organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­phenyl (2-chloro­benzyl­amido)­phosphate

aDepartment of Chemistry, Ferdowsi University of Mashhad, Mashhad, 91779, Iran, and bDepartment of Chemistry, University of California, San Diego, 9500 Gilman, Drive, La Jolla, CA 92093, USA
*Correspondence e-mail: mehrdad_pourayoubi@yahoo.com

(Received 21 November 2010; accepted 26 November 2010; online 4 December 2010)

In the title compound, C19H17ClNO3P, the P atom exhibits a distorted tetra­hedral configuration. In the crystal, pairs of inter­molecular N—H⋯O(P) hydrogen bonds form centrosymmetric dimers.

Related literature

For related structures, see: Pourayoubi & Zargaran (2010[Pourayoubi, M. & Zargaran, P. (2010). Acta Cryst. E66, o3273-o3274.]); Pourayoubi et al. (2010[Pourayoubi, M., Eshtiagh-Hosseini, H., Zargaran, P. & Divjakovic, V. (2010). Acta Cryst. E66, o204.]).

[Scheme 1]

Experimental

Crystal data
  • C19H17ClNO3P

  • Mr = 373.76

  • Triclinic, [P \overline 1]

  • a = 8.6178 (5) Å

  • b = 9.5901 (6) Å

  • c = 12.1543 (7) Å

  • α = 107.609 (1)°

  • β = 93.882 (1)°

  • γ = 110.036 (1)°

  • V = 882.86 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.33 mm−1

  • T = 100 K

  • 0.40 × 0.35 × 0.25 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.881, Tmax = 0.923

  • 13560 measured reflections

  • 3982 independent reflections

  • 3681 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.086

  • S = 1.02

  • 3982 reflections

  • 230 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.44 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.80 (2) 2.08 (2) 2.8703 (15) 172.2 (19)
Symmetry code: (i) -x+1, -y, -z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In our previous works, the crystal structures of some amidophosphoric acid ester compounds having the P(O)(OC6H5)2 phosphoester moiety have been reported (Pourayoubi et al., 2010; Pourayoubi & Zargaran, 2010). Herein, we report the synthesis and crystal structure of the title amidophosphoric acid ester.

The molecular structure of the title compound is shown in Fig. 1. The P atom has a distorted tetrahedral configuration with the bond angles in the range of 98.03 (5)° [O2–P1–O3] to 116.37 (6)° [O1–P1–O2]. In the crystal structure, pairs of intermolecular N-H···O(P) hydrogen bonds form centrosymmetric dimers.

Related literature top

For related structures, see: Pourayoubi & Zargaran (2010); Pourayoubi et al. (2010).

Experimental top

To a solution of (C6H5O)2P(O)Cl in chloroform, a solution of 2-chlorobenzylamine (1:2 mole ratio) in chloroform was added at 273 K. After 4 h stirring, the solvent was removed and product was washed with distilled water and recrystallized from CH3CN at room temperature. IR (KBr, cm-1): 3206.6, 3065.7, 2909.2, 2715.0, 1947.0, 1591.1, 1486.9, 1456.4, 1257.1, 1198.0, 1131.5, 1016.5, 940.3, 756.3, 686.0.

Refinement top

Data corrected for absorption using SADABS (Bruker, 2009) and structure solved by direct methods. All non-hydrogen atoms refined as anisotropic by Fourier full matrix least squares. Hydrogen atoms H1N found from a Fourier difference map and allowed to refine while all other hydrogen atoms were placed in calculated positions with appropriate riding models.

Structure description top

In our previous works, the crystal structures of some amidophosphoric acid ester compounds having the P(O)(OC6H5)2 phosphoester moiety have been reported (Pourayoubi et al., 2010; Pourayoubi & Zargaran, 2010). Herein, we report the synthesis and crystal structure of the title amidophosphoric acid ester.

The molecular structure of the title compound is shown in Fig. 1. The P atom has a distorted tetrahedral configuration with the bond angles in the range of 98.03 (5)° [O2–P1–O3] to 116.37 (6)° [O1–P1–O2]. In the crystal structure, pairs of intermolecular N-H···O(P) hydrogen bonds form centrosymmetric dimers.

For related structures, see: Pourayoubi & Zargaran (2010); Pourayoubi et al. (2010).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Ellipsoids are given at the 50% probability level.
Diphenyl (2-chlorobenzylamido)phosphate top
Crystal data top
C19H17ClNO3PZ = 2
Mr = 373.76F(000) = 388
Triclinic, P1Dx = 1.406 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.6178 (5) ÅCell parameters from 9988 reflections
b = 9.5901 (6) Åθ = 2.4–28.0°
c = 12.1543 (7) ŵ = 0.33 mm1
α = 107.609 (1)°T = 100 K
β = 93.882 (1)°Block, colourless
γ = 110.036 (1)°0.40 × 0.35 × 0.25 mm
V = 882.86 (9) Å3
Data collection top
Bruker APEXII CCD
diffractometer
3982 independent reflections
Radiation source: fine-focus sealed tube3681 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
φ and ω scansθmax = 28.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1110
Tmin = 0.881, Tmax = 0.923k = 1112
13560 measured reflectionsl = 1511
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.086H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0396P)2 + 0.4993P]
where P = (Fo2 + 2Fc2)/3
3982 reflections(Δ/σ)max = 0.004
230 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.44 e Å3
Crystal data top
C19H17ClNO3Pγ = 110.036 (1)°
Mr = 373.76V = 882.86 (9) Å3
Triclinic, P1Z = 2
a = 8.6178 (5) ÅMo Kα radiation
b = 9.5901 (6) ŵ = 0.33 mm1
c = 12.1543 (7) ÅT = 100 K
α = 107.609 (1)°0.40 × 0.35 × 0.25 mm
β = 93.882 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
3982 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3681 reflections with I > 2σ(I)
Tmin = 0.881, Tmax = 0.923Rint = 0.026
13560 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.086H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.28 e Å3
3982 reflectionsΔρmin = 0.44 e Å3
230 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl11.12274 (4)0.65811 (4)0.77058 (3)0.02847 (10)
P10.49017 (4)0.15695 (4)0.67814 (3)0.01573 (9)
O10.35884 (12)0.01133 (11)0.59500 (8)0.0201 (2)
O20.44078 (12)0.30686 (11)0.72227 (8)0.01837 (19)
O30.53917 (12)0.14595 (11)0.80359 (8)0.0184 (2)
N10.65627 (15)0.21809 (13)0.62570 (10)0.0194 (2)
C10.97088 (17)0.61883 (16)0.65109 (11)0.0190 (3)
C21.00000 (19)0.72582 (16)0.59229 (13)0.0244 (3)
H2A1.10150.81700.61590.029*
C30.8788 (2)0.69789 (18)0.49836 (13)0.0276 (3)
H3A0.89650.77080.45770.033*
C40.7317 (2)0.56346 (18)0.46398 (13)0.0262 (3)
H4A0.64850.54430.39990.031*
C50.70658 (17)0.45701 (16)0.52345 (12)0.0207 (3)
H5A0.60580.36500.49890.025*
C60.82539 (16)0.48181 (15)0.61804 (11)0.0167 (2)
C70.80201 (17)0.36547 (15)0.68278 (11)0.0188 (3)
H7A0.90430.34100.68820.023*
H7B0.78900.41570.76390.023*
C80.32185 (16)0.31673 (15)0.79467 (11)0.0170 (3)
C90.35893 (18)0.46128 (16)0.88220 (12)0.0206 (3)
H9A0.46080.54810.89200.025*
C100.24451 (19)0.47717 (17)0.95549 (12)0.0232 (3)
H10A0.26860.57551.01630.028*
C110.09537 (19)0.35066 (17)0.94059 (13)0.0235 (3)
H11A0.01810.36190.99150.028*
C120.05959 (18)0.20772 (17)0.85097 (13)0.0241 (3)
H12A0.04300.12130.84020.029*
C130.17259 (18)0.18976 (16)0.77676 (12)0.0215 (3)
H13A0.14780.09210.71490.026*
C140.60296 (16)0.03684 (15)0.82152 (12)0.0177 (3)
C150.60994 (18)0.08832 (16)0.73025 (13)0.0233 (3)
H15A0.56990.10470.65080.028*
C160.67701 (19)0.18925 (17)0.75786 (14)0.0277 (3)
H16A0.68260.27560.69650.033*
C170.7356 (2)0.16551 (18)0.87353 (15)0.0287 (3)
H17A0.78170.23480.89130.034*
C180.7269 (2)0.03992 (19)0.96360 (14)0.0278 (3)
H18A0.76670.02351.04310.033*
C190.65988 (18)0.06176 (16)0.93767 (12)0.0214 (3)
H19A0.65330.14750.99910.026*
H1N0.661 (2)0.160 (2)0.5644 (18)0.031 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.02121 (18)0.0312 (2)0.02217 (17)0.00205 (14)0.00251 (13)0.00503 (14)
P10.01745 (17)0.01436 (16)0.01548 (16)0.00594 (13)0.00454 (12)0.00518 (12)
O10.0195 (5)0.0182 (5)0.0192 (4)0.0047 (4)0.0049 (4)0.0043 (4)
O20.0209 (5)0.0169 (4)0.0210 (4)0.0091 (4)0.0081 (4)0.0086 (4)
O30.0242 (5)0.0170 (4)0.0164 (4)0.0107 (4)0.0044 (4)0.0056 (3)
N10.0207 (6)0.0157 (5)0.0184 (5)0.0048 (4)0.0074 (5)0.0029 (4)
C10.0186 (6)0.0199 (6)0.0170 (6)0.0080 (5)0.0041 (5)0.0036 (5)
C20.0262 (7)0.0184 (6)0.0290 (7)0.0072 (6)0.0116 (6)0.0088 (5)
C30.0369 (8)0.0268 (7)0.0302 (7)0.0179 (7)0.0142 (7)0.0170 (6)
C40.0302 (8)0.0322 (8)0.0235 (7)0.0178 (6)0.0053 (6)0.0128 (6)
C50.0198 (6)0.0218 (6)0.0201 (6)0.0088 (5)0.0032 (5)0.0059 (5)
C60.0181 (6)0.0166 (6)0.0166 (6)0.0086 (5)0.0054 (5)0.0049 (5)
C70.0178 (6)0.0189 (6)0.0188 (6)0.0054 (5)0.0025 (5)0.0072 (5)
C80.0190 (6)0.0198 (6)0.0173 (6)0.0109 (5)0.0048 (5)0.0091 (5)
C90.0211 (7)0.0179 (6)0.0223 (6)0.0072 (5)0.0035 (5)0.0068 (5)
C100.0289 (7)0.0217 (7)0.0209 (6)0.0132 (6)0.0057 (6)0.0056 (5)
C110.0259 (7)0.0295 (7)0.0249 (7)0.0171 (6)0.0107 (6)0.0140 (6)
C120.0199 (7)0.0238 (7)0.0315 (7)0.0085 (5)0.0084 (6)0.0125 (6)
C130.0217 (7)0.0185 (6)0.0238 (7)0.0085 (5)0.0050 (5)0.0056 (5)
C140.0161 (6)0.0162 (6)0.0225 (6)0.0057 (5)0.0050 (5)0.0092 (5)
C150.0257 (7)0.0201 (6)0.0231 (7)0.0103 (6)0.0016 (5)0.0049 (5)
C160.0281 (8)0.0198 (7)0.0352 (8)0.0120 (6)0.0052 (6)0.0066 (6)
C170.0272 (8)0.0265 (7)0.0410 (9)0.0138 (6)0.0075 (7)0.0193 (7)
C180.0297 (8)0.0339 (8)0.0279 (7)0.0142 (6)0.0068 (6)0.0190 (6)
C190.0230 (7)0.0229 (7)0.0214 (6)0.0094 (5)0.0080 (5)0.0102 (5)
Geometric parameters (Å, º) top
Cl1—C11.7429 (14)C8—C91.3834 (18)
P1—O11.4699 (10)C8—C131.3831 (19)
P1—O21.5872 (9)C9—C101.389 (2)
P1—O31.5984 (9)C9—H9A0.9500
P1—N11.6042 (12)C10—C111.387 (2)
O2—C81.4043 (15)C10—H10A0.9500
O3—C141.4002 (15)C11—C121.386 (2)
N1—C71.4591 (17)C11—H11A0.9500
N1—H1N0.80 (2)C12—C131.390 (2)
C1—C21.3850 (19)C12—H12A0.9500
C1—C61.3942 (18)C13—H13A0.9500
C2—C31.389 (2)C14—C191.3829 (19)
C2—H2A0.9500C14—C151.3884 (19)
C3—C41.388 (2)C15—C161.392 (2)
C3—H3A0.9500C15—H15A0.9500
C4—C51.388 (2)C16—C171.384 (2)
C4—H4A0.9500C16—H16A0.9500
C5—C61.3910 (18)C17—C181.389 (2)
C5—H5A0.9500C17—H17A0.9500
C6—C71.5175 (17)C18—C191.389 (2)
C7—H7A0.9900C18—H18A0.9500
C7—H7B0.9900C19—H19A0.9500
O1—P1—O2116.37 (6)C9—C8—O2116.66 (12)
O1—P1—O3113.92 (5)C13—C8—O2121.59 (12)
O2—P1—O398.03 (5)C8—C9—C10118.77 (13)
O1—P1—N1113.05 (6)C8—C9—H9A120.6
O2—P1—N1104.00 (6)C10—C9—H9A120.6
O3—P1—N1110.13 (6)C11—C10—C9120.55 (13)
C8—O2—P1123.42 (8)C11—C10—H10A119.7
C14—O3—P1124.66 (8)C9—C10—H10A119.7
C7—N1—P1125.99 (9)C12—C11—C10119.65 (13)
C7—N1—H1N117.4 (14)C12—C11—H11A120.2
P1—N1—H1N116.5 (14)C10—C11—H11A120.2
C2—C1—C6122.43 (13)C11—C12—C13120.56 (14)
C2—C1—Cl1118.35 (11)C11—C12—H12A119.7
C6—C1—Cl1119.22 (10)C13—C12—H12A119.7
C1—C2—C3119.07 (13)C8—C13—C12118.73 (13)
C1—C2—H2A120.5C8—C13—H13A120.6
C3—C2—H2A120.5C12—C13—H13A120.6
C4—C3—C2119.95 (13)C19—C14—C15121.49 (12)
C4—C3—H3A120.0C19—C14—O3115.36 (11)
C2—C3—H3A120.0C15—C14—O3123.15 (12)
C3—C4—C5119.83 (14)C14—C15—C16118.46 (13)
C3—C4—H4A120.1C14—C15—H15A120.8
C5—C4—H4A120.1C16—C15—H15A120.8
C4—C5—C6121.60 (13)C17—C16—C15120.86 (14)
C4—C5—H5A119.2C17—C16—H16A119.6
C6—C5—H5A119.2C15—C16—H16A119.6
C5—C6—C1117.10 (12)C16—C17—C18119.76 (13)
C5—C6—C7122.47 (12)C16—C17—H17A120.1
C1—C6—C7120.42 (12)C18—C17—H17A120.1
N1—C7—C6113.03 (11)C19—C18—C17120.15 (14)
N1—C7—H7A109.0C19—C18—H18A119.9
C6—C7—H7A109.0C17—C18—H18A119.9
N1—C7—H7B109.0C14—C19—C18119.28 (13)
C6—C7—H7B109.0C14—C19—H19A120.4
H7A—C7—H7B107.8C18—C19—H19A120.4
C9—C8—C13121.71 (13)
O1—P1—O2—C867.62 (11)C1—C6—C7—N1171.04 (11)
O3—P1—O2—C854.18 (10)P1—O2—C8—C9140.36 (10)
N1—P1—O2—C8167.34 (10)P1—O2—C8—C1341.74 (16)
O1—P1—O3—C1459.85 (11)C13—C8—C9—C101.6 (2)
O2—P1—O3—C14176.56 (10)O2—C8—C9—C10179.53 (11)
N1—P1—O3—C1468.38 (11)C8—C9—C10—C110.4 (2)
O1—P1—N1—C7174.57 (10)C9—C10—C11—C120.7 (2)
O2—P1—N1—C747.45 (12)C10—C11—C12—C130.6 (2)
O3—P1—N1—C756.72 (12)C9—C8—C13—C121.7 (2)
C6—C1—C2—C31.3 (2)O2—C8—C13—C12179.47 (12)
Cl1—C1—C2—C3178.73 (11)C11—C12—C13—C80.5 (2)
C1—C2—C3—C40.6 (2)P1—O3—C14—C19171.04 (10)
C2—C3—C4—C50.2 (2)P1—O3—C14—C158.87 (18)
C3—C4—C5—C60.4 (2)C19—C14—C15—C160.4 (2)
C4—C5—C6—C10.29 (19)O3—C14—C15—C16179.53 (13)
C4—C5—C6—C7178.79 (12)C14—C15—C16—C170.1 (2)
C2—C1—C6—C51.16 (19)C15—C16—C17—C180.4 (2)
Cl1—C1—C6—C5178.91 (10)C16—C17—C18—C190.2 (2)
C2—C1—C6—C7177.94 (12)C15—C14—C19—C180.5 (2)
Cl1—C1—C6—C71.99 (17)O3—C14—C19—C18179.36 (12)
P1—N1—C7—C6113.96 (12)C17—C18—C19—C140.3 (2)
C5—C6—C7—N18.01 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.80 (2)2.08 (2)2.8703 (15)172.2 (19)
Symmetry code: (i) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC19H17ClNO3P
Mr373.76
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)8.6178 (5), 9.5901 (6), 12.1543 (7)
α, β, γ (°)107.609 (1), 93.882 (1), 110.036 (1)
V3)882.86 (9)
Z2
Radiation typeMo Kα
µ (mm1)0.33
Crystal size (mm)0.40 × 0.35 × 0.25
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.881, 0.923
No. of measured, independent and
observed [I > 2σ(I)] reflections
13560, 3982, 3681
Rint0.026
(sin θ/λ)max1)0.660
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.086, 1.02
No. of reflections3982
No. of parameters230
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.28, 0.44

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.80 (2)2.08 (2)2.8703 (15)172.2 (19)
Symmetry code: (i) x+1, y, z+1.
 

Acknowledgements

The authors wish to thank Ferdowsi University of Mashhad for the Research University Grant (No. 15144/2) and Bruker AXS Inc. (Madison, WI).

References

First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationPourayoubi, M., Eshtiagh-Hosseini, H., Zargaran, P. & Divjakovic, V. (2010). Acta Cryst. E66, o204.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPourayoubi, M. & Zargaran, P. (2010). Acta Cryst. E66, o3273–o3274.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds