organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

6-Azido-3-O-benzyl-6-de­­oxy-N,N-di­ethyl-1,2-O-iso­propyl­­idene-D-glycero-α-D-gluco-hepto­furan­uronamide

aDepartment of Organic Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford OX1 3TA, England, bDpto. Química Orgánica, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain, and cDepartment of Chemical Crystallography, Chemistry Research, Laboratory, University of Oxford, Oxford OX1 3TA, England
*Correspondence e-mail: sarah.jenkinson@chem.ox.ac.uk

(Received 18 November 2010; accepted 23 November 2010; online 4 December 2010)

Reaction of 3-O-benzyl-1,2-O-isopropyl­idene-α-xylo-pentodialdo-1,4-furan­ose with N,N-diethyl-2-(dimethyl­sulfuranil­idene)acetamide gave stereoselectively an ep­oxy­amide, which was regioselectively opened by NaN3 in dimethyl formamide to give the title compound, C21H30N4O6. X-ray crystallography confirmed the relative stereochemistry of the title compound and the absolute configuration was determined by the use of D-glucose as the starting material. There are two mol­ecules in the asymmetric unit (Z′ = 2). The crystal structure consists of two types of chains of O—H⋯O hydrogen-bonded mol­ecules running parallel to the b axis, with each mol­ecule acting as a donor and acceptor of one hydrogen bond.

Related literature

For the use of sulfur ylids to form ep­oxy­amides, see: Assiego et al. (2004[Assiego, C., Pino-González, M.-S. & López-Herrera, F. J. (2004). Tetrahedron Lett. 45, 2611-2613.]); Jenkinson et al. (2009[Jenkinson, S. F., Wang, C., Pino-González, M.-S., Fleet, G. W. J. & Watkin, D. J. (2009). Acta Cryst. E65, o263.]; López-Herrera et al. (1996[López-Herrera, F. J., Pino-González, M.-S., Sarabia-García, F., Heras-López, A., Ortega-Alcántara, J. J. & Pedraza-Cebrián, M. G. (1996). Tetrahedron Asymmetry, 7, 2065-2071.], 1997[López-Herrera, F. J., Sarabia-García, F., Heras-López, A. & Pino-González, M.-S. (1997). J. Org. Chem. 62, 6056-6059.]); Oña et al. (2010[Oña, N., Romero, A., Assiego, C., Bello, C., Vogel, P. & Pino-González, M.-S. (2010). Tetrahedron Asymmetry, 21, 2092-2099.]); Pino-González et al. (2003[Pino-González, M.-S., Assiego, C. & López-Herrera, F. J. (2003). Tetrahedron Lett. 44, 8353-8356.], 2008[Pino-González, M.-S., Assiego, C. & Oña, N. (2008). Tetrahedron Asymmetry, 19, 932-937.]); Valpuesta Fernández et al. (1990[Valpuesta Fernández, M. V., Durante-Lanes, P. & López-Herrera, F. J. (1990). Tetrahedron, 46, 7911-7922.]).

[Scheme 1]

Experimental

Crystal data
  • C21H30N4O6

  • Mr = 434.49

  • Monoclinic, P 21

  • a = 13.0478 (4) Å

  • b = 10.5547 (3) Å

  • c = 16.5552 (6) Å

  • β = 97.0347 (11)°

  • V = 2262.75 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 150 K

  • 0.20 × 0.20 × 0.20 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) Tmin = 0.92, Tmax = 0.98

  • 15625 measured reflections

  • 5408 independent reflections

  • 4270 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.122

  • S = 0.96

  • 5408 reflections

  • 559 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.56 e Å−3

  • Δρmin = −0.44 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O33—H331⋯O40i 0.84 2.39 3.046 (5) 135
O10—H101⋯O5ii 0.85 2.25 2.849 (5) 127
Symmetry codes: (i) [-x+2, y-{\script{1\over 2}}, -z+2]; (ii) [-x+1, y-{\script{1\over 2}}, -z+1].

Data collection: COLLECT (Nonius, 2001[Nonius (2001). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003[Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.]); molecular graphics: CAMERON (Watkin et al., 1996[Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.]); software used to prepare material for publication: CRYSTALS.

Supporting information


Comment top

The stereoselective formation of epoxyamides from monosacharides and sulfur ylids and the subsequent regioselective epoxide opening has been utilized in the formation of iminosugars such as the seven-membered ring azepanes (Oña et al., 2010), pyrrolidines (Pino-González et al., 2008), pipecolic acid derivatives (Pino-González et al., 2008) and other monosaccharide derivatives as C-glycosides (López-Herrera et al., 1997) and branched furanoses (Jenkinson et al., 2009). In order to obtain new products, key intermediates in iminosugar synthesis, the reaction of semiprotected dialdose 1 with N,N-diethyl-2-(dimethylsulfuranylidene)acetamide was investigated.

Reaction of aldehyde 1, obtained from D-glucose, with the sulfur ylid gave epoxyamide 2 as the only product (Fig. 1). The subsequent regioselective opening of the epoxide with sodium azide, with acetic acid as a catalyst, gave the title compound 3. The product was confirmed, by both X-ray crystallography and the use of D-glucose as the starting material, to have the D-glycero-D-gluco stereochemistry (Fig. 2) arising from initial attack of the ylid on the re face of the aldehyde. This configuration can be predicted from a Felkin-Ahn model as corroborated for a number of aldehyde sugars with either free aldehydes or in cyclohemiacetalic form (Valpuesta Fernández et al., 1990; López-Herrera et al., 1996). In the present compound 1, the influence of 3-O-benzyl group plays a crucial role to obtain complete selectivity.

There are two crystallographically distinct molecules in the asymmetric unit which are related by a pseudo 2-fold rotation axis (Fig 2). When the two molecules are mapped they show good overlap for the majority of the structure (Fig. 3) with RMS deviations of 1.0604 on the positions, 0.0140 for the bonds and 35.7787 for the torsion angles. The major difference between the two molecules is the orientation of the aromatic ring. The crystal exists as chains of hydrogen bonded molecules lying parallel to the b-axis, with each molecule acting as a donor and an acceptor of one hydrogen bond (Fig. 4). Only classical hydrogen bonding is considered. For one of the molecules in the asymmetric unit the ethylamine moiety exhibits a greater degree of thermal motion than in the other.

Related literature top

For the use of sulfur ylids to form epoxyamides, see: Assiego et al. (2004); Jenkinson et al. (2009; López-Herrera et al. (1996, 1997); Oña et al. (2010); Pino-González et al. (2003, 2008); Valpuesta Fernández et al. (1990).

Experimental top

The title compound was recrystallized from dichloromethane: m.p. 375–376 K; [α]D29 -2.28 (1.4, CH2Cl2).

Refinement top

In the absence of significant anomalous scattering, Friedel pairs were merged and the absolute configuration was assigned from the use of D-glucose as the starting material.

The H atoms were all located in a difference map, but those attached to carbon atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H in the range 0.93–0.98, O—H = 0.82 Å) and Uiso(H) (in the range 1.2–1.5 times Ueq of the parent atom), after which the positions were refined with riding constraints.

Structure description top

The stereoselective formation of epoxyamides from monosacharides and sulfur ylids and the subsequent regioselective epoxide opening has been utilized in the formation of iminosugars such as the seven-membered ring azepanes (Oña et al., 2010), pyrrolidines (Pino-González et al., 2008), pipecolic acid derivatives (Pino-González et al., 2008) and other monosaccharide derivatives as C-glycosides (López-Herrera et al., 1997) and branched furanoses (Jenkinson et al., 2009). In order to obtain new products, key intermediates in iminosugar synthesis, the reaction of semiprotected dialdose 1 with N,N-diethyl-2-(dimethylsulfuranylidene)acetamide was investigated.

Reaction of aldehyde 1, obtained from D-glucose, with the sulfur ylid gave epoxyamide 2 as the only product (Fig. 1). The subsequent regioselective opening of the epoxide with sodium azide, with acetic acid as a catalyst, gave the title compound 3. The product was confirmed, by both X-ray crystallography and the use of D-glucose as the starting material, to have the D-glycero-D-gluco stereochemistry (Fig. 2) arising from initial attack of the ylid on the re face of the aldehyde. This configuration can be predicted from a Felkin-Ahn model as corroborated for a number of aldehyde sugars with either free aldehydes or in cyclohemiacetalic form (Valpuesta Fernández et al., 1990; López-Herrera et al., 1996). In the present compound 1, the influence of 3-O-benzyl group plays a crucial role to obtain complete selectivity.

There are two crystallographically distinct molecules in the asymmetric unit which are related by a pseudo 2-fold rotation axis (Fig 2). When the two molecules are mapped they show good overlap for the majority of the structure (Fig. 3) with RMS deviations of 1.0604 on the positions, 0.0140 for the bonds and 35.7787 for the torsion angles. The major difference between the two molecules is the orientation of the aromatic ring. The crystal exists as chains of hydrogen bonded molecules lying parallel to the b-axis, with each molecule acting as a donor and an acceptor of one hydrogen bond (Fig. 4). Only classical hydrogen bonding is considered. For one of the molecules in the asymmetric unit the ethylamine moiety exhibits a greater degree of thermal motion than in the other.

For the use of sulfur ylids to form epoxyamides, see: Assiego et al. (2004); Jenkinson et al. (2009; López-Herrera et al. (1996, 1997); Oña et al. (2010); Pino-González et al. (2003, 2008); Valpuesta Fernández et al. (1990).

Computing details top

Data collection: COLLECT (Nonius, 2001); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS (Betteridge et al., 2003).

Figures top
[Figure 1] Fig. 1. Synthetic Scheme
[Figure 2] Fig. 2. The title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitrary radius.
[Figure 3] Fig. 3. Overlay of the two molecules in the asymmetric unit.
[Figure 4] Fig. 4. Packing diagram of the title compound projected along the a-axis. Hydrogen bonds are shown by dotted lines.
6-Azido-3-O-benzyl-6-deoxy-N,N-diethyl-1,2-O- isopropylidene-D-glycero-α-D-gluco- heptofuranuronamide top
Crystal data top
C21H30N4O6F(000) = 928
Mr = 434.49Dx = 1.275 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 4645 reflections
a = 13.0478 (4) Åθ = 5–27°
b = 10.5547 (3) ŵ = 0.09 mm1
c = 16.5552 (6) ÅT = 150 K
β = 97.0347 (11)°Block, colourless
V = 2262.75 (13) Å30.20 × 0.20 × 0.20 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
4270 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
ω scansθmax = 27.5°, θmin = 5.1°
Absorption correction: multi-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
h = 1616
Tmin = 0.92, Tmax = 0.98k = 1312
15625 measured reflectionsl = 2121
5408 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.053H-atom parameters constrained
wR(F2) = 0.122 Method = Modified Sheldrick w = 1/[σ2(F2) + (0.04P)2 + 1.43P],
where P = [max(Fo2,0) + 2Fc2]/3
S = 0.96(Δ/σ)max = 0.003
5408 reflectionsΔρmax = 0.56 e Å3
559 parametersΔρmin = 0.44 e Å3
1 restraint
Crystal data top
C21H30N4O6V = 2262.75 (13) Å3
Mr = 434.49Z = 4
Monoclinic, P21Mo Kα radiation
a = 13.0478 (4) ŵ = 0.09 mm1
b = 10.5547 (3) ÅT = 150 K
c = 16.5552 (6) Å0.20 × 0.20 × 0.20 mm
β = 97.0347 (11)°
Data collection top
Nonius KappaCCD
diffractometer
5408 independent reflections
Absorption correction: multi-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
4270 reflections with I > 2σ(I)
Tmin = 0.92, Tmax = 0.98Rint = 0.042
15625 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0531 restraint
wR(F2) = 0.122H-atom parameters constrained
S = 0.96Δρmax = 0.56 e Å3
5408 reflectionsΔρmin = 0.44 e Å3
559 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.64815 (18)0.4052 (2)0.70138 (14)0.0323
C20.6244 (3)0.5362 (3)0.7050 (2)0.0326
O30.52450 (18)0.5540 (3)0.72847 (14)0.0375
C40.4683 (3)0.6383 (4)0.6712 (2)0.0391
O50.50934 (17)0.6130 (3)0.59658 (14)0.0358
C60.6160 (2)0.5864 (4)0.6164 (2)0.0325
C70.6459 (2)0.4740 (3)0.5665 (2)0.0298
C80.6189 (2)0.3632 (3)0.61879 (18)0.0282
C90.6733 (2)0.2397 (3)0.60611 (19)0.0293
O100.64964 (17)0.1992 (2)0.52424 (13)0.0330
C110.6496 (2)0.1379 (3)0.6682 (2)0.0308
N120.6996 (2)0.0157 (3)0.6550 (2)0.0429
N130.6700 (3)0.0417 (3)0.5909 (2)0.0477
N140.6530 (4)0.1082 (4)0.5375 (3)0.0697
C150.5332 (2)0.1219 (3)0.6642 (2)0.0329
O160.48494 (19)0.0876 (3)0.59857 (15)0.0420
N170.4860 (2)0.1522 (4)0.72949 (19)0.0511
C180.5406 (3)0.1803 (5)0.8104 (2)0.0490
C190.5848 (4)0.0643 (5)0.8548 (3)0.0700
C200.3693 (4)0.1677 (7)0.7180 (3)0.0828
C210.3191 (5)0.0650 (7)0.7556 (5)0.1107
O230.75398 (16)0.4753 (2)0.56203 (14)0.0328
C240.7781 (3)0.5480 (4)0.4939 (2)0.0465
C250.8930 (3)0.5551 (4)0.4966 (2)0.0357
C260.9436 (3)0.4845 (4)0.4428 (2)0.0437
C271.0507 (3)0.4893 (4)0.4466 (3)0.0477
C281.1072 (3)0.5638 (4)0.5032 (3)0.0470
C291.0577 (3)0.6343 (4)0.5561 (2)0.0462
C300.9513 (3)0.6311 (4)0.5530 (2)0.0431
C310.3567 (3)0.6015 (5)0.6614 (2)0.0568
C320.4884 (4)0.7751 (4)0.6964 (3)0.0572
O330.85567 (16)0.4425 (2)0.97984 (13)0.0306
C340.8314 (2)0.4732 (3)0.89580 (18)0.0263
C350.8804 (2)0.5994 (3)0.87875 (19)0.0262
O360.85475 (16)0.6307 (2)0.79389 (13)0.0281
C370.8626 (2)0.7634 (3)0.7846 (2)0.0291
O380.95612 (18)0.7968 (3)0.75537 (14)0.0387
C391.0141 (2)0.8790 (3)0.8134 (2)0.0312
O400.97597 (16)0.8530 (2)0.88876 (13)0.0313
C410.8693 (2)0.8217 (3)0.8702 (2)0.0283
C420.8428 (2)0.7125 (3)0.92412 (19)0.0266
O430.73311 (15)0.7062 (2)0.92145 (13)0.0308
C440.6988 (2)0.7753 (4)0.9865 (2)0.0413
C450.5827 (2)0.7846 (3)0.9760 (2)0.0314
C460.5195 (3)0.7125 (4)0.9202 (2)0.0397
C470.4129 (3)0.7252 (4)0.9147 (2)0.0467
C480.3685 (3)0.8093 (5)0.9639 (2)0.0484
C490.4308 (3)0.8828 (4)1.0175 (3)0.0500
C500.5372 (3)0.8715 (4)1.0240 (2)0.0425
C531.1262 (3)0.8427 (4)0.8215 (2)0.0446
C540.9960 (3)1.0157 (3)0.7890 (2)0.0430
C560.8605 (2)0.3683 (3)0.83931 (19)0.0276
N570.8102 (2)0.2462 (3)0.85459 (18)0.0352
N580.8394 (2)0.1915 (3)0.91974 (19)0.0373
N590.8557 (3)0.1267 (3)0.9747 (2)0.0522
C690.9774 (2)0.3514 (3)0.84793 (19)0.0283
O611.02124 (16)0.3219 (3)0.91594 (13)0.0351
N621.0296 (2)0.3696 (3)0.78426 (16)0.0290
C630.9861 (3)0.4068 (3)0.70130 (19)0.0329
C671.1427 (2)0.3516 (4)0.7969 (2)0.0373
C681.1979 (3)0.4704 (5)0.8269 (3)0.0514
C600.9706 (3)0.2938 (4)0.6450 (2)0.0424
H210.67950.58140.74110.0413*
H610.65950.66080.61020.0413*
H710.60580.47100.51200.0371*
H810.54270.35170.61050.0355*
H910.75020.25650.61530.0370*
H1110.67860.16820.72190.0400*
H1810.48920.21730.84310.0635*
H1820.59590.24260.80510.0631*
H1920.61680.08640.90860.1080*
H1910.52890.00390.85880.1082*
H1930.63700.02630.82540.1083*
H2020.35070.24490.74510.0996*
H2010.34000.17750.66070.0987*
H2110.24340.07440.74410.1711*
H2120.34320.06260.81480.1714*
H2130.34250.01080.72880.1713*
H2420.75020.63340.49800.0610*
H2410.74650.51000.44270.0610*
H2610.90340.43240.40380.0557*
H2711.08500.44140.40920.0598*
H2811.18100.56520.50470.0609*
H2911.09650.68550.59470.0577*
H3010.91780.68040.59010.0536*
H3120.31960.65680.62090.0900*
H3110.33030.61020.71250.0902*
H3130.34960.51530.64380.0898*
H3220.45220.82970.65500.0915*
H3210.46410.78930.74850.0911*
H3230.56340.79080.70030.0914*
H3410.75580.48410.88520.0312*
H3510.95600.59430.89200.0324*
H3710.80300.79760.74870.0365*
H4110.82360.89510.87180.0377*
H4210.87890.71770.98010.0315*
H4420.72400.73351.04010.0541*
H4410.72710.86180.98690.0547*
H4610.54890.65380.88590.0497*
H4710.37070.67470.87590.0575*
H4810.29450.81600.96090.0622*
H4910.40140.94331.05010.0603*
H5010.58020.92231.06200.0551*
H5321.16550.90190.86000.0722*
H5311.13390.75670.84190.0727*
H5331.15170.84760.76820.0720*
H5411.02851.07120.83100.0684*
H5431.02431.03200.73860.0679*
H5420.92241.03130.78130.0679*
H5610.83520.39340.78260.0362*
H6321.03670.46440.68170.0422*
H6310.92070.45130.70390.0420*
H6711.15870.28150.83590.0484*
H6721.16320.32940.74320.0481*
H6831.27150.45720.83020.0791*
H6821.18080.48940.88200.0790*
H6811.17720.53950.78920.0790*
H6030.94150.32340.59050.0673*
H6021.03660.25240.64310.0672*
H6010.92320.23530.66850.0672*
H3310.91690.41600.99020.0479*
H1010.59000.16590.51960.0518*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0352 (12)0.0328 (13)0.0270 (12)0.0013 (10)0.0035 (9)0.0019 (10)
C20.0323 (17)0.0333 (18)0.0311 (17)0.0026 (15)0.0002 (14)0.0028 (14)
O30.0410 (13)0.0453 (15)0.0261 (12)0.0036 (12)0.0034 (10)0.0031 (11)
C40.0401 (19)0.050 (2)0.0281 (17)0.0059 (17)0.0075 (14)0.0039 (17)
O50.0290 (11)0.0503 (16)0.0287 (12)0.0092 (11)0.0060 (9)0.0062 (11)
C60.0250 (15)0.0374 (19)0.0346 (18)0.0013 (14)0.0018 (13)0.0068 (15)
C70.0222 (14)0.0347 (18)0.0319 (17)0.0003 (14)0.0013 (12)0.0060 (15)
C80.0256 (15)0.0340 (17)0.0238 (15)0.0045 (14)0.0013 (12)0.0009 (14)
C90.0235 (15)0.0362 (19)0.0277 (16)0.0034 (13)0.0017 (12)0.0028 (14)
O100.0314 (11)0.0420 (14)0.0263 (11)0.0067 (11)0.0067 (9)0.0020 (11)
C110.0300 (16)0.0332 (18)0.0293 (17)0.0038 (14)0.0037 (13)0.0036 (14)
N120.0476 (18)0.0355 (17)0.0466 (19)0.0057 (14)0.0100 (15)0.0080 (15)
N130.058 (2)0.0339 (18)0.055 (2)0.0004 (17)0.0242 (17)0.0059 (18)
N140.108 (3)0.040 (2)0.067 (3)0.001 (2)0.034 (2)0.009 (2)
C150.0317 (16)0.0377 (19)0.0292 (17)0.0093 (15)0.0031 (13)0.0018 (15)
O160.0382 (13)0.0553 (17)0.0325 (13)0.0163 (12)0.0043 (10)0.0033 (12)
N170.0348 (16)0.087 (3)0.0332 (17)0.0170 (17)0.0091 (13)0.0074 (18)
C180.047 (2)0.069 (3)0.0325 (19)0.018 (2)0.0115 (16)0.0099 (19)
C190.101 (4)0.069 (3)0.038 (2)0.033 (3)0.002 (2)0.011 (2)
C200.057 (3)0.132 (6)0.066 (3)0.034 (3)0.031 (2)0.018 (3)
C210.086 (4)0.084 (5)0.169 (7)0.012 (4)0.045 (5)0.009 (5)
O230.0233 (10)0.0404 (14)0.0351 (12)0.0002 (10)0.0053 (9)0.0125 (11)
C240.0349 (18)0.058 (3)0.048 (2)0.0060 (18)0.0101 (16)0.027 (2)
C250.0320 (17)0.037 (2)0.0392 (19)0.0014 (15)0.0098 (15)0.0167 (16)
C260.051 (2)0.037 (2)0.044 (2)0.0025 (18)0.0062 (17)0.0039 (17)
C270.046 (2)0.050 (2)0.051 (2)0.011 (2)0.0215 (18)0.009 (2)
C280.0343 (18)0.053 (3)0.056 (2)0.0025 (18)0.0127 (18)0.019 (2)
C290.047 (2)0.042 (2)0.048 (2)0.0080 (18)0.0006 (17)0.0086 (19)
C300.050 (2)0.040 (2)0.041 (2)0.0086 (18)0.0115 (17)0.0037 (17)
C310.0342 (18)0.097 (4)0.040 (2)0.007 (2)0.0108 (16)0.011 (2)
C320.077 (3)0.047 (3)0.051 (3)0.010 (2)0.021 (2)0.003 (2)
O330.0273 (11)0.0394 (14)0.0251 (11)0.0026 (10)0.0037 (9)0.0038 (10)
C340.0197 (14)0.0309 (17)0.0282 (16)0.0013 (13)0.0024 (12)0.0001 (14)
C350.0214 (13)0.0323 (17)0.0241 (15)0.0006 (13)0.0001 (11)0.0002 (13)
O360.0311 (11)0.0283 (12)0.0241 (11)0.0009 (10)0.0007 (8)0.0007 (9)
C370.0290 (15)0.0296 (17)0.0280 (16)0.0002 (14)0.0007 (12)0.0006 (13)
O380.0428 (13)0.0446 (15)0.0304 (12)0.0145 (12)0.0119 (10)0.0064 (11)
C390.0292 (16)0.0349 (19)0.0298 (17)0.0044 (14)0.0052 (13)0.0019 (14)
O400.0277 (11)0.0385 (13)0.0280 (11)0.0082 (10)0.0050 (9)0.0013 (10)
C410.0245 (14)0.0286 (17)0.0319 (17)0.0013 (13)0.0034 (12)0.0028 (14)
C420.0196 (13)0.0320 (17)0.0275 (16)0.0008 (13)0.0005 (12)0.0038 (14)
O430.0218 (10)0.0407 (14)0.0307 (12)0.0016 (10)0.0059 (8)0.0080 (11)
C440.0293 (16)0.056 (2)0.040 (2)0.0004 (17)0.0096 (14)0.0167 (18)
C450.0286 (15)0.0357 (19)0.0319 (17)0.0009 (14)0.0110 (13)0.0028 (15)
C460.0322 (17)0.047 (2)0.0408 (19)0.0026 (17)0.0085 (14)0.0041 (17)
C470.0341 (18)0.059 (3)0.046 (2)0.0038 (18)0.0029 (16)0.002 (2)
C480.0291 (17)0.066 (3)0.051 (2)0.0060 (19)0.0112 (16)0.016 (2)
C490.042 (2)0.058 (3)0.054 (2)0.014 (2)0.0201 (19)0.000 (2)
C500.0389 (19)0.049 (2)0.042 (2)0.0010 (18)0.0143 (15)0.0085 (18)
C530.0336 (17)0.056 (3)0.046 (2)0.0030 (18)0.0125 (16)0.0080 (19)
C540.050 (2)0.034 (2)0.046 (2)0.0001 (17)0.0091 (18)0.0056 (17)
C560.0265 (15)0.0303 (17)0.0257 (16)0.0043 (13)0.0016 (12)0.0018 (14)
N570.0379 (15)0.0300 (15)0.0365 (16)0.0061 (13)0.0008 (12)0.0003 (13)
N580.0395 (16)0.0310 (16)0.0418 (18)0.0037 (14)0.0066 (13)0.0009 (15)
N590.074 (2)0.0379 (19)0.0445 (19)0.0024 (18)0.0061 (17)0.0123 (16)
C690.0293 (15)0.0288 (17)0.0267 (16)0.0029 (14)0.0025 (12)0.0012 (14)
O610.0308 (11)0.0496 (15)0.0239 (11)0.0083 (11)0.0001 (9)0.0041 (11)
N620.0288 (13)0.0348 (15)0.0237 (13)0.0020 (12)0.0045 (10)0.0013 (12)
C630.0378 (17)0.0365 (19)0.0250 (16)0.0042 (15)0.0059 (13)0.0030 (14)
C670.0282 (16)0.053 (2)0.0312 (17)0.0003 (16)0.0045 (13)0.0016 (17)
C680.0390 (19)0.063 (3)0.053 (2)0.010 (2)0.0071 (17)0.001 (2)
C600.0452 (19)0.050 (2)0.0302 (18)0.0101 (18)0.0017 (15)0.0052 (17)
Geometric parameters (Å, º) top
O1—C21.420 (4)O33—C341.426 (4)
O1—C81.444 (4)O33—H3310.844
C2—O31.418 (4)C34—C351.518 (5)
C2—C61.551 (5)C34—C561.527 (5)
C2—H210.999C34—H3410.987
O3—C41.435 (4)C35—O361.442 (4)
C4—O51.430 (4)C35—C421.523 (5)
C4—C311.496 (5)C35—H3510.986
C4—C321.517 (6)O36—C371.415 (4)
O5—C61.419 (4)C37—O381.411 (4)
C6—C71.523 (5)C37—C411.538 (5)
C6—H610.981C37—H3710.987
C7—C81.521 (5)O38—C391.437 (4)
C7—O231.422 (4)C39—O401.426 (4)
C7—H710.987C39—C531.503 (5)
C8—C91.511 (5)C39—C541.509 (5)
C8—H810.994O40—C411.427 (4)
C9—O101.419 (4)C41—C421.524 (5)
C9—C111.545 (4)C41—H4110.980
C9—H911.011C42—O431.429 (3)
O10—H1010.848C42—H4210.989
C11—N121.474 (5)O43—C441.417 (4)
C11—C151.522 (4)C44—C451.506 (4)
C11—H1110.977C44—H4421.010
N12—N131.241 (5)C44—H4410.985
N13—N141.129 (5)C45—C461.388 (5)
C15—O161.241 (4)C45—C501.393 (5)
C15—N171.346 (5)C46—C471.390 (5)
N17—C181.469 (5)C46—H4610.952
N17—C201.520 (6)C47—C481.379 (6)
C18—C191.506 (7)C47—H4710.955
C18—H1810.992C48—C491.369 (6)
C18—H1820.988C48—H4810.963
C19—H1920.965C49—C501.384 (5)
C19—H1910.978C49—H4910.946
C19—H1930.970C50—H5010.955
C20—C211.446 (9)C53—H5320.990
C20—H2020.975C53—H5310.970
C20—H2010.984C53—H5330.981
C21—H2110.988C54—H5410.967
C21—H2120.993C54—H5430.969
C21—H2130.982C54—H5420.966
O23—C241.431 (4)C56—N571.482 (4)
C24—C251.497 (5)C56—C691.524 (4)
C24—H2420.978C56—H5610.992
C24—H2410.982N57—N581.241 (4)
C25—C261.388 (5)N58—N591.137 (4)
C25—C301.387 (5)C69—O611.239 (4)
C26—C271.392 (6)C69—N621.338 (4)
C26—H2610.955N62—C631.474 (4)
C27—C281.368 (6)N62—C671.476 (4)
C27—H2710.952C63—C601.512 (5)
C28—C291.370 (6)C63—H6320.981
C28—H2810.960C63—H6310.980
C29—C301.383 (5)C67—C681.501 (6)
C29—H2910.937C67—H6710.988
C30—H3010.951C67—H6720.987
C31—H3120.972C68—H6830.965
C31—H3110.957C68—H6820.986
C31—H3130.956C68—H6810.976
C32—H3220.972C60—H6030.986
C32—H3210.968C60—H6020.971
C32—H3230.986C60—H6010.988
C2—O1—C8107.8 (2)C34—O33—H331111.4
O1—C2—O3110.7 (3)O33—C34—C35109.5 (2)
O1—C2—C6106.5 (3)O33—C34—C56113.0 (3)
O3—C2—C6104.7 (2)C35—C34—C56112.4 (2)
O1—C2—H21110.3O33—C34—H341107.2
O3—C2—H21113.0C35—C34—H341107.4
C6—C2—H21111.4C56—C34—H341107.0
C2—O3—C4108.3 (2)C34—C35—O36109.2 (2)
O3—C4—O5103.9 (3)C34—C35—C42115.3 (2)
O3—C4—C31108.8 (3)O36—C35—C42104.5 (3)
O5—C4—C31108.7 (3)C34—C35—H351110.1
O3—C4—C32110.6 (3)O36—C35—H351109.6
O5—C4—C32110.2 (3)C42—C35—H351107.9
C31—C4—C32114.2 (4)C35—O36—C37108.8 (2)
C4—O5—C6107.3 (2)O36—C37—O38111.2 (3)
C2—C6—O5103.9 (3)O36—C37—C41107.0 (3)
C2—C6—C7104.6 (3)O38—C37—C41105.2 (2)
O5—C6—C7109.7 (3)O36—C37—H371111.4
C2—C6—H61113.5O38—C37—H371110.7
O5—C6—H61112.4C41—C37—H371111.1
C7—C6—H61112.2C37—O38—C39109.2 (2)
C6—C7—C8101.5 (3)O38—C39—O40104.9 (2)
C6—C7—O23110.0 (3)O38—C39—C53109.5 (3)
C8—C7—O23109.7 (3)O40—C39—C53108.2 (3)
C6—C7—H71112.3O38—C39—C54110.2 (3)
C8—C7—H71111.2O40—C39—C54110.9 (3)
O23—C7—H71111.7C53—C39—C54112.7 (3)
C7—C8—O1104.5 (3)C39—O40—C41106.9 (2)
C7—C8—C9116.0 (3)C37—C41—O40103.6 (2)
O1—C8—C9108.8 (2)C37—C41—C42104.2 (3)
C7—C8—H81108.2O40—C41—C42109.5 (2)
O1—C8—H81108.2C37—C41—H411112.1
C9—C8—H81110.8O40—C41—H411113.1
C8—C9—O10110.0 (3)C42—C41—H411113.5
C8—C9—C11111.8 (3)C41—C42—C35101.2 (2)
O10—C9—C11112.8 (3)C41—C42—O43108.3 (2)
C8—C9—H91107.6C35—C42—O43109.3 (2)
O10—C9—H91107.0C41—C42—H421113.1
C11—C9—H91107.3C35—C42—H421111.2
C9—O10—H101107.6O43—C42—H421113.1
C9—C11—N12112.4 (3)C42—O43—C44111.2 (2)
C9—C11—C15109.2 (3)O43—C44—C45110.7 (3)
N12—C11—C15110.8 (3)O43—C44—H442110.1
C9—C11—H111106.9C45—C44—H442110.2
N12—C11—H111107.0O43—C44—H441109.2
C15—C11—H111110.5C45—C44—H441108.2
C11—N12—N13117.1 (3)H442—C44—H441108.5
N12—N13—N14169.4 (4)C44—C45—C46123.2 (3)
C11—C15—O16117.8 (3)C44—C45—C50118.0 (3)
C11—C15—N17119.4 (3)C46—C45—C50118.8 (3)
O16—C15—N17122.7 (3)C45—C46—C47119.9 (4)
C15—N17—C18124.1 (3)C45—C46—H461120.3
C15—N17—C20118.4 (3)C47—C46—H461119.8
C18—N17—C20117.3 (3)C46—C47—C48120.9 (4)
N17—C18—C19113.2 (4)C46—C47—H471118.7
N17—C18—H181106.9C48—C47—H471120.5
C19—C18—H181107.4C47—C48—C49119.3 (3)
N17—C18—H182109.3C47—C48—H481120.5
C19—C18—H182110.2C49—C48—H481120.3
H181—C18—H182109.8C48—C49—C50120.8 (4)
C18—C19—H192110.5C48—C49—H491120.2
C18—C19—H191108.6C50—C49—H491119.1
H192—C19—H191109.7C45—C50—C49120.4 (4)
C18—C19—H193110.0C45—C50—H501119.2
H192—C19—H193108.1C49—C50—H501120.4
H191—C19—H193109.9C39—C53—H532108.6
N17—C20—C21111.4 (6)C39—C53—H531109.1
N17—C20—H202109.5H532—C53—H531110.1
C21—C20—H202106.1C39—C53—H533109.8
N17—C20—H201113.3H532—C53—H533109.9
C21—C20—H201110.6H531—C53—H533109.3
H202—C20—H201105.5C39—C54—H541110.3
C20—C21—H211109.7C39—C54—H543109.6
C20—C21—H212109.8H541—C54—H543109.4
H211—C21—H212112.4C39—C54—H542108.6
C20—C21—H213103.5H541—C54—H542109.4
H211—C21—H213110.7H543—C54—H542109.4
H212—C21—H213110.3C34—C56—N57112.2 (3)
C7—O23—C24111.2 (2)C34—C56—C69110.4 (3)
O23—C24—C25108.6 (3)N57—C56—C69110.0 (3)
O23—C24—H242108.7C34—C56—H561107.8
C25—C24—H242109.4N57—C56—H561106.9
O23—C24—H241110.6C69—C56—H561109.5
C25—C24—H241111.1C56—N57—N58117.2 (3)
H242—C24—H241108.4N57—N58—N59169.2 (4)
C24—C25—C26120.5 (4)C56—C69—O61117.4 (3)
C24—C25—C30120.9 (4)C56—C69—N62120.7 (3)
C26—C25—C30118.6 (3)O61—C69—N62121.9 (3)
C25—C26—C27120.3 (4)C69—N62—C63126.7 (3)
C25—C26—H261118.6C69—N62—C67117.9 (3)
C27—C26—H261121.1C63—N62—C67115.5 (3)
C26—C27—C28120.4 (4)N62—C63—C60111.8 (3)
C26—C27—H271120.0N62—C63—H632106.0
C28—C27—H271119.6C60—C63—H632109.2
C27—C28—C29119.6 (4)N62—C63—H631109.0
C27—C28—H281118.8C60—C63—H631110.7
C29—C28—H281121.6H632—C63—H631110.0
C28—C29—C30120.9 (4)N62—C67—C68111.7 (3)
C28—C29—H291119.4N62—C67—H671108.5
C30—C29—H291119.7C68—C67—H671110.7
C25—C30—C29120.3 (4)N62—C67—H672106.3
C25—C30—H301119.6C68—C67—H672108.9
C29—C30—H301120.1H671—C67—H672110.6
C4—C31—H312108.3C67—C68—H683109.4
C4—C31—H311109.3C67—C68—H682108.8
H312—C31—H311110.4H683—C68—H682108.2
C4—C31—H313109.7C67—C68—H681109.2
H312—C31—H313109.9H683—C68—H681109.9
H311—C31—H313109.2H682—C68—H681111.3
C4—C32—H322108.6C63—C60—H603108.8
C4—C32—H321109.2C63—C60—H602108.8
H322—C32—H321110.6H603—C60—H602111.0
C4—C32—H323108.4C63—C60—H601107.1
H322—C32—H323109.8H603—C60—H601111.7
H321—C32—H323110.2H602—C60—H601109.3
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H21···O361.002.403.333 (5)155
C7—H71···O16i0.992.393.268 (5)147
C18—H182···O10.992.583.388 (5)139
C31—H312···O10i0.972.523.233 (5)130
C42—H421···O61ii0.992.313.216 (5)152
O33—H331···O40iii0.842.393.046 (5)135
O33—H331···O610.842.182.822 (5)133
O10—H101···O5iv0.852.252.849 (5)127
O10—H101···O160.852.172.858 (5)138
Symmetry codes: (i) x+1, y+1/2, z+1; (ii) x+2, y+1/2, z+2; (iii) x+2, y1/2, z+2; (iv) x+1, y1/2, z+1.

Experimental details

Crystal data
Chemical formulaC21H30N4O6
Mr434.49
Crystal system, space groupMonoclinic, P21
Temperature (K)150
a, b, c (Å)13.0478 (4), 10.5547 (3), 16.5552 (6)
β (°) 97.0347 (11)
V3)2262.75 (13)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.20 × 0.20 × 0.20
Data collection
DiffractometerNonius KappaCCD
Absorption correctionMulti-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
Tmin, Tmax0.92, 0.98
No. of measured, independent and
observed [I > 2σ(I)] reflections
15625, 5408, 4270
Rint0.042
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.122, 0.96
No. of reflections5408
No. of parameters559
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.56, 0.44

Computer programs: COLLECT (Nonius, 2001), DENZO/SCALEPACK (Otwinowski & Minor, 1997), SIR92 (Altomare et al., 1994), CRYSTALS (Betteridge et al., 2003), CAMERON (Watkin et al., 1996).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O33—H331···O40i0.842.393.046 (5)135
O10—H101···O5ii0.852.252.849 (5)127
Symmetry codes: (i) x+2, y1/2, z+2; (ii) x+1, y1/2, z+1.
 

Acknowledgements

We thank the Dirección General de Investigación Científica y Técnica of Spain (CTQ2007–66518/BQU) and the Consejería de Educación y Ciencia, Junta de Andalucia (FQM 158), for financial support.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationAssiego, C., Pino-González, M.-S. & López-Herrera, F. J. (2004). Tetrahedron Lett. 45, 2611–2613.  Web of Science CrossRef CAS Google Scholar
First citationBetteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.  Web of Science CrossRef IUCr Journals Google Scholar
First citationJenkinson, S. F., Wang, C., Pino-González, M.-S., Fleet, G. W. J. & Watkin, D. J. (2009). Acta Cryst. E65, o263.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLópez-Herrera, F. J., Pino-González, M.-S., Sarabia-García, F., Heras-López, A., Ortega-Alcántara, J. J. & Pedraza-Cebrián, M. G. (1996). Tetrahedron Asymmetry, 7, 2065–2071.  Google Scholar
First citationLópez-Herrera, F. J., Sarabia-García, F., Heras-López, A. & Pino-González, M.-S. (1997). J. Org. Chem. 62, 6056–6059.  Google Scholar
First citationNonius (2001). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOña, N., Romero, A., Assiego, C., Bello, C., Vogel, P. & Pino-González, M.-S. (2010). Tetrahedron Asymmetry, 21, 2092–2099.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPino-González, M.-S., Assiego, C. & López-Herrera, F. J. (2003). Tetrahedron Lett. 44, 8353–8356.  Web of Science CrossRef Google Scholar
First citationPino-González, M.-S., Assiego, C. & Oña, N. (2008). Tetrahedron Asymmetry, 19, 932–937.  Web of Science CrossRef Google Scholar
First citationValpuesta Fernández, M. V., Durante-Lanes, P. & López-Herrera, F. J. (1990). Tetrahedron, 46, 7911–7922.  Google Scholar
First citationWatkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds