organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N′-[1-(2-Hy­dr­oxy­phen­yl)ethyl­­idene]thio­phene-2-carbohydrazide

aMicroscale Science Institute, Department of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, People's Republic of China
*Correspondence e-mail: weifangjjh@126.com

(Received 19 November 2010; accepted 30 November 2010; online 4 December 2010)

The title compound, C13H12N2O2S, was prepared by the reaction of 1-(2-hy­droxy­phen­yl)ethanone and thio­phene-2-carbohydrazide. The dihedral angle between the benzene and thio­phene rings is 10.07 (17)°. An intra­molecular O—H⋯N hydrogen bond may influence the mol­ecular conformation. In the crystal, mol­ecules are linked by N—H⋯O hydrogen bonds into chains along [010].

Related literature

For applications of Schiff base compounds, see: Casas et al. (2000[Casas, J. S., Garcia-T, M. S. & Sordo, J. (2000). Coord. Chem. Rev. 209, 197-261.]); Habermehl et al. (2006[Habermehl, N. C., Angus, P. M. & Kilah, N. L. (2006). Inorg. Chem. 45, 1445-1462.]). For related structures, see: Li & Jian (2010[Li, Y.-F. & Jian, F.-F. (2010). Acta Cryst. E66, o1399.]); Li & Meng (2010[Li, Y.-F. & Meng, F.-Y. (2010). Acta Cryst. E66, o2685.]).

[Scheme 1]

Experimental

Crystal data
  • C13H12N2O2S

  • Mr = 260.31

  • Orthorhombic, P b c a

  • a = 13.454 (3) Å

  • b = 7.6303 (15) Å

  • c = 24.305 (5) Å

  • V = 2495.1 (9) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 293 K

  • 0.25 × 0.20 × 0.19 mm

Data collection
  • Bruker SMART CCD diffractometer

  • 16044 measured reflections

  • 2189 independent reflections

  • 1047 reflections with I > 2σ(I)

  • Rint = 0.156

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.126

  • S = 0.89

  • 2189 reflections

  • 172 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.94 (4) 2.11 (4) 3.023 (4) 164 (3)
O2—H2O⋯N2 0.81 (4) 1.80 (4) 2.536 (4) 150 (4)
Symmetry code: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, z].

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Schiff-base have received considerable attention as they can be utilized as effective ligands in coordination chemistry. (Casas et al., 2000). They are important intermediates which have been reported to be chiral coordination compounds with many interesting properties (Habermehl et al., 2006). As part of our search for new schiff-base compounds we synthesized the title compound (I), and its crystal structure is determined herein.

The molecular structure of the title compound is shown in Fig. 1. In the molecule, the dihedral angle between the benzene ring and the thiophene ring is 10.07 (17)°. In the crystal structure, molecules are linked by the N—H···O hydrogen bonds to form one-dimensional chains along [010]. Bond lengths and angles agree with those common to related structures (Li & Jian, 2010a,b).

Related literature top

For applications of Schiff base compounds, see: Casas et al. (2000); Habermehl et al. (2006). For related structures, see: Li & Jian (2010); Li & Meng (2010).

Experimental top

A mixture of 1-(2-hydroxyphenyl)ethanone (0.01 mol) and thiophene-2-carbohydrazide (0.01 mol) was stirred in refluxing ethanol (20 mL) for 2 h to afford the title compound (0.092 mol, yield 92%). Single crystals suitable for X-ray measurements were obtained by recrystallization of the title compound from ethanol at room temperature.

Refinement top

H atoms bonded to C atoms were fixed geometrically and allowed to ride on their attached atoms, with C—H = 0.93-0.96 Å, and Uiso(H) = 1.2–1.5Ueq(C). H atoms boned to N and O atoms were refined indpendently with isotropic displacement parameters.

Structure description top

Schiff-base have received considerable attention as they can be utilized as effective ligands in coordination chemistry. (Casas et al., 2000). They are important intermediates which have been reported to be chiral coordination compounds with many interesting properties (Habermehl et al., 2006). As part of our search for new schiff-base compounds we synthesized the title compound (I), and its crystal structure is determined herein.

The molecular structure of the title compound is shown in Fig. 1. In the molecule, the dihedral angle between the benzene ring and the thiophene ring is 10.07 (17)°. In the crystal structure, molecules are linked by the N—H···O hydrogen bonds to form one-dimensional chains along [010]. Bond lengths and angles agree with those common to related structures (Li & Jian, 2010a,b).

For applications of Schiff base compounds, see: Casas et al. (2000); Habermehl et al. (2006). For related structures, see: Li & Jian (2010); Li & Meng (2010).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing 30% probability displacement ellipsoids and the atom-numbering scheme.
N'-[1-(2-Hydroxyphenyl)ethylidene]thiophene-2-carbohydrazide top
Crystal data top
C13H12N2O2SF(000) = 1088
Mr = 260.31Dx = 1.386 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 2839 reflections
a = 13.454 (3) Åθ = 3.0–27.5°
b = 7.6303 (15) ŵ = 0.25 mm1
c = 24.305 (5) ÅT = 293 K
V = 2495.1 (9) Å3Block, colorless
Z = 80.25 × 0.20 × 0.19 mm
Data collection top
Bruker SMART CCD
diffractometer
1047 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.156
Graphite monochromatorθmax = 25.0°, θmin = 3.0°
φ and ω scansh = 1614
16044 measured reflectionsk = 99
2189 independent reflectionsl = 2828
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.126H atoms treated by a mixture of independent and constrained refinement
S = 0.89 w = 1/[σ2(Fo2) + (0.0573P)2]
where P = (Fo2 + 2Fc2)/3
2189 reflections(Δ/σ)max < 0.001
172 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C13H12N2O2SV = 2495.1 (9) Å3
Mr = 260.31Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 13.454 (3) ŵ = 0.25 mm1
b = 7.6303 (15) ÅT = 293 K
c = 24.305 (5) Å0.25 × 0.20 × 0.19 mm
Data collection top
Bruker SMART CCD
diffractometer
1047 reflections with I > 2σ(I)
16044 measured reflectionsRint = 0.156
2189 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.126H atoms treated by a mixture of independent and constrained refinement
S = 0.89Δρmax = 0.23 e Å3
2189 reflectionsΔρmin = 0.29 e Å3
172 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.44225 (8)0.02138 (15)0.75337 (5)0.0783 (4)
O10.37088 (16)0.2689 (3)0.84114 (10)0.0546 (7)
O20.31584 (19)0.3541 (4)0.98652 (13)0.0591 (8)
N10.2282 (2)0.1203 (4)0.85835 (12)0.0498 (8)
N20.2212 (2)0.2088 (4)0.90867 (12)0.0491 (8)
C10.3999 (3)0.1057 (5)0.70050 (16)0.0698 (12)
H10.44080.15420.67370.084*
C20.3020 (3)0.1273 (4)0.70204 (15)0.0562 (10)
H2A0.26680.19210.67610.067*
C30.2570 (3)0.0416 (4)0.74723 (16)0.0502 (9)
H3A0.18910.04300.75430.060*
C40.3251 (2)0.0437 (4)0.77919 (15)0.0457 (9)
C50.3114 (3)0.1538 (5)0.82858 (14)0.0462 (9)
C60.1375 (2)0.2103 (4)0.93416 (15)0.0453 (9)
C70.0439 (2)0.1341 (5)0.91119 (16)0.0632 (11)
H7A0.04690.13550.87170.095*
H7B0.01190.20240.92330.095*
H7C0.03660.01560.92380.095*
C80.1386 (2)0.2934 (4)0.98860 (14)0.0421 (9)
C90.0523 (3)0.3054 (4)1.02020 (16)0.0541 (10)
H9A0.00660.26091.00590.065*
C100.0510 (3)0.3801 (5)1.07136 (16)0.0626 (11)
H10A0.00800.38591.09120.075*
C110.1374 (3)0.4465 (5)1.09333 (16)0.0603 (11)
H11A0.13680.49811.12800.072*
C120.2244 (3)0.4366 (5)1.06408 (16)0.0571 (10)
H12A0.28270.48121.07910.069*
C130.2261 (3)0.3603 (4)1.01196 (15)0.0456 (9)
H1N0.186 (3)0.023 (5)0.8545 (16)0.082 (13)*
H2O0.305 (3)0.315 (6)0.9561 (19)0.094 (19)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0552 (6)0.0905 (8)0.0893 (9)0.0020 (6)0.0197 (6)0.0246 (7)
O10.0464 (15)0.0593 (15)0.0581 (17)0.0070 (12)0.0021 (12)0.0067 (13)
O20.0448 (16)0.0713 (19)0.061 (2)0.0090 (13)0.0029 (15)0.0080 (16)
N10.0521 (19)0.0515 (19)0.046 (2)0.0051 (16)0.0061 (15)0.0075 (17)
N20.0530 (19)0.0485 (18)0.046 (2)0.0035 (14)0.0054 (15)0.0057 (16)
C10.085 (3)0.063 (3)0.061 (3)0.003 (2)0.019 (2)0.013 (2)
C20.074 (3)0.044 (2)0.051 (3)0.006 (2)0.004 (2)0.0002 (19)
C30.053 (2)0.045 (2)0.053 (2)0.0025 (17)0.008 (2)0.004 (2)
C40.045 (2)0.046 (2)0.046 (2)0.0064 (16)0.0065 (17)0.0029 (18)
C50.044 (2)0.049 (2)0.046 (2)0.0054 (18)0.0015 (18)0.0014 (19)
C60.042 (2)0.045 (2)0.050 (2)0.0035 (16)0.0012 (18)0.0007 (18)
C70.054 (2)0.068 (3)0.068 (3)0.001 (2)0.003 (2)0.019 (2)
C80.043 (2)0.044 (2)0.038 (2)0.0019 (15)0.0009 (17)0.0021 (17)
C90.048 (2)0.059 (3)0.055 (3)0.0081 (18)0.007 (2)0.000 (2)
C100.062 (3)0.075 (3)0.051 (3)0.000 (2)0.015 (2)0.005 (2)
C110.076 (3)0.065 (3)0.040 (2)0.003 (2)0.008 (2)0.000 (2)
C120.062 (3)0.056 (2)0.053 (3)0.0039 (19)0.004 (2)0.000 (2)
C130.047 (2)0.041 (2)0.049 (2)0.0011 (17)0.0033 (18)0.0015 (19)
Geometric parameters (Å, º) top
S1—C41.705 (3)C6—C81.467 (5)
S1—C11.708 (4)C6—C71.495 (4)
O1—C51.227 (4)C7—H7A0.9600
O2—C131.357 (4)C7—H7B0.9600
O2—H2O0.81 (4)C7—H7C0.9600
N1—C51.356 (4)C8—C91.395 (4)
N1—N21.400 (4)C8—C131.402 (4)
N1—H1N0.94 (4)C9—C101.368 (5)
N2—C61.285 (4)C9—H9A0.9300
C1—C21.327 (5)C10—C111.377 (5)
C1—H10.9300C10—H10A0.9300
C2—C31.415 (5)C11—C121.371 (5)
C2—H2A0.9300C11—H11A0.9300
C3—C41.366 (5)C12—C131.395 (5)
C3—H3A0.9300C12—H12A0.9300
C4—C51.477 (5)
C4—S1—C191.4 (2)C6—C7—H7A109.5
C13—O2—H2O105 (3)C6—C7—H7B109.5
C5—N1—N2115.5 (3)H7A—C7—H7B109.5
C5—N1—H1N126 (2)C6—C7—H7C109.5
N2—N1—H1N115 (2)H7A—C7—H7C109.5
C6—N2—N1119.0 (3)H7B—C7—H7C109.5
C2—C1—S1112.4 (3)C9—C8—C13116.8 (3)
C2—C1—H1123.8C9—C8—C6121.1 (3)
S1—C1—H1123.8C13—C8—C6122.1 (3)
C1—C2—C3112.9 (4)C10—C9—C8122.6 (4)
C1—C2—H2A123.6C10—C9—H9A118.7
C3—C2—H2A123.6C8—C9—H9A118.7
C4—C3—C2112.0 (3)C9—C10—C11119.7 (4)
C4—C3—H3A124.0C9—C10—H10A120.2
C2—C3—H3A124.0C11—C10—H10A120.2
C3—C4—C5130.5 (3)C12—C11—C10120.0 (4)
C3—C4—S1111.3 (3)C12—C11—H11A120.0
C5—C4—S1118.1 (3)C10—C11—H11A120.0
O1—C5—N1122.7 (3)C11—C12—C13120.5 (4)
O1—C5—C4121.9 (3)C11—C12—H12A119.8
N1—C5—C4115.4 (3)C13—C12—H12A119.8
N2—C6—C8115.4 (3)O2—C13—C12116.3 (3)
N2—C6—C7123.7 (3)O2—C13—C8123.3 (3)
C8—C6—C7120.9 (3)C12—C13—C8120.4 (3)
C5—N1—N2—C6167.0 (3)N2—C6—C8—C9179.2 (3)
C4—S1—C1—C20.9 (3)C7—C6—C8—C90.7 (5)
S1—C1—C2—C30.5 (4)N2—C6—C8—C132.3 (5)
C1—C2—C3—C40.3 (5)C7—C6—C8—C13177.7 (3)
C2—C3—C4—C5177.6 (3)C13—C8—C9—C100.7 (5)
C2—C3—C4—S11.0 (4)C6—C8—C9—C10179.2 (3)
C1—S1—C4—C31.1 (3)C8—C9—C10—C110.1 (6)
C1—S1—C4—C5178.1 (3)C9—C10—C11—C120.4 (6)
N2—N1—C5—O18.5 (5)C10—C11—C12—C130.3 (6)
N2—N1—C5—C4172.4 (3)C11—C12—C13—O2179.1 (3)
C3—C4—C5—O1153.3 (4)C11—C12—C13—C80.4 (5)
S1—C4—C5—O123.1 (4)C9—C8—C13—O2178.5 (3)
C3—C4—C5—N125.8 (5)C6—C8—C13—O20.1 (5)
S1—C4—C5—N1157.8 (3)C9—C8—C13—C120.8 (5)
N1—N2—C6—C8175.2 (3)C6—C8—C13—C12179.3 (3)
N1—N2—C6—C74.8 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.94 (4)2.11 (4)3.023 (4)164 (3)
O2—H2O···N20.81 (4)1.80 (4)2.536 (4)150 (4)
Symmetry code: (i) x+1/2, y1/2, z.

Experimental details

Crystal data
Chemical formulaC13H12N2O2S
Mr260.31
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)293
a, b, c (Å)13.454 (3), 7.6303 (15), 24.305 (5)
V3)2495.1 (9)
Z8
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.25 × 0.20 × 0.19
Data collection
DiffractometerBruker SMART CCD
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
16044, 2189, 1047
Rint0.156
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.126, 0.89
No. of reflections2189
No. of parameters172
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.23, 0.29

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.94 (4)2.11 (4)3.023 (4)164 (3)
O2—H2O···N20.81 (4)1.80 (4)2.536 (4)150 (4)
Symmetry code: (i) x+1/2, y1/2, z.
 

References

First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCasas, J. S., Garcia-T, M. S. & Sordo, J. (2000). Coord. Chem. Rev. 209, 197–261.  Web of Science CrossRef CAS Google Scholar
First citationHabermehl, N. C., Angus, P. M. & Kilah, N. L. (2006). Inorg. Chem. 45, 1445–1462.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLi, Y.-F. & Jian, F.-F. (2010). Acta Cryst. E66, o1399.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, Y.-F. & Meng, F.-Y. (2010). Acta Cryst. E66, o2685.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds