metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2-{[2-(2-Amino­ethyl­amino)­eth­yl]imino­meth­yl}phenolato)nickel(II) chloride dihydrate

aDepartment of Chemistry, Kashgar Teachers College, Kashgar 844000, People's Republic of China
*Correspondence e-mail: wdexjks@yahoo.com.cn

(Received 21 November 2010; accepted 30 November 2010; online 4 December 2010)

In the title complex, [Ni(C11H16N3O)]Cl·2H2O, the NiII ion is coordinated within a distorted square-planar environment. In the crystal, inter­molecular N—H⋯Cl, N—H⋯O, O—H⋯O, O—H⋯Cl and weak C—H⋯O hydrogen bonds link the components into a two-dimensional network parallel to (001).

Related literature

For related structures, see: Chen & Wang (2006[Chen, K. & Wang, J.-H. (2006). Acta Cryst. E62, m2305-m2306.]); Cusmano Priolo et al. (1983[Cusmano Priolo, F., Rotondo, E., Rizzardi, G., Bruno, G. & Bombieri, G. (1983). Acta Cryst. C39, 550-552.]); Kratochvíl et al. (1989[Kratochvíl, B., Nováková, M., Haber, V., Ondráček, J. & Hájek, B. (1989). Acta Cryst. C45, 403-405.], 1991[Kratochvíl, B., Ondráček, J., Novotný, J. & Haber, V. (1991). Acta Cryst. C47, 2207-2209.]); Liu et al. (2004[Liu, G. X., Ren, X. M., Xu, H., Tang, C. Y., Wu, G. H. & Chen, Y. C. (2004). Chin. Chem. Lett. 15, 1105-1108.]); Loub et al. (1989[Loub, J., Podlahová, J., Kopf, J. & Weiss, E. (1989). Acta Cryst. C45, 406-407.], 1990[Loub, J., Podlahová, J., Haber, V., Kopf, J. & Weiss, E. (1990). Acta Cryst. C46, 596-598.]); Podlahová et al. (1988[Podlahová, J., Knížek, K., Loub, J. & Hašek, J. (1988). Acta Cryst. C44, 631-633.]); Rotondo et al. (1983[Rotondo, E., Cusmano Priolo, F., Romeo, M., Bruno, G. & Bombieri, G. (1983). Acta Cryst. C39, 1525-1527.]); Zhang et al. (2006[Zhang, H.-W., Hu, S., Zhang, L.-N. & Fang, R.-Q. (2006). Acta Cryst. E62, m1275-m1277.]); Zhu et al. (2004[Zhu, H. L., Li, S. Y., Wang, Z. D. & Yang, F. (2004). J. Chem. Crystallogr. 34, 203-206.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C11H16N3O)]Cl·2H2O

  • Mr = 336.46

  • Monoclinic, P 21 /n

  • a = 7.1062 (16) Å

  • b = 11.6685 (19) Å

  • c = 17.677 (2) Å

  • β = 96.699 (3)°

  • V = 1455.8 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.52 mm−1

  • T = 298 K

  • 0.20 × 0.06 × 0.04 mm

Data collection
  • Bruker SMART APEX I CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996)[Sheldrick, G. M. (1996). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.] Tmin = 0.783, Tmax = 0.863

  • 13581 measured reflections

  • 2565 independent reflections

  • 1860 reflections with I > 2σ(I)

  • Rint = 0.099

Refinement
  • R[F2 > 2σ(F2)] = 0.079

  • wR(F2) = 0.152

  • S = 1.16

  • 2565 reflections

  • 193 parameters

  • 10 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.67 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯Cl1i 0.87 (2) 2.55 (4) 3.325 (6) 149 (6)
N3—H3A⋯Cl1 0.84 (4) 2.60 (3) 3.397 (6) 160 (5)
N3—H3B⋯O3ii 0.85 (2) 2.09 (3) 2.914 (8) 162 (6)
O2—H2B⋯Cl1 0.83 (2) 2.27 (5) 3.091 (5) 176 (9)
O2—H2C⋯O1 0.82 (6) 1.99 (6) 2.797 (6) 172 (8)
O3—H3C⋯O2 0.82 (2) 1.93 (2) 2.750 (8) 175 (9)
O3—H3D⋯Cl1iii 0.81 (7) 2.36 (7) 3.166 (6) 172 (9)
C25—H25B⋯O2i 0.97 2.56 3.464 (9) 154
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2001[Bruker (2001). SAINT-Plus and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The Schiff base ligand 2-((2-(2-aminoethylamino)ethylimino)methyl)phenol has often been used in the synthesis of metal-organic complexes (Chen & Wang, 2006, Cusmano Priolo et al., 1983, Kratochvíl et al., 1989, Kratochvíl et al.,1991, Loub et al., 1990, Loub et al., 1989, Podlahová et al., 1988, Rotondo et al., 1983, Zhang et al., 2006, Zhu et al.,2004, Liu et al., 2004). In this paper, we report the title mononuclear metal complex (I).

In (I), the asymmetric unit consists of a coordination cation, one uncoordinated Cl- anion and two solvent water molecules (Fig.1). The NiII ion is in a distorted square-planar coordination environmemt with atom Ni1 atom 0.058Å from the plane formed by N1/N2/N3/O1. The Ni—N/O bond lengths are comparable to previously published analogs (Loub et al., 1989, Podlahová et al., 1988).

The crystal structure is stabilized by intermolecular hydrogen bonds (Table 1), forming a two-dimensional network parallel to the (001) plane (Fig.2).

Related literature top

For related structures, see: Chen & Wang (2006); Cusmano Priolo et al. (1983); Kratochvíl et al. (1989, 1991); Liu et al. (2004); Loub et al. (1989, 1990); Podlahová et al. (1988); Rotondo et al. (1983); Zhang et al. (2006); Zhu et al. (2004).

Experimental top

NiCl2.6(H2O) (1 mmol, 238 mg), salicylaldehyde (1 mmol, 122 mg) and diethylenetriamine (1 mmol, 103 mg) were dissolved in a mixture of ethanol and acetonitrile (50 ml, 1:1 v/v), resulting in a light-green solution. When diethyl ether was slowly diffused into this solution for one week, pale-yellow blocks suitable for X-ray diffraction were formed at the bottom of the vessel.

Refinement top

All the H atoms bonded to carbon atoms were located at their geometrical positions with C–H = 0.97 Å(methylene) and 0.93 Å(aromatic), Uiso(H) = 1.2Ueq(C). H atoms bonded to imine N and water O atoms were located on the difference Fourier maps and then refined with the constraints of N—H = 0.86 (2) Å, O—H = 0.82 (2) Å, H—H = 1.35 (2)Å and the Uiso(H) values were set 1.2 times of Ueq(N) or 1.5 times of Ueq(O) of their carrier atoms.

Structure description top

The Schiff base ligand 2-((2-(2-aminoethylamino)ethylimino)methyl)phenol has often been used in the synthesis of metal-organic complexes (Chen & Wang, 2006, Cusmano Priolo et al., 1983, Kratochvíl et al., 1989, Kratochvíl et al.,1991, Loub et al., 1990, Loub et al., 1989, Podlahová et al., 1988, Rotondo et al., 1983, Zhang et al., 2006, Zhu et al.,2004, Liu et al., 2004). In this paper, we report the title mononuclear metal complex (I).

In (I), the asymmetric unit consists of a coordination cation, one uncoordinated Cl- anion and two solvent water molecules (Fig.1). The NiII ion is in a distorted square-planar coordination environmemt with atom Ni1 atom 0.058Å from the plane formed by N1/N2/N3/O1. The Ni—N/O bond lengths are comparable to previously published analogs (Loub et al., 1989, Podlahová et al., 1988).

The crystal structure is stabilized by intermolecular hydrogen bonds (Table 1), forming a two-dimensional network parallel to the (001) plane (Fig.2).

For related structures, see: Chen & Wang (2006); Cusmano Priolo et al. (1983); Kratochvíl et al. (1989, 1991); Liu et al. (2004); Loub et al. (1989, 1990); Podlahová et al. (1988); Rotondo et al. (1983); Zhang et al. (2006); Zhu et al. (2004).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Part of the crystal structure of (I), showing the formation of the two-dimensional network parallel to the (001) plane. Hydrogen bonds are shown as dashed lines.
(2-{[2-(2-Aminoethylamino)ethyl]iminomethyl}phenolato)nickel(II) chloride dihydrate top
Crystal data top
[Ni(C11H16N3O)]Cl·2H2OF(000) = 704
Mr = 336.46Dx = 1.535 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1489 reflections
a = 7.1062 (16) Åθ = 1.7–19.5°
b = 11.6685 (19) ŵ = 1.52 mm1
c = 17.677 (2) ÅT = 298 K
β = 96.699 (3)°Needle, yellow
V = 1455.8 (4) Å30.20 × 0.06 × 0.04 mm
Z = 4
Data collection top
Bruker SMART APEX I CCD area-detector
diffractometer
2565 independent reflections
Radiation source: fine focus sealed Siemens Mo tube1860 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.099
0.3° wide ω exposures scansθmax = 25.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 88
Tmin = 0.783, Tmax = 0.863k = 1313
13581 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.079Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.152H atoms treated by a mixture of independent and constrained refinement
S = 1.16 w = 1/[σ2(Fo2) + (0.0551P)2]
where P = (Fo2 + 2Fc2)/3
2565 reflections(Δ/σ)max < 0.001
193 parametersΔρmax = 0.41 e Å3
10 restraintsΔρmin = 0.67 e Å3
Crystal data top
[Ni(C11H16N3O)]Cl·2H2OV = 1455.8 (4) Å3
Mr = 336.46Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.1062 (16) ŵ = 1.52 mm1
b = 11.6685 (19) ÅT = 298 K
c = 17.677 (2) Å0.20 × 0.06 × 0.04 mm
β = 96.699 (3)°
Data collection top
Bruker SMART APEX I CCD area-detector
diffractometer
2565 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1860 reflections with I > 2σ(I)
Tmin = 0.783, Tmax = 0.863Rint = 0.099
13581 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.07910 restraints
wR(F2) = 0.152H atoms treated by a mixture of independent and constrained refinement
S = 1.16Δρmax = 0.41 e Å3
2565 reflectionsΔρmin = 0.67 e Å3
193 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.63623 (11)0.34513 (7)0.37464 (5)0.0333 (3)
C10.7236 (9)0.5502 (6)0.4572 (4)0.0358 (17)
C20.7687 (9)0.4916 (6)0.5255 (4)0.0385 (17)
C30.8289 (10)0.5530 (7)0.5919 (4)0.051 (2)
H30.85720.51390.63760.061*
C40.8469 (10)0.6701 (8)0.5906 (5)0.056 (2)
H40.88960.71000.63480.067*
C50.8020 (10)0.7266 (7)0.5245 (4)0.051 (2)
H50.81100.80610.52420.061*
C60.7432 (9)0.6705 (6)0.4571 (4)0.0454 (19)
H60.71660.71170.41210.055*
C210.7525 (9)0.3699 (6)0.5302 (4)0.0416 (18)
H210.78200.33640.57780.050*
C220.6905 (10)0.1786 (6)0.4877 (5)0.053 (2)
H22A0.56920.15850.50410.064*
H22B0.79030.15560.52680.064*
C230.7149 (10)0.1201 (6)0.4129 (4)0.048 (2)
H23A0.84720.12010.40420.058*
H23B0.67080.04150.41330.058*
C240.6345 (10)0.1642 (6)0.2747 (4)0.0479 (19)
H24A0.58310.09020.25800.058*
H24B0.76930.16470.27040.058*
C250.5361 (10)0.2590 (5)0.2279 (4)0.0427 (19)
H25A0.56940.25690.17630.051*
H25B0.39970.25150.22610.051*
Cl10.2875 (3)0.52634 (16)0.14998 (11)0.0494 (5)
N10.7000 (7)0.3025 (5)0.4737 (3)0.0395 (14)
N20.5992 (8)0.1873 (5)0.3525 (3)0.0426 (15)
H2A0.488 (5)0.167 (6)0.364 (4)0.051*
N30.6022 (8)0.3689 (4)0.2664 (3)0.0357 (14)
H3A0.507 (4)0.405 (5)0.247 (3)0.043*
H3B0.711 (4)0.384 (5)0.253 (3)0.043*
O10.6663 (6)0.5003 (4)0.3910 (2)0.0374 (11)
O20.4176 (8)0.6467 (4)0.3029 (3)0.0581 (14)
H2B0.386 (12)0.617 (6)0.261 (2)0.087*
H2C0.484 (11)0.599 (5)0.327 (3)0.087*
O30.5374 (8)0.8703 (5)0.2971 (4)0.0741 (18)
H3C0.508 (12)0.803 (2)0.300 (6)0.111*
H3D0.446 (8)0.906 (6)0.308 (6)0.111*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0315 (5)0.0318 (5)0.0368 (5)0.0024 (4)0.0045 (4)0.0000 (4)
C10.028 (4)0.046 (5)0.033 (4)0.002 (3)0.003 (3)0.005 (4)
C20.029 (4)0.053 (5)0.034 (4)0.005 (3)0.004 (3)0.002 (4)
C30.036 (4)0.076 (6)0.038 (5)0.010 (4)0.002 (4)0.002 (4)
C40.048 (5)0.071 (7)0.047 (5)0.008 (4)0.002 (4)0.014 (5)
C50.046 (5)0.055 (5)0.051 (6)0.001 (4)0.010 (4)0.020 (4)
C60.036 (4)0.049 (5)0.051 (5)0.004 (4)0.004 (3)0.013 (4)
C210.037 (4)0.054 (5)0.034 (4)0.015 (4)0.005 (3)0.014 (4)
C220.037 (4)0.045 (5)0.076 (6)0.005 (4)0.003 (4)0.007 (4)
C230.040 (4)0.027 (4)0.078 (6)0.009 (3)0.006 (4)0.004 (4)
C240.045 (4)0.043 (4)0.057 (5)0.005 (4)0.012 (4)0.015 (4)
C250.047 (5)0.043 (5)0.038 (4)0.009 (4)0.003 (4)0.011 (3)
Cl10.0508 (12)0.0435 (11)0.0529 (12)0.0020 (9)0.0017 (10)0.0043 (9)
N10.032 (3)0.038 (3)0.049 (4)0.008 (3)0.005 (3)0.004 (3)
N20.041 (4)0.042 (4)0.045 (4)0.010 (3)0.007 (3)0.012 (3)
N30.030 (3)0.032 (4)0.044 (4)0.001 (3)0.003 (3)0.007 (3)
O10.042 (3)0.035 (3)0.033 (3)0.003 (2)0.003 (2)0.000 (2)
O20.071 (4)0.046 (3)0.056 (3)0.009 (3)0.001 (3)0.002 (3)
O30.066 (4)0.042 (3)0.118 (5)0.003 (3)0.027 (4)0.004 (4)
Geometric parameters (Å, º) top
Ni1—N11.825 (6)C22—H22A0.9700
Ni1—O11.842 (4)C22—H22B0.9700
Ni1—N21.894 (6)C23—N21.492 (9)
Ni1—N31.920 (6)C23—H23A0.9700
C1—O11.329 (7)C23—H23B0.9700
C1—C21.392 (9)C24—N21.452 (9)
C1—C61.410 (9)C24—C251.504 (9)
C2—C31.398 (10)C24—H24A0.9700
C2—C211.429 (9)C24—H24B0.9700
C3—C41.373 (10)C25—N31.501 (8)
C3—H30.9300C25—H25A0.9700
C4—C51.346 (10)C25—H25B0.9700
C4—H40.9300N2—H2A0.87 (2)
C5—C61.381 (9)N3—H3A0.84 (4)
C5—H50.9300N3—H3B0.854 (19)
C6—H60.9300O2—H2B0.83 (2)
C21—N11.292 (8)O2—H2C0.82 (6)
C21—H210.9300O3—H3C0.82 (2)
C22—N11.469 (8)O3—H3D0.81 (7)
C22—C231.515 (10)
N1—Ni1—O196.1 (2)C22—C23—H23A110.5
N1—Ni1—N286.9 (3)N2—C23—H23B110.5
O1—Ni1—N2176.9 (2)C22—C23—H23B110.5
N1—Ni1—N3169.4 (2)H23A—C23—H23B108.7
O1—Ni1—N390.7 (2)N2—C24—C25105.3 (6)
N2—Ni1—N386.4 (2)N2—C24—H24A110.7
O1—C1—C2124.4 (6)C25—C24—H24A110.7
O1—C1—C6117.1 (6)N2—C24—H24B110.7
C2—C1—C6118.5 (6)C25—C24—H24B110.7
C1—C2—C3119.5 (7)H24A—C24—H24B108.8
C1—C2—C21121.8 (6)N3—C25—C24106.1 (5)
C3—C2—C21118.6 (7)N3—C25—H25A110.5
C4—C3—C2121.0 (7)C24—C25—H25A110.5
C4—C3—H3119.5N3—C25—H25B110.5
C2—C3—H3119.5C24—C25—H25B110.5
C5—C4—C3119.2 (7)H25A—C25—H25B108.7
C5—C4—H4120.4C21—N1—C22118.9 (6)
C3—C4—H4120.4C21—N1—Ni1126.3 (5)
C4—C5—C6122.3 (8)C22—N1—Ni1114.7 (5)
C4—C5—H5118.9C24—N2—C23116.0 (6)
C6—C5—H5118.9C24—N2—Ni1109.9 (4)
C5—C6—C1119.3 (7)C23—N2—Ni1108.2 (4)
C5—C6—H6120.3C24—N2—H2A116 (5)
C1—C6—H6120.3C23—N2—H2A97 (5)
N1—C21—C2125.4 (6)Ni1—N2—H2A109 (5)
N1—C21—H21117.3C25—N3—Ni1109.0 (4)
C2—C21—H21117.3C25—N3—H3A93 (4)
N1—C22—C23106.5 (6)Ni1—N3—H3A119 (4)
N1—C22—H22A110.4C25—N3—H3B107 (4)
C23—C22—H22A110.4Ni1—N3—H3B107 (4)
N1—C22—H22B110.4H3A—N3—H3B120 (4)
C23—C22—H22B110.4C1—O1—Ni1126.0 (4)
H22A—C22—H22B108.6H2B—O2—H2C104 (3)
N2—C23—C22106.1 (5)H3C—O3—H3D105 (8)
N2—C23—H23A110.5
O1—C1—C2—C3179.6 (6)N3—Ni1—N1—C21128.3 (13)
C6—C1—C2—C31.0 (9)O1—Ni1—N1—C22178.7 (4)
O1—C1—C2—C211.4 (10)N2—Ni1—N1—C220.8 (5)
C6—C1—C2—C21179.9 (6)N3—Ni1—N1—C2251.1 (15)
C1—C2—C3—C41.0 (10)C25—C24—N2—C23167.6 (5)
C21—C2—C3—C4180.0 (6)C25—C24—N2—Ni144.5 (6)
C2—C3—C4—C51.4 (11)C22—C23—N2—C24166.1 (6)
C3—C4—C5—C61.8 (11)C22—C23—N2—Ni142.1 (6)
C4—C5—C6—C11.9 (11)N1—Ni1—N2—C24151.6 (5)
O1—C1—C6—C5179.9 (6)N3—Ni1—N2—C2420.3 (5)
C2—C1—C6—C51.4 (10)N1—Ni1—N2—C2324.0 (4)
C1—C2—C21—N11.5 (11)N3—Ni1—N2—C23147.9 (5)
C3—C2—C21—N1179.5 (6)C24—C25—N3—Ni135.4 (6)
N1—C22—C23—N242.0 (7)N1—Ni1—N3—C2559.6 (15)
N2—C24—C25—N351.1 (7)O1—Ni1—N3—C25169.8 (4)
C2—C21—N1—C22179.9 (6)N2—Ni1—N3—C259.2 (4)
C2—C21—N1—Ni10.6 (10)C2—C1—O1—Ni10.6 (9)
C23—C22—N1—C21154.8 (6)C6—C1—O1—Ni1178.0 (4)
C23—C22—N1—Ni124.7 (7)N1—Ni1—O1—C12.0 (5)
O1—Ni1—N1—C211.9 (6)N3—Ni1—O1—C1170.0 (5)
N2—Ni1—N1—C21178.6 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···Cl1i0.87 (2)2.55 (4)3.325 (6)149 (6)
N3—H3A···Cl10.84 (4)2.60 (3)3.397 (6)160 (5)
N3—H3B···O3ii0.85 (2)2.09 (3)2.914 (8)162 (6)
O2—H2B···Cl10.83 (2)2.27 (5)3.091 (5)176 (9)
O2—H2C···O10.82 (6)1.99 (6)2.797 (6)172 (8)
O3—H3C···O20.82 (2)1.93 (2)2.750 (8)175 (9)
O3—H3D···Cl1iii0.81 (7)2.36 (7)3.166 (6)172 (9)
C25—H25B···O2i0.972.563.464 (9)154
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+3/2, y1/2, z+1/2; (iii) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Ni(C11H16N3O)]Cl·2H2O
Mr336.46
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)7.1062 (16), 11.6685 (19), 17.677 (2)
β (°) 96.699 (3)
V3)1455.8 (4)
Z4
Radiation typeMo Kα
µ (mm1)1.52
Crystal size (mm)0.20 × 0.06 × 0.04
Data collection
DiffractometerBruker SMART APEX I CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.783, 0.863
No. of measured, independent and
observed [I > 2σ(I)] reflections
13581, 2565, 1860
Rint0.099
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.079, 0.152, 1.16
No. of reflections2565
No. of parameters193
No. of restraints10
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.41, 0.67

Computer programs: SMART (Bruker, 2001), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···Cl1i0.87 (2)2.55 (4)3.325 (6)149 (6)
N3—H3A···Cl10.84 (4)2.60 (3)3.397 (6)160 (5)
N3—H3B···O3ii0.854 (19)2.09 (3)2.914 (8)162 (6)
O2—H2B···Cl10.83 (2)2.27 (5)3.091 (5)176 (9)
O2—H2C···O10.82 (6)1.99 (6)2.797 (6)172 (8)
O3—H3C···O20.82 (2)1.93 (2)2.750 (8)175 (9)
O3—H3D···Cl1iii0.81 (7)2.36 (7)3.166 (6)172 (9)
C25—H25B···O2i0.972.563.464 (9)154.3
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+3/2, y1/2, z+1/2; (iii) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

The author thanks Kashgar Teachers College for supporting this study.

References

First citationBruker (2001). SAINT-Plus and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, K. & Wang, J.-H. (2006). Acta Cryst. E62, m2305–m2306.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCusmano Priolo, F., Rotondo, E., Rizzardi, G., Bruno, G. & Bombieri, G. (1983). Acta Cryst. C39, 550–552.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationKratochvíl, B., Nováková, M., Haber, V., Ondráček, J. & Hájek, B. (1989). Acta Cryst. C45, 403–405.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationKratochvíl, B., Ondráček, J., Novotný, J. & Haber, V. (1991). Acta Cryst. C47, 2207–2209.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationLiu, G. X., Ren, X. M., Xu, H., Tang, C. Y., Wu, G. H. & Chen, Y. C. (2004). Chin. Chem. Lett. 15, 1105–1108.  CAS Google Scholar
First citationLoub, J., Podlahová, J., Haber, V., Kopf, J. & Weiss, E. (1990). Acta Cryst. C46, 596–598.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLoub, J., Podlahová, J., Kopf, J. & Weiss, E. (1989). Acta Cryst. C45, 406–407.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationPodlahová, J., Knížek, K., Loub, J. & Hašek, J. (1988). Acta Cryst. C44, 631–633.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationRotondo, E., Cusmano Priolo, F., Romeo, M., Bruno, G. & Bombieri, G. (1983). Acta Cryst. C39, 1525–1527.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, H.-W., Hu, S., Zhang, L.-N. & Fang, R.-Q. (2006). Acta Cryst. E62, m1275–m1277.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhu, H. L., Li, S. Y., Wang, Z. D. & Yang, F. (2004). J. Chem. Crystallogr. 34, 203–206.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds