (14) | 0.0808 (5) | |
H4 | 0.6907 | 0.8884 | 0.0653 | 0.121* | |
C1 | −0.0940 (5) | −0.1810 (3) | 0.4336 (3) | 0.1171 (10) | |
H1A | −0.0341 | −0.1952 | 0.5163 | 0.176* | |
H1B | −0.1815 | −0.2610 | 0.4439 | 0.176* | |
H1C | −0.1918 | −0.0823 | 0.3940 | 0.176* | |
C2 | 0.1019 (4) | −0.1880 (2) | 0.34997 (19) | 0.0718 (6) | |
H2 | 0.0411 | −0.1707 | 0.2647 | 0.086* | |
C3 | 0.2645 (4) | −0.3381 (2) | 0.4062 (2) | 0.0847 (7) | |
H3A | 0.3904 | −0.3349 | 0.3515 | 0.127* | |
H3B | 0.1847 | −0.4205 | 0.4132 | 0.127* | |
H3C | 0.3228 | −0.3552 | 0.4900 | 0.127* | |
C4 | 0.1664 (3) | 0.0739 (2) | 0.25094 (17) | 0.0612 (5) | |
C5 | 0.3170 (3) | 0.1807 (2) | 0.25085 (17) | 0.0631 (5) | |
H5 | 0.4498 | 0.1430 | 0.3053 | 0.076* | |
C6 | 0.2693 (3) | 0.3291 (2) | 0.17549 (16) | 0.0585 (5) | |
H6 | 0.1344 | 0.3605 | 0.1232 | 0.070* | |
C7 | 0.4000 (3) | 0.45108 (19) | 0.16300 (15) | 0.0539 (5) | |
C8 | 0.6149 (3) | 0.4221 (2) | 0.22568 (17) | 0.0606 (5) | |
H8 | 0.6797 | 0.3213 | 0.2795 | 0.073* | |
C9 | 0.7324 (3) | 0.5406 (2) | 0.20894 (17) | 0.0639 (5) | |
H9 | 0.8752 | 0.5194 | 0.2522 | 0.077* | |
C10 | 0.6403 (3) | 0.69140 (19) | 0.12826 (16) | 0.0582 (5) | |
C11 | 0.4264 (3) | 0.72247 (19) | 0.06532 (15) | 0.0550 (5) | |
C12 | 0.3083 (3) | 0.60347 (18) | 0.08283 (15) | 0.0550 (5) | |
H12 | 0.1645 | 0.6252 | 0.0403 | 0.066* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0731 (9) | 0.0470 (7) | 0.0691 (8) | −0.0095 (6) | −0.0157 (6) | −0.0089 (6) |
O2 | 0.1011 (12) | 0.0557 (8) | 0.0969 (10) | −0.0118 (8) | −0.0444 (9) | −0.0104 (8) |
O3 | 0.0749 (9) | 0.0457 (7) | 0.0806 (9) | −0.0074 (6) | −0.0259 (7) | −0.0128 (6) |
O4 | 0.0724 (9) | 0.0577 (8) | 0.1017 (11) | −0.0153 (7) | −0.0234 (8) | −0.0204 (8) |
C1 | 0.0813 (17) | 0.0802 (16) | 0.167 (3) | −0.0154 (13) | 0.0211 (17) | −0.0286 (17) |
C2 | 0.0847 (14) | 0.0521 (11) | 0.0697 (12) | −0.0175 (10) | −0.0131 (10) | −0.0139 (9) |
C3 | 0.1079 (18) | 0.0533 (11) | 0.0819 (14) | −0.0073 (11) | 0.0031 (12) | −0.0192 (10) |
C4 | 0.0665 (12) | 0.0488 (10) | 0.0578 (10) | −0.0044 (9) | −0.0117 (9) | −0.0132 (8) |
C5 | 0.0617 (11) | 0.0536 (11) | 0.0644 (11) | −0.0074 (9) | −0.0098 (9) | −0.0153 (9) |
C6 | 0.0622 (11) | 0.0515 (10) | 0.0549 (10) | −0.0062 (8) | −0.0053 (8) | −0.0161 (8) |
C7 | 0.0561 (10) | 0.0501 (10) | 0.0515 (9) | −0.0055 (8) | −0.0005 (7) | −0.0180 (8) |
C8 | 0.0613 (11) | 0.0503 (10) | 0.0593 (10) | −0.0018 (8) | −0.0065 (8) | −0.0143 (8) |
C9 | 0.0550 (10) | 0.0594 (11) | 0.0686 (11) | −0.0038 (9) | −0.0117 (9) | −0.0196 (9) |
C10 | 0.0574 (11) | 0.0533 (10) | 0.0610 (10) | −0.0099 (8) | −0.0040 (8) | −0.0204 (8) |
C11 | 0.0593 (10) | 0.0459 (9) | 0.0537 (9) | −0.0051 (8) | −0.0066 (8) | −0.0157 (8) |
C12 | 0.0539 (10) | 0.0517 (10) | 0.0540 (9) | −0.0049 (8) | −0.0072 (8) | −0.0176 (8) |
O1—C4 | 1.327 (2) | C3—H3C | 0.9600 |
O1—C2 | 1.457 (2) | C4—C5 | 1.459 (3) |
O2—C4 | 1.210 (2) | C5—C6 | 1.317 (2) |
O3—C11 | 1.3735 (19) | C5—H5 | 0.9300 |
O3—H3 | 0.8200 | C6—C7 | 1.462 (2) |
O4—C10 | 1.358 (2) | C6—H6 | 0.9300 |
O4—H4 | 0.8200 | C7—C8 | 1.391 (3) |
C1—C2 | 1.500 (3) | C7—C12 | 1.395 (2) |
C1—H1A | 0.9600 | C8—C9 | 1.372 (3) |
C1—H1B | 0.9600 | C8—H8 | 0.9300 |
C1—H1C | 0.9600 | C9—C10 | 1.386 (2) |
C2—C3 | 1.496 (3) | C9—H9 | 0.9300 |
C2—H2 | 0.9800 | C10—C11 | 1.384 (2) |
C3—H3A | 0.9600 | C11—C12 | 1.377 (2) |
C3—H3B | 0.9600 | C12—H12 | 0.9300 |
C4—O1—C2 | 118.69 (14) | C6—C5—C4 | 121.51 (17) |
C11—O3—H3 | 109.5 | C6—C5—H5 | 119.2 |
C10—O4—H4 | 109.5 | C4—C5—H5 | 119.2 |
C2—C1—H1A | 109.5 | C5—C6—C7 | 128.67 (18) |
C2—C1—H1B | 109.5 | C5—C6—H6 | 115.7 |
H1A—C1—H1B | 109.5 | C7—C6—H6 | 115.7 |
C2—C1—H1C | 109.5 | C8—C7—C12 | 118.10 (16) |
H1A—C1—H1C | 109.5 | C8—C7—C6 | 122.98 (16) |
H1B—C1—H1C | 109.5 | C12—C7—C6 | 118.91 (16) |
O1—C2—C3 | 106.18 (17) | C9—C8—C7 | 120.69 (17) |
O1—C2—C1 | 108.92 (17) | C9—C8—H8 | 119.7 |
C3—C2—C1 | 112.69 (18) | C7—C8—H8 | 119.7 |
O1—C2—H2 | 109.7 | C8—C9—C10 | 120.69 (17) |
C3—C2—H2 | 109.7 | C8—C9—H9 | 119.7 |
C1—C2—H2 | 109.7 | C10—C9—H9 | 119.7 |
C2—C3—H3A | 109.5 | O4—C10—C11 | 122.00 (15) |
C2—C3—H3B | 109.5 | O4—C10—C9 | 118.59 (16) |
H3A—C3—H3B | 109.5 | C11—C10—C9 | 119.41 (16) |
C2—C3—H3C | 109.5 | O3—C11—C12 | 123.54 (15) |
H3A—C3—H3C | 109.5 | O3—C11—C10 | 116.67 (15) |
H3B—C3—H3C | 109.5 | C12—C11—C10 | 119.79 (15) |
O2—C4—O1 | 123.04 (17) | C11—C12—C7 | 121.31 (16) |
O2—C4—C5 | 124.39 (16) | C11—C12—H12 | 119.3 |
O1—C4—C5 | 112.57 (15) | C7—C12—H12 | 119.3 |
C4—O1—C2—C3 | 155.38 (16) | C7—C8—C9—C10 | −0.6 (3) |
C4—O1—C2—C1 | −83.0 (2) | C8—C9—C10—O4 | −179.05 (16) |
C2—O1—C4—O2 | 0.3 (3) | C8—C9—C10—C11 | 0.8 (3) |
C2—O1—C4—C5 | 179.43 (15) | O4—C10—C11—O3 | −0.4 (3) |
O2—C4—C5—C6 | 2.5 (3) | C9—C10—C11—O3 | 179.78 (16) |
O1—C4—C5—C6 | −176.64 (16) | O4—C10—C11—C12 | 179.41 (17) |
C4—C5—C6—C7 | −179.87 (16) | C9—C10—C11—C12 | −0.4 (3) |
C5—C6—C7—C8 | 5.7 (3) | O3—C11—C12—C7 | 179.71 (14) |
C5—C6—C7—C12 | −175.59 (17) | C10—C11—C12—C7 | −0.1 (3) |
C12—C7—C8—C9 | 0.1 (3) | C8—C7—C12—C11 | 0.2 (3) |
C6—C7—C8—C9 | 178.84 (17) | C6—C7—C12—C11 | −178.53 (15) |
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H3···O2i | 0.82 | 1.92 | 2.725 (2) | 169 |
O4—H4···O3ii | 0.82 | 2.09 | 2.792 (2) | 143 |
O4—H4···O3 | 0.82 | 2.28 | 2.721 (2) | 114 |
Symmetry codes: (i) −x, −y+1, −z; (ii) −x+1, −y+2, −z. |
Experimental details
Crystal data | |
Chemical formula | C12H14O4 |
Mr | 222.23 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 296 |
a, b, c (Å) | 5.8830 (14), 9.644 (2), 11.428 (3) |
α, β, γ (°) | 65.690 (2), 89.370 (3), 81.018 (3) |
V (Å3) | 582.6 (2) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.10 |
Crystal size (mm) | 0.31 × 0.27 × 0.19 |
Data collection | |
Diffractometer | Bruker APEXII CCD |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 2938, 2042, 1436 |
Rint | 0.015 |
(sin θ/λ)max (Å−1) | 0.597 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.045, 0.151, 1.05 |
No. of reflections | 2042 |
No. of parameters | 150 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.16, −0.13 |
Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H3···O2i | 0.82 | 1.916 | 2.725 (2) | 168.96 |
O4—H4···O3ii | 0.82 | 2.090 | 2.792 (2) | 143.34 |
O4—H4···O3 | 0.82 | 2.281 | 2.721 (2) | 114.13 |
Symmetry codes: (i) −x, −y+1, −z; (ii) −x+1, −y+2, −z. |
Acknowledgements
The authors are grateful for financial support from the National Natural Sciences Foundation of China (grant No. 20875074) and the Ministry of Science of China (grant No. 2009ZX09103-121).
References
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Buzzi, F. de C., Franzoi, C. L., Antonini, G., Fracasso, M., Filho, V. C., Yunes, R. A. & Niero, R. (2009). Eur. J. Med. Chem. 44, 4596–4602. PubMed CAS Google Scholar
Calheiros, R., Machado, N. F. L., Fiuza, S. M., Gaspar, A., Garrido, J., Milhazes, N., Borges, F. & Marques, M. P. M. (2008). J. Raman Spectrosc. 39, 95–107. Web of Science CrossRef CAS Google Scholar
Hu, W.-X., Xia, C.-N., Wang, G.-H. & Zhou, W. (2006). J. Chem. Res. 29, 586–588. CrossRef Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Uwai, K., Osanai, Y., Imaizumi, T., Kanno, S., Takeshita, M. & Ishikawa, M. (2008). Bioorg. Med. Chem. 16, 7795–7803. Web of Science CrossRef PubMed CAS Google Scholar
Xia, C.-N., Li, H.-B., Liu, F. & Hu, W.-X. (2008). Bioorg. Med. Chem. Lett. 18, 6553–6557. Web of Science CSD CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Caffeate esters have been shown to have, an inhibitory effect on lipopolysaccharide-induced nitric oxide production, antinociceptive properties, and anticancer activity (Uwai et al., 2008; Buzzi et al., 2009; Calheiros et al., 2008; Xia et al., 2008).
The molecular structure of the title compound (I) is shown in Fig. 1. An intramolecular O-H···O hydrogen bond forms an S(5) ring (Bernstein et al., 1995). In the crystal structure, intermolecular O—H···O hydrogen bonds link molecules into one-dimensional chains along [110] (see Fig .2).