metal-organic compounds
Poly[[bis[μ-1,2-bis(4-pyridyl)ethene]bis(trichloroacetato)cadmium(II)] monohydrate]
aDepartment of Fine Chemistry, and Eco-Product and Materials Education Center, Seoul National University of Science and Technology, Seoul 139-743, Republic of Korea, and bDepartment of Chemistry and Nano Science, Ewha Womans University, Seoul 120-750, Republic of Korea
*Correspondence e-mail: chealkim@seoultech.ac.kr, ymeekim@ewha.ac.kr
In the 2Cl3O2)2(C12H10N2)2]·H2O}n, the CdII ion lies on a twofold rotation axis and 1,2-bis(4-pyridyl)ethene ligands bridge symmetry-related CdII ions, forming a two-dimensional structure. Two trichloroacetate ligands complete the coordination around the CdII ion, forming a distorted octahedral environment. In the crystal, solvent water molecules, which also lie on twofold rotation axes, form intermolecular O—H⋯O hydrogen bonds, which connect the two-dimensional structure into a three-dimensional network. The crystal studied was an the refined ratio of twin components being 0.75 (4):0.25 (4).
of the title compound, {[Cd(CRelated literature
For background to self-assembly processes, see: Batten & Robson (1998); Moler et al. (2001); Moulton & Zaworotko (2001); Kim (2002); Evans & Lin (2002). For supramolecular assemblies, see: Sauvage & Hosseini (1995); Fujita et al. (2001); Aromí et al. (2006). For optical sensors and heterogeneous catalysts, see: Yoo et al. (2003); Takizawa et al. (2003); Hong et al. (2004); Kitagawa et al. (2004); Hong et al. (2005); Han et al. (2006).
Experimental
Crystal data
|
Data collection: SMART (Bruker, 1997); cell SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
https://doi.org/10.1107/S1600536810049457/lh5170sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810049457/lh5170Isup2.hkl
39.3 mg (0.125 mmol) of Cd(NO3)2.4H2O and 41.3 mg (0.25 mmol) of CCl3COOH and 15.8 mg (0.125 mmol) of NH4OH were dissolved in 4 ml water and carefully layered by 4 ml ethanol of 1,2-bis(4-pyridyl)ethene ligand (47.0 mg, 0.25 mmol). Suitable crystals of the title compound for X-ray analysis were obtained in a month.
H atoms were placed incalculated positions with C—H distances of 0.93 Å (phenyl). They were included in the
in riding-motion approximation with Uĩso~(H) = 1.2U~eq~(C). The unique H atom bonded to the water molecule was refined independently with an isotropic displacement parameter.Self-assembly processes involving metal ions and organic ligands directed by either metal coordination or hydrogen bonds have attracted much attention in the field of supramolecular chemistry and current coordination chemistry (Batten, et al.,1998; Moler, et al., 2001; Moulton, et al., 2001; Kim, et al., 2002; Evans, et al., 2002). The use of rigid or flexible spacer ligands is of considerable interests in recent years owing to their potential as building blocks for supramolecular assemblies (Sauvage, et al.,1995; Fujita, et al., 2001; Aromí, et al., 2006) and their ability to act as optical sensors and heterogeneous catalysts (Yoo, et al., 2003; Takizawa, et al., 2003; Hong, et al., 2004; Kitagawa, et al., 2004; Hong, et al., 2005; Han, et al., 2006). In our attempt to investigate the design and control of the self-assembly of coordination polymers with the rigid bridging ligands, we have employed CdII to develop a new polymeric complex with the ligand 1,2-bis(4-pyridyl)ethene. We report herein the
of the title compound [Cd(O2C2Cl3)2(C12H10N2)2]n (C12H10N2= 1,2-bis(4-pyridyl)ethene).The
of the title compound is shown in Fig. 1. The unique CdII ion lies on a twofold roation axis and 1,2-bis(4-pyridyl)ethene ligands bridge symmetry related CdII ions to form a two-dimensional structure (Fig. 2). Two trichloroacetato ligands complete the coordination around the CdII ion to form a distorted octahedral environment. In the solvent water molecules, which also lie on twofold roation axes, form intermolecular O-H···O hydrogen bonds which connect the two-dimensional structure into a three-dimensional network.For background to self-assembly processes, see: Batten et al. (1998); Moler et al. (2001); Moulton et al. (2001); Kim et al. (2002); Evans et al. (2002). For supramolecular assemblies, see: Sauvage et al. (1995); Fujita et al. (2001); Aromí et al. (2006). For optical sensors and heterogeneous catalysts, see: Yoo et al. (2003); Takizawa et al. (2003); Hong et al. (2004); Kitagawa et al. (2004); Hong et al. (2005); Han et al. (2006).
Data collection: SMART (Bruker, 1997); cell
SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).[Cd(C2Cl3O2)2(C12H10N2)2]·H2O | F(000) = 1632 |
Mr = 819.60 | Dx = 1.654 Mg m−3 |
Orthorhombic, Iba2 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: I 2 -2c | Cell parameters from 3648 reflections |
a = 19.618 (4) Å | θ = 2.4–26.3° |
b = 9.5760 (19) Å | µ = 1.19 mm−1 |
c = 17.517 (4) Å | T = 293 K |
V = 3290.8 (11) Å3 | Block, colorless |
Z = 4 | 0.25 × 0.20 × 0.20 mm |
Bruker SMART CCD area-detector diffractometer | 3146 independent reflections |
Radiation source: fine-focus sealed tube | 2738 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.025 |
φ and ω scans | θmax = 26.0°, θmin = 2.1° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −23→24 |
Tmin = 0.751, Tmax = 0.788 | k = −11→8 |
8746 measured reflections | l = −21→21 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.032 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.085 | w = 1/[σ2(Fo2) + (0.0561P)2 + 0.189P] where P = (Fo2 + 2Fc2)/3 |
S = 1.07 | (Δ/σ)max < 0.001 |
3146 reflections | Δρmax = 0.69 e Å−3 |
205 parameters | Δρmin = −0.49 e Å−3 |
1 restraint | Absolute structure: Flack (1983), 1477 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.25 (4) |
[Cd(C2Cl3O2)2(C12H10N2)2]·H2O | V = 3290.8 (11) Å3 |
Mr = 819.60 | Z = 4 |
Orthorhombic, Iba2 | Mo Kα radiation |
a = 19.618 (4) Å | µ = 1.19 mm−1 |
b = 9.5760 (19) Å | T = 293 K |
c = 17.517 (4) Å | 0.25 × 0.20 × 0.20 mm |
Bruker SMART CCD area-detector diffractometer | 3146 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 2738 reflections with I > 2σ(I) |
Tmin = 0.751, Tmax = 0.788 | Rint = 0.025 |
8746 measured reflections |
R[F2 > 2σ(F2)] = 0.032 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.085 | Δρmax = 0.69 e Å−3 |
S = 1.07 | Δρmin = −0.49 e Å−3 |
3146 reflections | Absolute structure: Flack (1983), 1477 Friedel pairs |
205 parameters | Absolute structure parameter: 0.25 (4) |
1 restraint |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.1330 (3) | 0.5206 (5) | 0.3412 (4) | 0.0483 (15) | |
H1 | 0.1462 | 0.4440 | 0.3121 | 0.058* | |
C2 | 0.1778 (2) | 0.5728 (5) | 0.3947 (3) | 0.0452 (10) | |
H2 | 0.2203 | 0.5317 | 0.4013 | 0.054* | |
C3 | 0.15908 (19) | 0.6871 (4) | 0.4386 (2) | 0.0370 (9) | |
C4 | 0.0939 (2) | 0.7358 (6) | 0.4289 (2) | 0.0483 (11) | |
H4 | 0.0779 | 0.8075 | 0.4598 | 0.058* | |
C5 | 0.0521 (2) | 0.6800 (5) | 0.3739 (2) | 0.0474 (11) | |
H5 | 0.0086 | 0.7171 | 0.3678 | 0.057* | |
C6 | 0.20672 (19) | 0.7556 (5) | 0.4922 (2) | 0.0454 (12) | |
H6 | 0.1884 | 0.8097 | 0.5312 | 0.055* | |
C7 | 0.2262 (2) | 0.7553 (5) | −0.0119 (3) | 0.0496 (12) | |
H7 | 0.2086 | 0.8121 | −0.0503 | 0.060* | |
C8 | 0.17672 (19) | 0.6860 (5) | 0.0386 (2) | 0.0437 (10) | |
C9 | 0.1933 (2) | 0.5842 (5) | 0.0904 (2) | 0.0509 (12) | |
H9 | 0.2381 | 0.5534 | 0.0942 | 0.061* | |
C10 | 0.1447 (3) | 0.5281 (7) | 0.1361 (4) | 0.0547 (16) | |
H10 | 0.1578 | 0.4583 | 0.1700 | 0.066* | |
C11 | 0.0618 (2) | 0.6619 (6) | 0.0834 (2) | 0.0530 (13) | |
H11 | 0.0163 | 0.6882 | 0.0794 | 0.064* | |
C12 | 0.1090 (2) | 0.7238 (7) | 0.0345 (3) | 0.0576 (14) | |
H12 | 0.0949 | 0.7904 | −0.0007 | 0.069* | |
C13 | 0.0825 (2) | 0.1977 (4) | 0.1993 (3) | 0.0433 (9) | |
C14 | 0.1275 (2) | 0.0920 (5) | 0.2461 (3) | 0.0567 (12) | |
Cd1 | 0.0000 | 0.5000 | 0.22812 (5) | 0.03111 (11) | |
Cl1 | 0.20978 (7) | 0.1774 (2) | 0.25364 (11) | 0.1014 (6) | |
Cl2 | 0.09814 (9) | 0.0658 (2) | 0.33949 (9) | 0.0954 (5) | |
Cl3 | 0.14021 (12) | −0.06656 (19) | 0.19892 (14) | 0.1285 (9) | |
N1 | 0.07119 (15) | 0.5758 (4) | 0.32947 (19) | 0.0398 (8) | |
N2 | 0.07875 (16) | 0.5669 (5) | 0.13543 (19) | 0.0403 (8) | |
O1 | 0.05695 (13) | 0.2898 (3) | 0.23965 (17) | 0.0488 (7) | |
O3 | 0.08109 (18) | 0.1802 (4) | 0.13081 (19) | 0.0680 (9) | |
O1S | 0.0000 | 1.0000 | 0.5313 (4) | 0.0764 (17) | |
H1S | 0.021 (3) | 0.941 (6) | 0.570 (3) | 0.059 (14)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.044 (3) | 0.044 (3) | 0.057 (3) | −0.0035 (19) | −0.009 (3) | −0.013 (2) |
C2 | 0.0299 (19) | 0.054 (3) | 0.052 (2) | 0.0011 (19) | −0.0088 (17) | −0.005 (2) |
C3 | 0.0309 (19) | 0.045 (2) | 0.0349 (19) | −0.0118 (17) | −0.0088 (15) | −0.0007 (16) |
C4 | 0.042 (2) | 0.063 (3) | 0.040 (2) | −0.001 (2) | −0.0068 (17) | −0.018 (2) |
C5 | 0.034 (2) | 0.060 (3) | 0.049 (2) | 0.005 (2) | −0.0116 (18) | −0.014 (2) |
C6 | 0.039 (2) | 0.056 (2) | 0.042 (3) | −0.0081 (18) | −0.0075 (17) | −0.0070 (18) |
C7 | 0.0405 (18) | 0.065 (3) | 0.044 (3) | −0.0112 (19) | 0.010 (2) | 0.012 (2) |
C8 | 0.0314 (19) | 0.061 (3) | 0.039 (2) | −0.0055 (18) | 0.0066 (17) | −0.002 (2) |
C9 | 0.033 (2) | 0.069 (3) | 0.050 (3) | −0.001 (2) | 0.0095 (18) | 0.017 (2) |
C10 | 0.034 (3) | 0.069 (3) | 0.062 (4) | −0.004 (2) | 0.014 (3) | 0.018 (3) |
C11 | 0.029 (2) | 0.085 (4) | 0.045 (2) | −0.003 (2) | 0.0042 (17) | 0.015 (2) |
C12 | 0.039 (2) | 0.083 (4) | 0.051 (3) | −0.003 (2) | 0.008 (2) | 0.026 (3) |
C13 | 0.040 (2) | 0.042 (2) | 0.048 (2) | −0.0078 (17) | 0.0007 (17) | −0.0015 (17) |
C14 | 0.058 (2) | 0.059 (3) | 0.054 (3) | 0.009 (2) | −0.007 (2) | −0.010 (2) |
Cd1 | 0.02345 (16) | 0.04508 (18) | 0.02480 (16) | −0.01014 (13) | 0.000 | 0.000 |
Cl1 | 0.0462 (6) | 0.1336 (14) | 0.1242 (14) | 0.0178 (7) | −0.0158 (8) | −0.0198 (11) |
Cl2 | 0.1164 (13) | 0.0992 (12) | 0.0706 (9) | 0.0192 (10) | 0.0012 (9) | 0.0275 (9) |
Cl3 | 0.173 (2) | 0.0646 (10) | 0.148 (2) | 0.0378 (12) | −0.0147 (15) | −0.0328 (11) |
N1 | 0.0336 (18) | 0.049 (2) | 0.0363 (19) | −0.0101 (16) | −0.0033 (14) | −0.0055 (17) |
N2 | 0.0304 (18) | 0.057 (2) | 0.0334 (18) | −0.0074 (17) | 0.0056 (13) | 0.0067 (17) |
O1 | 0.0489 (14) | 0.0503 (15) | 0.0471 (18) | 0.0042 (12) | 0.0031 (13) | −0.0007 (14) |
O3 | 0.074 (2) | 0.078 (2) | 0.051 (2) | 0.0024 (18) | −0.0073 (16) | −0.0095 (17) |
O1S | 0.091 (5) | 0.078 (4) | 0.060 (4) | 0.001 (3) | 0.000 | 0.000 |
C1—N1 | 1.338 (7) | C10—N2 | 1.347 (7) |
C1—C2 | 1.379 (8) | C10—H10 | 0.9300 |
C1—H1 | 0.9300 | C11—N2 | 1.330 (6) |
C2—C3 | 1.387 (6) | C11—C12 | 1.393 (6) |
C2—H2 | 0.9300 | C11—H11 | 0.9300 |
C3—C4 | 1.371 (6) | C12—H12 | 0.9300 |
C3—C6 | 1.479 (5) | C13—O3 | 1.212 (5) |
C4—C5 | 1.374 (6) | C13—O1 | 1.236 (5) |
C4—H4 | 0.9300 | C13—C14 | 1.573 (6) |
C5—N1 | 1.320 (6) | C14—Cl3 | 1.746 (5) |
C5—H5 | 0.9300 | C14—Cl2 | 1.753 (5) |
C6—C7i | 1.323 (6) | C14—Cl1 | 1.815 (5) |
C6—H6 | 0.9300 | Cd1—O1iii | 2.311 (3) |
C7—C6ii | 1.322 (6) | Cd1—O1 | 2.311 (3) |
C7—C8 | 1.471 (6) | Cd1—N2 | 2.331 (3) |
C7—H7 | 0.9300 | Cd1—N2iii | 2.331 (3) |
C8—C9 | 1.371 (6) | Cd1—N1 | 2.373 (3) |
C8—C12 | 1.379 (6) | Cd1—N1iii | 2.373 (3) |
C9—C10 | 1.356 (7) | O1S—H1S | 0.97 (6) |
C9—H9 | 0.9300 | ||
N1—C1—C2 | 122.6 (5) | C8—C12—H12 | 120.1 |
N1—C1—H1 | 118.7 | C11—C12—H12 | 120.1 |
C2—C1—H1 | 118.7 | O3—C13—O1 | 131.0 (4) |
C1—C2—C3 | 119.6 (4) | O3—C13—C14 | 116.0 (4) |
C1—C2—H2 | 120.2 | O1—C13—C14 | 112.9 (4) |
C3—C2—H2 | 120.2 | C13—C14—Cl3 | 113.2 (3) |
C4—C3—C2 | 116.5 (4) | C13—C14—Cl2 | 113.2 (3) |
C4—C3—C6 | 121.1 (4) | Cl3—C14—Cl2 | 111.4 (3) |
C2—C3—C6 | 122.3 (4) | C13—C14—Cl1 | 104.3 (3) |
C3—C4—C5 | 120.8 (4) | Cl3—C14—Cl1 | 107.4 (3) |
C3—C4—H4 | 119.6 | Cl2—C14—Cl1 | 106.8 (3) |
C5—C4—H4 | 119.6 | O1iii—Cd1—O1 | 169.98 (15) |
N1—C5—C4 | 122.5 (4) | O1iii—Cd1—N2 | 98.16 (13) |
N1—C5—H5 | 118.8 | O1—Cd1—N2 | 88.84 (13) |
C4—C5—H5 | 118.8 | O1iii—Cd1—N2iii | 88.85 (13) |
C7i—C6—C3 | 124.0 (4) | O1—Cd1—N2iii | 98.16 (13) |
C7i—C6—H6 | 118.0 | N2—Cd1—N2iii | 91.69 (17) |
C3—C6—H6 | 118.0 | O1iii—Cd1—N1 | 87.28 (12) |
C6ii—C7—C8 | 126.0 (4) | O1—Cd1—N1 | 85.22 (12) |
C6ii—C7—H7 | 117.0 | N2—Cd1—N1 | 92.69 (10) |
C8—C7—H7 | 117.0 | N2iii—Cd1—N1 | 174.52 (14) |
C9—C8—C12 | 116.7 (4) | O1iii—Cd1—N1iii | 85.22 (12) |
C9—C8—C7 | 124.2 (4) | O1—Cd1—N1iii | 87.29 (12) |
C12—C8—C7 | 119.1 (4) | N2—Cd1—N1iii | 174.52 (14) |
C10—C9—C8 | 120.4 (4) | N2iii—Cd1—N1iii | 92.69 (10) |
C10—C9—H9 | 119.8 | N1—Cd1—N1iii | 83.13 (16) |
C8—C9—H9 | 119.8 | C5—N1—C1 | 117.7 (4) |
N2—C10—C9 | 124.1 (5) | C5—N1—Cd1 | 120.3 (3) |
N2—C10—H10 | 117.9 | C1—N1—Cd1 | 121.8 (3) |
C9—C10—H10 | 117.9 | C11—N2—C10 | 115.8 (4) |
N2—C11—C12 | 123.1 (4) | C11—N2—Cd1 | 120.0 (3) |
N2—C11—H11 | 118.5 | C10—N2—Cd1 | 123.7 (3) |
C12—C11—H11 | 118.5 | C13—O1—Cd1 | 140.1 (3) |
C8—C12—C11 | 119.8 (5) | ||
N1—C1—C2—C3 | 0.0 (8) | O1—Cd1—N1—C5 | −156.1 (3) |
C1—C2—C3—C4 | 4.1 (6) | N2—Cd1—N1—C5 | 115.2 (4) |
C1—C2—C3—C6 | −174.7 (5) | N1iii—Cd1—N1—C5 | −68.3 (3) |
C2—C3—C4—C5 | −5.0 (7) | O1iii—Cd1—N1—C1 | −159.2 (4) |
C6—C3—C4—C5 | 173.9 (4) | O1—Cd1—N1—C1 | 27.4 (4) |
C3—C4—C5—N1 | 1.8 (8) | N2—Cd1—N1—C1 | −61.2 (4) |
C4—C3—C6—C7i | −158.2 (5) | N1iii—Cd1—N1—C1 | 115.3 (4) |
C2—C3—C6—C7i | 20.6 (7) | C12—C11—N2—C10 | −3.0 (8) |
C6ii—C7—C8—C9 | −9.8 (8) | C12—C11—N2—Cd1 | 169.0 (4) |
C6ii—C7—C8—C12 | 170.4 (5) | C9—C10—N2—C11 | 3.2 (9) |
C12—C8—C9—C10 | −1.8 (8) | C9—C10—N2—Cd1 | −168.5 (5) |
C7—C8—C9—C10 | 178.4 (5) | O1iii—Cd1—N2—C11 | −31.9 (4) |
C8—C9—C10—N2 | −0.8 (10) | O1—Cd1—N2—C11 | 155.3 (4) |
C9—C8—C12—C11 | 1.9 (8) | N2iii—Cd1—N2—C11 | 57.1 (3) |
C7—C8—C12—C11 | −178.3 (5) | N1—Cd1—N2—C11 | −119.6 (4) |
N2—C11—C12—C8 | 0.5 (9) | O1iii—Cd1—N2—C10 | 139.4 (4) |
O3—C13—C14—Cl3 | −23.4 (5) | O1—Cd1—N2—C10 | −33.4 (4) |
O1—C13—C14—Cl3 | 159.9 (3) | N2iii—Cd1—N2—C10 | −131.5 (5) |
O3—C13—C14—Cl2 | −151.3 (4) | N1—Cd1—N2—C10 | 51.8 (4) |
O1—C13—C14—Cl2 | 32.1 (4) | O3—C13—O1—Cd1 | −7.5 (7) |
O3—C13—C14—Cl1 | 93.0 (4) | C14—C13—O1—Cd1 | 168.5 (3) |
O1—C13—C14—Cl1 | −83.6 (4) | O1iii—Cd1—O1—C13 | −179.3 (4) |
C4—C5—N1—C1 | 2.5 (7) | N2—Cd1—O1—C13 | −44.8 (4) |
C4—C5—N1—Cd1 | −174.1 (4) | N2iii—Cd1—O1—C13 | 46.8 (4) |
C2—C1—N1—C5 | −3.3 (7) | N1—Cd1—O1—C13 | −137.6 (4) |
C2—C1—N1—Cd1 | 173.2 (4) | N1iii—Cd1—O1—C13 | 139.1 (4) |
O1iii—Cd1—N1—C5 | 17.2 (3) |
Symmetry codes: (i) −x+1/2, −y+3/2, z+1/2; (ii) −x+1/2, −y+3/2, z−1/2; (iii) −x, −y+1, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1S—H1S···O3iv | 0.97 (6) | 1.97 (6) | 2.924 (6) | 167 (5) |
Symmetry code: (iv) x, −y+1, z+1/2. |
Experimental details
Crystal data | |
Chemical formula | [Cd(C2Cl3O2)2(C12H10N2)2]·H2O |
Mr | 819.60 |
Crystal system, space group | Orthorhombic, Iba2 |
Temperature (K) | 293 |
a, b, c (Å) | 19.618 (4), 9.5760 (19), 17.517 (4) |
V (Å3) | 3290.8 (11) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 1.19 |
Crystal size (mm) | 0.25 × 0.20 × 0.20 |
Data collection | |
Diffractometer | Bruker SMART CCD area-detector |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.751, 0.788 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 8746, 3146, 2738 |
Rint | 0.025 |
(sin θ/λ)max (Å−1) | 0.617 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.032, 0.085, 1.07 |
No. of reflections | 3146 |
No. of parameters | 205 |
No. of restraints | 1 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.69, −0.49 |
Absolute structure | Flack (1983), 1477 Friedel pairs |
Absolute structure parameter | 0.25 (4) |
Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
O1S—H1S···O3i | 0.97 (6) | 1.97 (6) | 2.924 (6) | 167 (5) |
Symmetry code: (i) x, −y+1, z+1/2. |
Acknowledgements
Financial support from the Korea Ministry of the Environment "ET-Human resource development Project", the Korean Science & Engineering Foundation (2009-0074066) and the Cooperative Research Program for Forest Science & Technology Development (S121010L080120) is gratefully acknowledged.
References
Aromí, G., Stoeckli-Evans, H., Teat, S. J., Cano, J. & Ribas, J. (2006). J. Mater. Chem. 16, 2635–2644. Google Scholar
Batten, S. R. & Robson, R. (1998). Angew. Chem. Int. Ed. 37, 1460–1494. Web of Science CrossRef Google Scholar
Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Evans, O. R. & Lin, W. (2002). Acc. Chem. Res. 35, 511–522. Web of Science CrossRef PubMed CAS Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Fujita, M., Umemoto, K., Yoshizawa, M., Fujita, N., Kusukawa, T. & Biradha, K. (2001). Chem. Commun. pp. 509–518. Web of Science CrossRef Google Scholar
Han, H., Zhang, S., Hou, H., Fan, Y. & Zhu, Y. (2006). Eur. J. Inorg. Chem. pp. 1594–1600. Web of Science CSD CrossRef CAS Google Scholar
Hong, S. J., Ryu, J. Y., Lee, J. Y., Kim, C., Kim, S.-J. & Kim, Y. (2004). Dalton Trans. pp. 2697–2701. Web of Science CSD CrossRef Google Scholar
Hong, S. J., Seo, J. S., Ryu, J. Y., Lee, J. H., Kim, C., Kim, S.-J., Kim, Y. & Lough, A. J. (2005). J. Mol. Struct. 751, 22–28. Web of Science CSD CrossRef CAS Google Scholar
Kim, K. (2002). Chem. Soc. Rev. 31, 96–107. Web of Science CrossRef PubMed CAS Google Scholar
Kitagawa, S., Kitaura, R. & Noro, S.-I. (2004). Angew. Chem. Int. Ed. 43, 2334–2375. Web of Science CrossRef CAS Google Scholar
Moler, D. B., Li, H., Chen, B., Reineke, T. M., O'Keeffe, M. & Yaghi, O. M. (2001). Acc. Chem. Res. 34, 319–330. Web of Science PubMed Google Scholar
Moulton, B. & Zaworotko, M. J. (2001). Chem. Rev. 101, 1629–1658. Web of Science CrossRef PubMed CAS Google Scholar
Sauvage, J.-P. & Hosseini, M. W. (1995). Comprehensive Supramolecular Chemistry, Vol. 9, edited by J.-M. Lehn. Oxford: Pergamon Press. Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Takizawa, S., Somei, H., Jayaprakash, D. & Sasai, H. (2003). Angew. Chem. Int. Ed. 42, 5711–5714. Web of Science CrossRef CAS Google Scholar
Yoo, S.-K., Ryu, J. Y., Lee, J. Y., Kim, C., Kim, S.-J. & Kim, Y. (2003). Dalton Trans. pp. 1454–1456. Web of Science CSD CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Self-assembly processes involving metal ions and organic ligands directed by either metal coordination or hydrogen bonds have attracted much attention in the field of supramolecular chemistry and current coordination chemistry (Batten, et al.,1998; Moler, et al., 2001; Moulton, et al., 2001; Kim, et al., 2002; Evans, et al., 2002). The use of rigid or flexible spacer ligands is of considerable interests in recent years owing to their potential as building blocks for supramolecular assemblies (Sauvage, et al.,1995; Fujita, et al., 2001; Aromí, et al., 2006) and their ability to act as optical sensors and heterogeneous catalysts (Yoo, et al., 2003; Takizawa, et al., 2003; Hong, et al., 2004; Kitagawa, et al., 2004; Hong, et al., 2005; Han, et al., 2006). In our attempt to investigate the design and control of the self-assembly of coordination polymers with the rigid bridging ligands, we have employed CdII to develop a new polymeric complex with the ligand 1,2-bis(4-pyridyl)ethene. We report herein the crystal structure of the title compound [Cd(O2C2Cl3)2(C12H10N2)2]n (C12H10N2= 1,2-bis(4-pyridyl)ethene).
The asymmetric unit of the title compound is shown in Fig. 1. The unique CdII ion lies on a twofold roation axis and 1,2-bis(4-pyridyl)ethene ligands bridge symmetry related CdII ions to form a two-dimensional structure (Fig. 2). Two trichloroacetato ligands complete the coordination around the CdII ion to form a distorted octahedral environment. In the crystal structure solvent water molecules, which also lie on twofold roation axes, form intermolecular O-H···O hydrogen bonds which connect the two-dimensional structure into a three-dimensional network.