metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[[bis­­[μ-1,2-bis­­(4-pyrid­yl)ethene]bis­­(tri­chloro­acetato)­cadmium(II)] monohydrate]

aDepartment of Fine Chemistry, and Eco-Product and Materials Education Center, Seoul National University of Science and Technology, Seoul 139-743, Republic of Korea, and bDepartment of Chemistry and Nano Science, Ewha Womans University, Seoul 120-750, Republic of Korea
*Correspondence e-mail: chealkim@seoultech.ac.kr, ymeekim@ewha.ac.kr

(Received 19 November 2010; accepted 26 November 2010; online 4 December 2010)

In the crystal structure of the title compound, {[Cd(C2Cl3O2)2(C12H10N2)2]·H2O}n, the CdII ion lies on a twofold rotation axis and 1,2-bis­(4-pyrid­yl)ethene ligands bridge symmetry-related CdII ions, forming a two-dimensional structure. Two trichloro­acetate ligands complete the coordination around the CdII ion, forming a distorted octa­hedral environment. In the crystal, solvent water mol­ecules, which also lie on twofold rotation axes, form inter­molecular O—H⋯O hydrogen bonds, which connect the two-dimensional structure into a three-dimensional network. The crystal studied was an inversion twin, the refined ratio of twin components being 0.75 (4):0.25 (4).

Related literature

For background to self-assembly processes, see: Batten & Robson (1998[Batten, S. R. & Robson, R. (1998). Angew. Chem. Int. Ed. 37, 1460-1494.]); Moler et al. (2001[Moler, D. B., Li, H., Chen, B., Reineke, T. M., O'Keeffe, M. & Yaghi, O. M. (2001). Acc. Chem. Res. 34, 319-330.]); Moulton & Zaworotko (2001[Moulton, B. & Zaworotko, M. J. (2001). Chem. Rev. 101, 1629-1658.]); Kim (2002)[Kim, K. (2002). Chem. Soc. Rev. 31, 96-107.]; Evans & Lin (2002[Evans, O. R. & Lin, W. (2002). Acc. Chem. Res. 35, 511-522.]). For supra­molecular assemblies, see: Sauvage & Hosseini (1995[Sauvage, J.-P. & Hosseini, M. W. (1995). Comprehensive Supramolecular Chemistry, Vol. 9, edited by J.-M. Lehn. Oxford: Pergamon Press.]); Fujita et al. (2001[Fujita, M., Umemoto, K., Yoshizawa, M., Fujita, N., Kusukawa, T. & Biradha, K. (2001). Chem. Commun. pp. 509-518.]); Aromí et al. (2006[Aromí, G., Stoeckli-Evans, H., Teat, S. J., Cano, J. & Ribas, J. (2006). J. Mater. Chem. 16, 2635-2644.]). For optical sensors and heterogeneous catalysts, see: Yoo et al. (2003[Yoo, S.-K., Ryu, J. Y., Lee, J. Y., Kim, C., Kim, S.-J. & Kim, Y. (2003). Dalton Trans. pp. 1454-1456.]); Takizawa et al. (2003[Takizawa, S., Somei, H., Jayaprakash, D. & Sasai, H. (2003). Angew. Chem. Int. Ed. 42, 5711-5714.]); Hong et al. (2004[Hong, S. J., Ryu, J. Y., Lee, J. Y., Kim, C., Kim, S.-J. & Kim, Y. (2004). Dalton Trans. pp. 2697-2701.]); Kitagawa et al. (2004[Kitagawa, S., Kitaura, R. & Noro, S.-I. (2004). Angew. Chem. Int. Ed. 43, 2334-2375.]); Hong et al. (2005[Hong, S. J., Seo, J. S., Ryu, J. Y., Lee, J. H., Kim, C., Kim, S.-J., Kim, Y. & Lough, A. J. (2005). J. Mol. Struct. 751, 22-28.]); Han et al. (2006[Han, H., Zhang, S., Hou, H., Fan, Y. & Zhu, Y. (2006). Eur. J. Inorg. Chem. pp. 1594-1600.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd(C2Cl3O2)2(C12H10N2)2]·H2O

  • Mr = 819.60

  • Orthorhombic, I b a 2

  • a = 19.618 (4) Å

  • b = 9.5760 (19) Å

  • c = 17.517 (4) Å

  • V = 3290.8 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.19 mm−1

  • T = 293 K

  • 0.25 × 0.20 × 0.20 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.751, Tmax = 0.788

  • 8746 measured reflections

  • 3146 independent reflections

  • 2738 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.085

  • S = 1.07

  • 3146 reflections

  • 205 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.69 e Å−3

  • Δρmin = −0.49 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1477 Friedel pairs

  • Flack parameter: 0.25 (4)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1S—H1S⋯O3i 0.97 (6) 1.97 (6) 2.924 (6) 167 (5)
Symmetry code: (i) [x, -y+1, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Self-assembly processes involving metal ions and organic ligands directed by either metal coordination or hydrogen bonds have attracted much attention in the field of supramolecular chemistry and current coordination chemistry (Batten, et al.,1998; Moler, et al., 2001; Moulton, et al., 2001; Kim, et al., 2002; Evans, et al., 2002). The use of rigid or flexible spacer ligands is of considerable interests in recent years owing to their potential as building blocks for supramolecular assemblies (Sauvage, et al.,1995; Fujita, et al., 2001; Aromí, et al., 2006) and their ability to act as optical sensors and heterogeneous catalysts (Yoo, et al., 2003; Takizawa, et al., 2003; Hong, et al., 2004; Kitagawa, et al., 2004; Hong, et al., 2005; Han, et al., 2006). In our attempt to investigate the design and control of the self-assembly of coordination polymers with the rigid bridging ligands, we have employed CdII to develop a new polymeric complex with the ligand 1,2-bis(4-pyridyl)ethene. We report herein the crystal structure of the title compound [Cd(O2C2Cl3)2(C12H10N2)2]n (C12H10N2= 1,2-bis(4-pyridyl)ethene).

The asymmetric unit of the title compound is shown in Fig. 1. The unique CdII ion lies on a twofold roation axis and 1,2-bis(4-pyridyl)ethene ligands bridge symmetry related CdII ions to form a two-dimensional structure (Fig. 2). Two trichloroacetato ligands complete the coordination around the CdII ion to form a distorted octahedral environment. In the crystal structure solvent water molecules, which also lie on twofold roation axes, form intermolecular O-H···O hydrogen bonds which connect the two-dimensional structure into a three-dimensional network.

Related literature top

For background to self-assembly processes, see: Batten et al. (1998); Moler et al. (2001); Moulton et al. (2001); Kim et al. (2002); Evans et al. (2002). For supramolecular assemblies, see: Sauvage et al. (1995); Fujita et al. (2001); Aromí et al. (2006). For optical sensors and heterogeneous catalysts, see: Yoo et al. (2003); Takizawa et al. (2003); Hong et al. (2004); Kitagawa et al. (2004); Hong et al. (2005); Han et al. (2006).

Experimental top

39.3 mg (0.125 mmol) of Cd(NO3)2.4H2O and 41.3 mg (0.25 mmol) of CCl3COOH and 15.8 mg (0.125 mmol) of NH4OH were dissolved in 4 ml water and carefully layered by 4 ml ethanol of 1,2-bis(4-pyridyl)ethene ligand (47.0 mg, 0.25 mmol). Suitable crystals of the title compound for X-ray analysis were obtained in a month.

Refinement top

H atoms were placed incalculated positions with C—H distances of 0.93 Å (phenyl). They were included in the refinement in riding-motion approximation with Uĩso~(H) = 1.2U~eq~(C). The unique H atom bonded to the water molecule was refined independently with an isotropic displacement parameter.

Structure description top

Self-assembly processes involving metal ions and organic ligands directed by either metal coordination or hydrogen bonds have attracted much attention in the field of supramolecular chemistry and current coordination chemistry (Batten, et al.,1998; Moler, et al., 2001; Moulton, et al., 2001; Kim, et al., 2002; Evans, et al., 2002). The use of rigid or flexible spacer ligands is of considerable interests in recent years owing to their potential as building blocks for supramolecular assemblies (Sauvage, et al.,1995; Fujita, et al., 2001; Aromí, et al., 2006) and their ability to act as optical sensors and heterogeneous catalysts (Yoo, et al., 2003; Takizawa, et al., 2003; Hong, et al., 2004; Kitagawa, et al., 2004; Hong, et al., 2005; Han, et al., 2006). In our attempt to investigate the design and control of the self-assembly of coordination polymers with the rigid bridging ligands, we have employed CdII to develop a new polymeric complex with the ligand 1,2-bis(4-pyridyl)ethene. We report herein the crystal structure of the title compound [Cd(O2C2Cl3)2(C12H10N2)2]n (C12H10N2= 1,2-bis(4-pyridyl)ethene).

The asymmetric unit of the title compound is shown in Fig. 1. The unique CdII ion lies on a twofold roation axis and 1,2-bis(4-pyridyl)ethene ligands bridge symmetry related CdII ions to form a two-dimensional structure (Fig. 2). Two trichloroacetato ligands complete the coordination around the CdII ion to form a distorted octahedral environment. In the crystal structure solvent water molecules, which also lie on twofold roation axes, form intermolecular O-H···O hydrogen bonds which connect the two-dimensional structure into a three-dimensional network.

For background to self-assembly processes, see: Batten et al. (1998); Moler et al. (2001); Moulton et al. (2001); Kim et al. (2002); Evans et al. (2002). For supramolecular assemblies, see: Sauvage et al. (1995); Fujita et al. (2001); Aromí et al. (2006). For optical sensors and heterogeneous catalysts, see: Yoo et al. (2003); Takizawa et al. (2003); Hong et al. (2004); Kitagawa et al. (2004); Hong et al. (2005); Han et al. (2006).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound with labeling scheme. Displacement ellipsoids are shown at the 50% probability level. The water molecule in the asymmetric unit is half occupancy.
[Figure 2] Fig. 2. Part of a two-dimensional sheet of the title compound.
Poly[[bis[µ-1,2-bis(4-pyridyl)ethene]bis(trichloroacetato)cadmium(II)] monohydrate] top
Crystal data top
[Cd(C2Cl3O2)2(C12H10N2)2]·H2OF(000) = 1632
Mr = 819.60Dx = 1.654 Mg m3
Orthorhombic, Iba2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: I 2 -2cCell parameters from 3648 reflections
a = 19.618 (4) Åθ = 2.4–26.3°
b = 9.5760 (19) ŵ = 1.19 mm1
c = 17.517 (4) ÅT = 293 K
V = 3290.8 (11) Å3Block, colorless
Z = 40.25 × 0.20 × 0.20 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3146 independent reflections
Radiation source: fine-focus sealed tube2738 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
φ and ω scansθmax = 26.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2324
Tmin = 0.751, Tmax = 0.788k = 118
8746 measured reflectionsl = 2121
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.085 w = 1/[σ2(Fo2) + (0.0561P)2 + 0.189P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
3146 reflectionsΔρmax = 0.69 e Å3
205 parametersΔρmin = 0.49 e Å3
1 restraintAbsolute structure: Flack (1983), 1477 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.25 (4)
Crystal data top
[Cd(C2Cl3O2)2(C12H10N2)2]·H2OV = 3290.8 (11) Å3
Mr = 819.60Z = 4
Orthorhombic, Iba2Mo Kα radiation
a = 19.618 (4) ŵ = 1.19 mm1
b = 9.5760 (19) ÅT = 293 K
c = 17.517 (4) Å0.25 × 0.20 × 0.20 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3146 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2738 reflections with I > 2σ(I)
Tmin = 0.751, Tmax = 0.788Rint = 0.025
8746 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.032H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.085Δρmax = 0.69 e Å3
S = 1.07Δρmin = 0.49 e Å3
3146 reflectionsAbsolute structure: Flack (1983), 1477 Friedel pairs
205 parametersAbsolute structure parameter: 0.25 (4)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1330 (3)0.5206 (5)0.3412 (4)0.0483 (15)
H10.14620.44400.31210.058*
C20.1778 (2)0.5728 (5)0.3947 (3)0.0452 (10)
H20.22030.53170.40130.054*
C30.15908 (19)0.6871 (4)0.4386 (2)0.0370 (9)
C40.0939 (2)0.7358 (6)0.4289 (2)0.0483 (11)
H40.07790.80750.45980.058*
C50.0521 (2)0.6800 (5)0.3739 (2)0.0474 (11)
H50.00860.71710.36780.057*
C60.20672 (19)0.7556 (5)0.4922 (2)0.0454 (12)
H60.18840.80970.53120.055*
C70.2262 (2)0.7553 (5)0.0119 (3)0.0496 (12)
H70.20860.81210.05030.060*
C80.17672 (19)0.6860 (5)0.0386 (2)0.0437 (10)
C90.1933 (2)0.5842 (5)0.0904 (2)0.0509 (12)
H90.23810.55340.09420.061*
C100.1447 (3)0.5281 (7)0.1361 (4)0.0547 (16)
H100.15780.45830.17000.066*
C110.0618 (2)0.6619 (6)0.0834 (2)0.0530 (13)
H110.01630.68820.07940.064*
C120.1090 (2)0.7238 (7)0.0345 (3)0.0576 (14)
H120.09490.79040.00070.069*
C130.0825 (2)0.1977 (4)0.1993 (3)0.0433 (9)
C140.1275 (2)0.0920 (5)0.2461 (3)0.0567 (12)
Cd10.00000.50000.22812 (5)0.03111 (11)
Cl10.20978 (7)0.1774 (2)0.25364 (11)0.1014 (6)
Cl20.09814 (9)0.0658 (2)0.33949 (9)0.0954 (5)
Cl30.14021 (12)0.06656 (19)0.19892 (14)0.1285 (9)
N10.07119 (15)0.5758 (4)0.32947 (19)0.0398 (8)
N20.07875 (16)0.5669 (5)0.13543 (19)0.0403 (8)
O10.05695 (13)0.2898 (3)0.23965 (17)0.0488 (7)
O30.08109 (18)0.1802 (4)0.13081 (19)0.0680 (9)
O1S0.00001.00000.5313 (4)0.0764 (17)
H1S0.021 (3)0.941 (6)0.570 (3)0.059 (14)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.044 (3)0.044 (3)0.057 (3)0.0035 (19)0.009 (3)0.013 (2)
C20.0299 (19)0.054 (3)0.052 (2)0.0011 (19)0.0088 (17)0.005 (2)
C30.0309 (19)0.045 (2)0.0349 (19)0.0118 (17)0.0088 (15)0.0007 (16)
C40.042 (2)0.063 (3)0.040 (2)0.001 (2)0.0068 (17)0.018 (2)
C50.034 (2)0.060 (3)0.049 (2)0.005 (2)0.0116 (18)0.014 (2)
C60.039 (2)0.056 (2)0.042 (3)0.0081 (18)0.0075 (17)0.0070 (18)
C70.0405 (18)0.065 (3)0.044 (3)0.0112 (19)0.010 (2)0.012 (2)
C80.0314 (19)0.061 (3)0.039 (2)0.0055 (18)0.0066 (17)0.002 (2)
C90.033 (2)0.069 (3)0.050 (3)0.001 (2)0.0095 (18)0.017 (2)
C100.034 (3)0.069 (3)0.062 (4)0.004 (2)0.014 (3)0.018 (3)
C110.029 (2)0.085 (4)0.045 (2)0.003 (2)0.0042 (17)0.015 (2)
C120.039 (2)0.083 (4)0.051 (3)0.003 (2)0.008 (2)0.026 (3)
C130.040 (2)0.042 (2)0.048 (2)0.0078 (17)0.0007 (17)0.0015 (17)
C140.058 (2)0.059 (3)0.054 (3)0.009 (2)0.007 (2)0.010 (2)
Cd10.02345 (16)0.04508 (18)0.02480 (16)0.01014 (13)0.0000.000
Cl10.0462 (6)0.1336 (14)0.1242 (14)0.0178 (7)0.0158 (8)0.0198 (11)
Cl20.1164 (13)0.0992 (12)0.0706 (9)0.0192 (10)0.0012 (9)0.0275 (9)
Cl30.173 (2)0.0646 (10)0.148 (2)0.0378 (12)0.0147 (15)0.0328 (11)
N10.0336 (18)0.049 (2)0.0363 (19)0.0101 (16)0.0033 (14)0.0055 (17)
N20.0304 (18)0.057 (2)0.0334 (18)0.0074 (17)0.0056 (13)0.0067 (17)
O10.0489 (14)0.0503 (15)0.0471 (18)0.0042 (12)0.0031 (13)0.0007 (14)
O30.074 (2)0.078 (2)0.051 (2)0.0024 (18)0.0073 (16)0.0095 (17)
O1S0.091 (5)0.078 (4)0.060 (4)0.001 (3)0.0000.000
Geometric parameters (Å, º) top
C1—N11.338 (7)C10—N21.347 (7)
C1—C21.379 (8)C10—H100.9300
C1—H10.9300C11—N21.330 (6)
C2—C31.387 (6)C11—C121.393 (6)
C2—H20.9300C11—H110.9300
C3—C41.371 (6)C12—H120.9300
C3—C61.479 (5)C13—O31.212 (5)
C4—C51.374 (6)C13—O11.236 (5)
C4—H40.9300C13—C141.573 (6)
C5—N11.320 (6)C14—Cl31.746 (5)
C5—H50.9300C14—Cl21.753 (5)
C6—C7i1.323 (6)C14—Cl11.815 (5)
C6—H60.9300Cd1—O1iii2.311 (3)
C7—C6ii1.322 (6)Cd1—O12.311 (3)
C7—C81.471 (6)Cd1—N22.331 (3)
C7—H70.9300Cd1—N2iii2.331 (3)
C8—C91.371 (6)Cd1—N12.373 (3)
C8—C121.379 (6)Cd1—N1iii2.373 (3)
C9—C101.356 (7)O1S—H1S0.97 (6)
C9—H90.9300
N1—C1—C2122.6 (5)C8—C12—H12120.1
N1—C1—H1118.7C11—C12—H12120.1
C2—C1—H1118.7O3—C13—O1131.0 (4)
C1—C2—C3119.6 (4)O3—C13—C14116.0 (4)
C1—C2—H2120.2O1—C13—C14112.9 (4)
C3—C2—H2120.2C13—C14—Cl3113.2 (3)
C4—C3—C2116.5 (4)C13—C14—Cl2113.2 (3)
C4—C3—C6121.1 (4)Cl3—C14—Cl2111.4 (3)
C2—C3—C6122.3 (4)C13—C14—Cl1104.3 (3)
C3—C4—C5120.8 (4)Cl3—C14—Cl1107.4 (3)
C3—C4—H4119.6Cl2—C14—Cl1106.8 (3)
C5—C4—H4119.6O1iii—Cd1—O1169.98 (15)
N1—C5—C4122.5 (4)O1iii—Cd1—N298.16 (13)
N1—C5—H5118.8O1—Cd1—N288.84 (13)
C4—C5—H5118.8O1iii—Cd1—N2iii88.85 (13)
C7i—C6—C3124.0 (4)O1—Cd1—N2iii98.16 (13)
C7i—C6—H6118.0N2—Cd1—N2iii91.69 (17)
C3—C6—H6118.0O1iii—Cd1—N187.28 (12)
C6ii—C7—C8126.0 (4)O1—Cd1—N185.22 (12)
C6ii—C7—H7117.0N2—Cd1—N192.69 (10)
C8—C7—H7117.0N2iii—Cd1—N1174.52 (14)
C9—C8—C12116.7 (4)O1iii—Cd1—N1iii85.22 (12)
C9—C8—C7124.2 (4)O1—Cd1—N1iii87.29 (12)
C12—C8—C7119.1 (4)N2—Cd1—N1iii174.52 (14)
C10—C9—C8120.4 (4)N2iii—Cd1—N1iii92.69 (10)
C10—C9—H9119.8N1—Cd1—N1iii83.13 (16)
C8—C9—H9119.8C5—N1—C1117.7 (4)
N2—C10—C9124.1 (5)C5—N1—Cd1120.3 (3)
N2—C10—H10117.9C1—N1—Cd1121.8 (3)
C9—C10—H10117.9C11—N2—C10115.8 (4)
N2—C11—C12123.1 (4)C11—N2—Cd1120.0 (3)
N2—C11—H11118.5C10—N2—Cd1123.7 (3)
C12—C11—H11118.5C13—O1—Cd1140.1 (3)
C8—C12—C11119.8 (5)
N1—C1—C2—C30.0 (8)O1—Cd1—N1—C5156.1 (3)
C1—C2—C3—C44.1 (6)N2—Cd1—N1—C5115.2 (4)
C1—C2—C3—C6174.7 (5)N1iii—Cd1—N1—C568.3 (3)
C2—C3—C4—C55.0 (7)O1iii—Cd1—N1—C1159.2 (4)
C6—C3—C4—C5173.9 (4)O1—Cd1—N1—C127.4 (4)
C3—C4—C5—N11.8 (8)N2—Cd1—N1—C161.2 (4)
C4—C3—C6—C7i158.2 (5)N1iii—Cd1—N1—C1115.3 (4)
C2—C3—C6—C7i20.6 (7)C12—C11—N2—C103.0 (8)
C6ii—C7—C8—C99.8 (8)C12—C11—N2—Cd1169.0 (4)
C6ii—C7—C8—C12170.4 (5)C9—C10—N2—C113.2 (9)
C12—C8—C9—C101.8 (8)C9—C10—N2—Cd1168.5 (5)
C7—C8—C9—C10178.4 (5)O1iii—Cd1—N2—C1131.9 (4)
C8—C9—C10—N20.8 (10)O1—Cd1—N2—C11155.3 (4)
C9—C8—C12—C111.9 (8)N2iii—Cd1—N2—C1157.1 (3)
C7—C8—C12—C11178.3 (5)N1—Cd1—N2—C11119.6 (4)
N2—C11—C12—C80.5 (9)O1iii—Cd1—N2—C10139.4 (4)
O3—C13—C14—Cl323.4 (5)O1—Cd1—N2—C1033.4 (4)
O1—C13—C14—Cl3159.9 (3)N2iii—Cd1—N2—C10131.5 (5)
O3—C13—C14—Cl2151.3 (4)N1—Cd1—N2—C1051.8 (4)
O1—C13—C14—Cl232.1 (4)O3—C13—O1—Cd17.5 (7)
O3—C13—C14—Cl193.0 (4)C14—C13—O1—Cd1168.5 (3)
O1—C13—C14—Cl183.6 (4)O1iii—Cd1—O1—C13179.3 (4)
C4—C5—N1—C12.5 (7)N2—Cd1—O1—C1344.8 (4)
C4—C5—N1—Cd1174.1 (4)N2iii—Cd1—O1—C1346.8 (4)
C2—C1—N1—C53.3 (7)N1—Cd1—O1—C13137.6 (4)
C2—C1—N1—Cd1173.2 (4)N1iii—Cd1—O1—C13139.1 (4)
O1iii—Cd1—N1—C517.2 (3)
Symmetry codes: (i) x+1/2, y+3/2, z+1/2; (ii) x+1/2, y+3/2, z1/2; (iii) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1S—H1S···O3iv0.97 (6)1.97 (6)2.924 (6)167 (5)
Symmetry code: (iv) x, y+1, z+1/2.

Experimental details

Crystal data
Chemical formula[Cd(C2Cl3O2)2(C12H10N2)2]·H2O
Mr819.60
Crystal system, space groupOrthorhombic, Iba2
Temperature (K)293
a, b, c (Å)19.618 (4), 9.5760 (19), 17.517 (4)
V3)3290.8 (11)
Z4
Radiation typeMo Kα
µ (mm1)1.19
Crystal size (mm)0.25 × 0.20 × 0.20
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.751, 0.788
No. of measured, independent and
observed [I > 2σ(I)] reflections
8746, 3146, 2738
Rint0.025
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.085, 1.07
No. of reflections3146
No. of parameters205
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.69, 0.49
Absolute structureFlack (1983), 1477 Friedel pairs
Absolute structure parameter0.25 (4)

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1S—H1S···O3i0.97 (6)1.97 (6)2.924 (6)167 (5)
Symmetry code: (i) x, y+1, z+1/2.
 

Acknowledgements

Financial support from the Korea Ministry of the Environment "ET-Human resource development Project", the Korean Science & Engineering Foundation (2009-0074066) and the Cooperative Research Program for Forest Science & Technology Development (S121010L080120) is gratefully acknowledged.

References

First citationAromí, G., Stoeckli-Evans, H., Teat, S. J., Cano, J. & Ribas, J. (2006). J. Mater. Chem. 16, 2635–2644.  Google Scholar
First citationBatten, S. R. & Robson, R. (1998). Angew. Chem. Int. Ed. 37, 1460–1494.  Web of Science CrossRef Google Scholar
First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEvans, O. R. & Lin, W. (2002). Acc. Chem. Res. 35, 511–522.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFujita, M., Umemoto, K., Yoshizawa, M., Fujita, N., Kusukawa, T. & Biradha, K. (2001). Chem. Commun. pp. 509–518.  Web of Science CrossRef Google Scholar
First citationHan, H., Zhang, S., Hou, H., Fan, Y. & Zhu, Y. (2006). Eur. J. Inorg. Chem. pp. 1594–1600.  Web of Science CSD CrossRef CAS Google Scholar
First citationHong, S. J., Ryu, J. Y., Lee, J. Y., Kim, C., Kim, S.-J. & Kim, Y. (2004). Dalton Trans. pp. 2697–2701.  Web of Science CSD CrossRef Google Scholar
First citationHong, S. J., Seo, J. S., Ryu, J. Y., Lee, J. H., Kim, C., Kim, S.-J., Kim, Y. & Lough, A. J. (2005). J. Mol. Struct. 751, 22–28.  Web of Science CSD CrossRef CAS Google Scholar
First citationKim, K. (2002). Chem. Soc. Rev. 31, 96–107.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKitagawa, S., Kitaura, R. & Noro, S.-I. (2004). Angew. Chem. Int. Ed. 43, 2334–2375.  Web of Science CrossRef CAS Google Scholar
First citationMoler, D. B., Li, H., Chen, B., Reineke, T. M., O'Keeffe, M. & Yaghi, O. M. (2001). Acc. Chem. Res. 34, 319–330.  Web of Science PubMed Google Scholar
First citationMoulton, B. & Zaworotko, M. J. (2001). Chem. Rev. 101, 1629–1658.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSauvage, J.-P. & Hosseini, M. W. (1995). Comprehensive Supramolecular Chemistry, Vol. 9, edited by J.-M. Lehn. Oxford: Pergamon Press.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTakizawa, S., Somei, H., Jayaprakash, D. & Sasai, H. (2003). Angew. Chem. Int. Ed. 42, 5711–5714.  Web of Science CrossRef CAS Google Scholar
First citationYoo, S.-K., Ryu, J. Y., Lee, J. Y., Kim, C., Kim, S.-J. & Kim, Y. (2003). Dalton Trans. pp. 1454–1456.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds